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This paper describes an algorithm to efficiently select ground motions from a 5 

database while matching a target mean, variance and correlations of response spectral 6 

values at a range of periods. The approach improves an earlier algorithm by Jayaram 7 

et al. (2011). Key steps in the process are to screen a ground motion database for 8 

suitable motions, statistically simulate response spectra from a target distribution, 9 

find motions whose spectra match each statistically simulated response spectrum, and 10 

then perform an optimization to further improve the consistency of the selected 11 

motions with the target distribution. These steps are discussed in detail, and the 12 

computational expense of the algorithm is evaluated. A brief example selection 13 

exercise is performed, to illustrate the type of results that can be obtained. Source 14 

code for the algorithm has been provided, along with metadata for several popular 15 

databases of recorded and simulated ground motions, which should facilitate a variety 16 

of exploratory and research studies.  17 

1 Introduction 18 

Selection of ground motions is a topic of great interest as dynamic structural analysis, which 19 

requires ground motions as inputs, grows more prevalent (Katsanos et al. 2010; NIST 2011). 20 

This selection typically involves searching a ground motion database to find time series 21 

produced under appropriate seismological conditions (e.g., earthquake magnitude and source-to-22 

site distance), and that have appropriate response spectral values. In some cases, ground motions 23 

are selected based on their individual match to a target spectrum; that is, an optimal set of ground 24 

motions would have spectra that all perfectly match the target spectrum. In other cases, however, 25 

it is important that the ground motions have variability in response spectra that accurately 26 

represents target distributions from predictive models (e.g., Kramer and Mitchell 2006; Lin et al. 27 

2013b). As such, a number of algorithms have been proposed to select ground motions with 28 

some form of specified response spectral variability (Bradley 2012; Ha and Han 2016a; b; 29 

Jayaram et al. 2011; Kottke and Rathje 2008; Wang 2011). Among those algorithms, only 30 
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Bradley, Ha and Han (2016b) and Jayaram et al. include two features of interest here: accounting 31 

for correlations among spectral parameters and conditioning on a target spectral acceleration 32 

amplitude.  33 

Traditional practice in active seismic regions has been to search databases of ground motion 34 

recordings, but simulated ground motions are receiving increased use. Further, there is a need for 35 

comparative research studies where recorded and simulated motions are selected in a comparable 36 

manner and their relative impacts on structures are evaluated (e.g., Galasso et al. 2013; Iervolino 37 

et al. 2010). In recognition of these trends, data facilitating searches of several popular libraries 38 

of recorded and simulated ground motions are provided with this algorithm. A second trend in 39 

ground motion libraries is that they are rapidly growing larger (several databases discussed 40 

below have more than 10,000 ground motions), making the computational efficiency of search 41 

algorithms more important. 42 

This manuscript describes an updated version of the algorithm proposed by Jayaram et al. 43 

(2011), also utilizing aspects of Bradley (2012). Relative to the Jayaram et al. algorithm, the 44 

range of selection options has been broadened and the numerical implementation has been 45 

improved to both reduce runtime and improve the statistics of the resulting selected motions. 46 

Improvements relative to the previous algorithm are noted below, and improvements in 47 

numerical efficiency are also reported. 48 

2 Target Response Spectra 49 

2.1 Types of Spectral Targets 50 

Before discussing the ground motion selection procedure, we first introduce some relevant 51 

terminology and concepts related to response spectra as targets for ground motion selection. 52 

Ground motion models (GMMs) (e.g., Boore et al. 2014) provide the mean and standard 53 

deviation of logarithmic spectral acceleration (Sa) at a given period, denoted here as   µln Sa (Rup,T )  54 

and   σ ln Sa (Rup,T ) , respectively. With this notation, µ  denotes a mean, and σ  denotes a standard 55 

deviation, of the variable noted in subscript. Rup denotes the rupture scenario (defined by the 56 

earthquake’s magnitude, distance, rupture mechanism, and other parameters necessary to 57 

evaluate a given GMM) and T denotes the spectral acceleration period. The GMM prediction 58 

also generally depends upon one or more parameters defining site conditions such as average 59 

shear-wave velocity over the top 30 m of the site (Vs30), but that explicit dependence is omitted 60 

from this notation for brevity. Some GMMs (e.g., Abrahamson et al. 2014) also provide 61 
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correlation coefficients for log spectral accelerations at pairs of periods, denoted here as 62 

  
ρ(Ti ,Tj ) . If not provided by the GMM, the correlation coefficients can be obtained from a 63 

supplemental model (e.g., Baker and Jayaram 2008).  64 

With the above inputs, we define an “Unconditional Spectrum” as the probability distribution 65 

of a response spectrum, given a rupture scenario. The distribution of log spectral acceleration 66 

values at multiple periods, given a rupture, is well represented by a multivariate normal 67 

distribution (Jayaram and Baker 2008), which is fully specified by the mean and covariance 68 

matrix for lnSa values 69 

 
   M = [µln Sa (Rup,T1) µln Sa (Rup,T2 ) ... µln Sa (Rup,Tp )]T  (1) 70 

 

   

Σ =

σ T1

2 σ T1,T2
… σ T1,Tp

σ T2 ,T1
σ T2

2 !

! "
σ Tp ,T1

… σ Tp

2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (2) 71 

where M is a vector of mean values of lnSa at p periods of interest, superscript T denotes a 72 

matrix transpose, and Σ  is the covariance matrix for lnSa at these same periods. In equation 2 73 

we adopt abbreviated notation, 
  
σ Ti ,Tj

= ρ(Ti ,Tj )σ ln Sa (Rup,Ti )σ ln Sa (Rup,Tj ) , to denote the covariance 74 

of lnSa at periods Ti and Tj (and 
  
σ Ti

2 =σ ln Sa (Rup,Ti )
2  is the variance at period Ti).  75 

The “Unconditional” terminology is used here to emphasize the lack of conditioning on a 76 

spectral value, for consistency with the use of the term “Conditional” in the following two 77 

definitions. An example Unconditional Spectrum is illustrated in Figure 1a. The mean value 78 

from equation 1, and the standard deviations embedded in equation 2, are plotted in Figure 1a; 79 

the period-to-period correlation embedded in equation 2 is apparent in the ground motion spectra 80 

plotted in the figure, which are ‘bumpy’ (reflecting a lack of perfect correlation) but do vary with 81 

some continuity from period to period. 82 

The “Conditional Mean Spectrum” (CMS) quantifies mean log spectral acceleration values 83 

of a ground motion, conditional on a spectral value at a conditioning period and a rupture 84 

scenario  85 

 
  
µln Sa(Ti )|ln Sa(T *) = µln Sa (Rup,Ti )+ ρ(Ti ,T*)ε (T*)σ ln Sa (Rup,Ti )  (3) 86 
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where T* denotes the conditioning period and   ε (T*)  is a residual quantifying the difference 87 

between the conditioning Sa value (Sa(T*)) and its mean value given the considered rupture 88 

 
  
ε (T*) =

ln Sa(T*)− µln Sa (Rup,T*)
σ ln Sa (Rup,T*)

 (4) 89 

 90 
A CMS, as calculated using equation 3 and a conditioning period of 1.5s, is illustrated in Figure 91 

1b. The term CMS was introduced by Baker and Cornell (2006), and further background is 92 

provided in Baker (2011). It is becoming more commonly used to select ground motions for 93 

dynamic analysis in several design guidelines (e.g., BSSC 2015; FEMA 2012; TBI Guidelines 94 

Working Group 2010).  95 

The “Conditional Spectrum” (CS) is the probability distribution of log spectral acceleration 96 

values, conditional on a spectral value at a conditioning period and on a rupture scenario. Unlike 97 

the CMS, this spectrum quantifies variability in spectral values at periods other than the 98 

conditioning period. If we assume that the distribution is multivariate normal (which is generally 99 

reasonable), then the Conditional Spectrum is fully described by conditional means, and a 100 

conditional covariance matrix. The conditional means are given by equation 3 and the 101 

conditional covariance matrix is  102 

 
  
Σcond = Σ −

ΣcrossΣcross
T

σ ln Sa (Rup,T*)2  (5) 103 

where Σ  is the covariance matrix from equation 2 and  Σcross  is a p x 1 matrix of covariances 104 

between   ln Sa(Ti )  and   ln Sa(T*) . Visually we can represent this distribution by plotting the mean 105 

and +/- one or two standard deviations around the mean, as in Figure 1b. The Conditional 106 

Spectrum terminology was coined by Abrahamson and Al Atik (2010), but they represented the 107 

CS distribution directly by realizations of the spectra rather than an analytical distribution. The 108 

Conditional Mean Spectrum was more popular than the Conditional Spectrum prior to 109 

approximately 2010, in large part because there was no simple way to select ground motions 110 

matching a Conditional Spectrum—a situation rectified by this manuscript and its predecessor 111 

algorithms. 112 

Bradley (2010) extended the CS to consider ground motion parameters other than response 113 

spectra, and to consider a more general situation where more than one rupture scenario may 114 

contribute to occurrence of ground motions with the target amplitude. Bradley refers to the 115 
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resulting distribution and selection procedure as a Generalized Conditional Intensity Measure 116 

(GCIM) approach. This paper focuses on response spectra and single rupture scenarios for 117 

simplicity, but the algorithm could, in principle, be generalized by defining equations 3 and 5 to 118 

refer to a general vector of intensity measures and to reflect the impact of multiple rupture 119 

scenarios on the target means and covariances. Equations 3 and 5 can also be revised to account 120 

for the use of multiple GMMs, consistent with current practice in hazard analysis (Lin et al. 121 

2013a). 122 

To complement the above equations, a few observations may provide intuition about the 123 

Conditional Spectrum target illustrated in Figure 1b. First, the response spectra “pinch” to a 124 

single point at the conditioning period of 1.5s. Since we have specified this amplitude, there is no 125 

variability in the spectra at this period. Second, at other periods there is variability in the spectra 126 

and that variability tends to be larger at periods further from 1.5s. This is a result of the 127 

correlation between spectral values: periods close to 1.5s have spectra highly correlated to 128 

Sa(1.5s), so there is relatively little uncertainty in spectra at these nearby periods, while there is 129 

larger spectral variability at the (less-correlated) periods far from 1.5s. This pattern in spectral 130 

variability is grossly similar to what is observed if one simply scales a set of ground motions so 131 

their spectra are equal at some conditioning period, which somewhat confirms the 132 

reasonableness of this target. Third, the mean of the conditional spectrum (i.e., the CMS) reflects 133 

the expected response spectral shape, and it accounts for both the spectrum associated with the 134 

rupture scenario (via the unconditional mean spectrum of equation 1) and the tendency for high-135 

amplitude spectral values to be associated with a peak in the spectrum (via the epsilon value and 136 

spectral correlations in equation 3).    137 

It should be intuitive that mean responses obtained from structural analysis are related to the 138 

mean amplitude of the input ground motions’ spectra. Further, several studies have shown that 139 

considering the full variability in response spectra, rather than only mean values of spectra, can 140 

be important for some structural response assessment procedures (e.g., Lin et al. 2013b). This 141 

motivates the development of tools like that proposed here to facilitate selection of ground 142 

motions matching an Unconditional Spectrum or Conditional Spectrum.  143 
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 144 
Figure 1. (a) Unconditional Spectrum associated with magnitude = 6.5, distance = 10 km, Vs30 = 500 m/s 145 
and a California strike-slip rupture. (b) Conditional spectrum associated with the same rupture parameters 146 
as (a), and with Sa(1.5s) = 0.3 g. Response spectra consistent with the target distributions are also shown. 147 
Calculations use the GMM of Boore et al. (2014) and the correlation model of Baker and Jayaram (2008).  148 

2.2 Computational Challenges  149 

With the above methods for quantifying response spectra targets established, here we briefly 150 

consider ground motion selection strategies (thinking of the case where one wishes to select n 151 

ground motions from a database with m candidate motions). It is simple to quickly select ground 152 

motions to be consistent with a Conditional Mean Spectrum, as only a mean spectrum is 153 

relevant: one can simply compute an error metric for each of the m candidate motions (e.g., the 154 

sum of squared errors between the ground motion’s spectrum and the target spectrum, potentially 155 

after scaling the motion), and then selects the n motions with the smallest error. There may be a 156 

benefit to performing a more extensive optimization-based search as discussed below, but the 157 

availability of this fast approach makes the optimization-based approach less critical. 158 

It is much more difficult to select ground motions that match a Conditional Spectrum or 159 

Unconditional Spectrum target, because the ground motions’ spectra should match both a mean 160 

target and a covariance matrix. To find ground motions with an appropriate covariance matrix, 161 

one cannot evaluate individual candidates but instead must evaluate a set of n candidates 162 

collectively (that is, it is not possible to determine whether an individual ground motion is a 163 

“good” fit to a Conditional Spectrum without knowing the other ground motions it would be 164 

paired with). This means that there are m-choose-n combinations of ground motions to 165 
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consider—too many to search exhaustively for typical situations where n>10 and m>100. It is 166 

this problem that the algorithm below addresses, via heuristics to enable a fast search that 167 

consistently produces ground motion sets closely matching the specified targets. 168 

3 Selection Algorithm 169 

The major steps of the proposed ground motion selection process are illustrated in Figure 2. 170 

These steps are described in additional detail in the following subsections, which group the steps 171 

into distinct conceptual stages. 172 

 173 
 174 

Figure 2. Flow chart of major steps in the ground motion selection process, with relevant equation 175 
numbers noted in parantheses. Details for each step are discussed in Section 3. 176 

3.1 Compute Target Spectrum and Statistically Simulate Realizations 177 

The process starts by specifying a target response spectrum (Step 1 in Figure 2). Formally, 178 

we specify the mean values of log spectral acceleration, and the covariance matrix for these 179 

values. Equations 1 and 2 are utilized if the target is an Unconditional Spectrum, and equations 3 180 

and 5 are utilized if the target is a Conditional Spectrum. The provided software includes a 181 

function that computes the required mean and covariance matrix if the user specifies the target 182 

earthquake rupture (and the target   ε (T*)  or   Sa(T*)  if the target is a Conditional Spectrum). The 183 
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provided software utilizes the models of Boore et al. (2014) and Baker and Jayaram (2008) to 184 

compute the target spectra, but these can be replaced without significant modification to the code 185 

if desired. 186 

While the software was developed to solve the problem of selecting ground motions to match 187 

a Conditional Spectrum, it can also be adopted for selecting ground motions to match a code 188 

spectrum or some other target, by specifying the target spectrum as the mean spectrum, and 189 

setting the covariance matrix to consist of all zeros (i.e., specifying that no variability around the 190 

target spectrum is desired).  191 

Relative to Jayaram et al. (2011), there are a few updates to the target response spectrum 192 

calculation. The main program has been generalized so that a single function can handle 193 

Conditional Spectrum and Unconditional Spectrum targets (previously, separate versions of the 194 

software were provided for each target type). Additionally, functionality has been provided so 195 

that the user can easily match a target Sa(T*) with a given set of rupture values. Because mean 196 

rupture values (rather than the full distribution of possible ruptures considered in a seismic 197 

hazard calculation) are often used in these calculations for convenience, the target Sa(T*) is not 198 

necessarily obtained when these mean values are combined with a mean   ε (T*)  value from a 199 

hazard deaggregation. An optional calculation now adjusts the   ε (T*)  value so that the 200 

conditional mean spectrum matches the target Sa(T*), as this was seen by Lin et al. (2013) to be 201 

a reasonable approximation strategy in many cases.   202 

Step 2 in Figure 2 is to statistically simulate realizations of response spectra from the target 203 

distribution. This is done by sampling from a multivariate normal distribution with the target 204 

mean and covariance matrices. Since this simulation step is extremely fast, it is performed 205 

multiple times and the set of simulations best matching the target spectrum is utilized for the 206 

following steps. We note here that the ‘statistically simulated spectra’ in this step are produced 207 

by sampling from a probability distribution (e.g., Stein 1987); this is distinct from the ‘simulated 208 

ground motions’ discussed in the following section, where are produced by numerical evaluation 209 

of equations associated with the earthquake rupture and seismic wave propagation process. 210 

3.2 Specify Candidate Ground Motions 211 

Step 3 of the process in Figure 2 specifies candidate ground motions to select from. Relevant 212 

metadata from a candidate ground motion database is loaded, including spectral acceleration 213 

values and rupture parameters for each ground motion. The Jayaram et al. (2011) code included 214 
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metadata for the NGA-West1 database, consisting of 3551 ground motions from 173 earthquakes 215 

(Chiou et al. 2008). Here we have added metadata for the NGA-West2 database, which includes 216 

21,539 ground motions from 599 earthquakes (Ancheta et al. 2014). Additionally, we have added 217 

metadata for three databases of numerically simulated ground motions produced by a Southern 218 

California Earthquake Center (SCEC) project to validate simulations (Goulet et al. 2015). 219 

Simulations were produced on the SCEC Broadband Platform using rupture geometries from 220 

seven recent California earthquakes. Ground motions from the “EXSIM” (Atkinson and 221 

Assatourians 2015), “GP” (Graves and Pitarka 2015) and “SDSU” (Olsen and Takedatsu 2015) 222 

simulation algorithms were compiled for use in this software. Each database includes 13,400 223 

ground motions. Because both recorded and simulated ground motion databases are provided in a 224 

compatible format, the authors hope that this tool will facilitate further comparative evaluations 225 

of similarities and differences in structural demands caused by recorded versus simulated ground 226 

motions with comparable response spectra.   227 

An additional improvement in Steps 2 and 3 of the selection process is that the new target 228 

computations and ground motion databases utilize both the RotD50 and RotD100 direction-229 

independent metrics of response spectra for multi-component motions (Boore 2010). These 230 

metrics are now used often in ground motion models and engineering analysis procedures 231 

(Stewart et al. 2011), so their inclusion in the database metadata increases the tool’s relevance. 232 

Single-component response spectra are also provided so that users can search for single-233 

component motions if desired. 234 

Once database metadata has been loaded, it is screened in Step 4 so that only appropriate 235 

ground motions are considered for selection. The current code is set up to allow only ground 236 

motions with appropriate values of earthquake magnitude, source-to-site distance, and Vs30, but 237 

the screening can be easily generalized to consider other properties. These so-called causal 238 

parameters are important to screen in order to assure that the considered time series are 239 

reasonably consistent with the conditions of interest in ground motion selection, but they should 240 

not be screened so aggressively that an insufficient number of candidate motions remain for the 241 

next stage of selection (Tarbali and Bradley 2016). The Jayaram et al. (2011) code did not 242 

include this screening step, as its objective was to illustrate other aspects of the selection 243 

procedure, but the screening has been added here both to improve the quality of the selected 244 

motions and to improve the computational cost of the calculation (since motions excluded at this 245 

stage need not be considered later for selection). 246 
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3.3 Ground Motion Selection 247 

Step 5 of Figure 2 involves selecting ground motions from the database that best match the 248 

statistically simulated spectra. For each statistically simulated spectrum and candidate ground 249 

motion, the sum of squared errors (SSE) is computed  250 

 ( )2( )

1
ln ( ) ln ( )

P
s

a j a j
j

SSE S T S T
=

= −∑  (6) 251 

where ln ( )a jS T  is the log spectral acceleration of the (optionally scaled) candidate ground 252 

motion and 
  
ln Sa

(s) (Tj )  is the lnSa of the considered statistically simulated response spectrum. 253 

Note that if scaling is not allowed and a target Conditional Spectrum is used, the selected 254 

motions will not exactly match the target Sa(T*), but equation 6 will encourage selection of 255 

motions close to the target and the motions may be suitably similar if choosing from a database 256 

having ground motions compatible with the target scenario.  For each statistically simulated 257 

spectrum, the SSE is computed for all candidate ground motions that have not already been 258 

selected, and the motion with the smallest SSE is selected to represent that simulation. The 259 

metric of equation 6 is not the only possible selection criterion (e.g., Beyer and Bommer 2007; 260 

Buratti et al. 2010), but has been observed to produce satisfactory results; it could easily be 261 

modified by a user if desired (e.g., to put varying weights on the squared errors at varying 262 

periods). 263 

Simulating spectra from the target distribution (in Step 2), and then searching individual 264 

motions to find matches to these simulations, is perhaps the most important step in this algorithm 265 

for overcoming the computational cost that would be required to search suites of ground motions 266 

instead of individual motions. Its utility is apparent when noting that most prior algorithms to 267 

solve this problem have used this approach (Bradley 2012; Jayaram et al. 2011; Wang 2011), 268 

though Ha and Han (2016a) recently proposed a non-simulation-based approach that instead uses 269 

a limited search of the potential selection combinations. 270 

In Step 6 of Figure 2, the selected suite of motions is evaluated to see whether it is 271 

sufficiently close to the target distribution. The maximum percentage mismatch of the mean and 272 

standard deviation of the selected motions’ spectra, relative to their targets, are calculated  273 

 

  

Errmean = max
j

mln Sa (Tj )− µln Sa (Tj )

µln Sa (Tj )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
×100  (7) 274 
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Errstd = max
j

sln Sa (Tj )−σ ln Sa (Tj )

σ ln Sa (Tj )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
×100  (8) 275 

where 
  
mln Sa (Tj )  is the sample mean of the lnSa values of the selected motions at period Tj and 276 

  
µln Sa (Tj )  is the target mean from a GMM (in the case of Unconditional Selection) or equation 5 277 

(in the case of Conditional Selection). Similarly, 
  
sln Sa (Tj )  is the sample standard deviation and 278 

  
σ ln Sa (Tj )  is the target standard deviation at period Tj.. Finally,  denotes an absolute value. The 279 

user can specify a maximum tolerance for the errors defined by equations 7 and 8, and if the 280 

errors at this step are less than the tolerance then the selection process is complete.  281 

If the errors are too large, then a finite number of optimization rounds are performed to 282 

further improve the selection. Step 7 of Figure 2 involves further optimizing the initial selection 283 

if needed. At this stage, the selected set of ground motions are modified by replacing individual 284 

ground motions from the set with available motions from the screened database and seeing 285 

whether the set is improved in its match to the target response spectrum. There are two objective 286 

functions available to the user when performing the optimization.  287 

In the first case, a weighted sum (over all periods of interest) of squared errors in the 288 

spectra’s mean values and standard deviations are utilized to evaluate goodness of fit, as follows 289 

 
  
SSEs = mln Sa (Tj )− µln Sa (Tj )( )2

+ w sln Sa (Tj )−σ ln Sa (Tj )( )2⎡
⎣⎢

⎤
⎦⎥j=1

p

∑  (9) 290 

where SSES denotes the sum of squared errors of the set of ground motions, w is a user-defined 291 

weight that assigns relative importance to mismatches in mean versus standard deviation values. 292 

In the second case, the d statistic from a Komogorov-Smirnov goodness of fit test (KS test) is 293 

used as the metric. The d statistic at a given period is given by the maximum absolute values of 294 

the difference between the target distribution’s cumulative distribution function (
  
Fln Sa(Tj )

(x) ) 295 

and the empirical cumulative distribution function  (
  
Fln Sa(Tj )

* (x) )  given by the selected motions’ 296 

Sa(Tj) values  297 

 
  
d(Tj ) = max Fln Sa(Tj )

* (x)− Fln Sa(Tj )
(x)( )  (10) 298 
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Example d values are illustrated in Figure 3 for a single period. In the software, the d values for 299 

all periods of interest are summed and used as the error metric. This metric has been successfully 300 

utilized by others in ground motion selection problems (Bradley 2012; Chandramohan et al. 301 

2016), and so is incorporated into this algorithm to take advantage of this insight. 302 

Figure 3 illustrates the implications of these error metrics using a target distribution for 303 

Sa(2s), and Sa(2s) values for two hypothetical sets of candidate ground motions. The target and 304 

sample means are labeled on each figure, as well as the d(2s) value; sample standard deviations 305 

(the third parameter used in error computations) are not shown. In Figure 3a, the candidate 306 

motions have nearly the same mean and standard deviation as the target spectrum, and a d(2s) 307 

value of 0.14. In Figure 3b the candidate ground motions have a sample mean that is 4% larger 308 

than the target mean (and, although not shown graphically, the sample standard deviation closely 309 

matches the target). However, the d(2s)=0.07 value in this case is half of that in Figure 3a. So the 310 

SSES error metric would prefer the motions in Figure 3a while the KS test metric would prefer 311 

the motions in Figure 3b (keeping in mind that the selection algorithm sums errors across 312 

multiple periods rather than considering only a single period as we have here). An additional 313 

relevant factor is that the KS test calculation is somewhat slower than the SSES calculation, as 314 

will be seen below. Ultimately it is left to the user to select a metric for a given selection case, as 315 

both error metrics have merits. 316 

 317 
Figure 3. Illustration of spectral acceleration target distributions and error metrics. (a) Selected ground 318 
motions whose mean and standard deviation closely match the target. (b) Selected ground motions whose 319 
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mean is slightly less than the target mean, but who more closely match the target with regard to the d 320 
statistic. 321 

This a greedy optimization algorithm, as it searches for only local improvements (i.e., by 322 

replacing only one ground motion at a time), and thus misses opportunities for improvements 323 

resulting from replacing two or more ground motions that cause an improvement in aggregate (if 324 

the improvement was not detectable when replacing them one at a time). While such 325 

opportunities surely exist, it is not clear that considering them would result in dramatically 326 

improved selection results. Further, this choice to use a greedy optimization approach makes the 327 

calculation computationally tractable. The optimization algorithm can terminate early if the error 328 

metrics of equations 7 and 8 are within tolerance.  329 

   Once a final set of ground motions is determined, in Step 8 of Figure 2 an output file is 330 

produced to document the selected ground motions (and scale factors, if scaling was allowed). 331 

For the NGA-West1 and simulated ground motions, the ground motion time series are available 332 

for direct download over the Internet and the selected motions’ URLs are provided in the output 333 

so that the time series can be obtained automatically. For the NGA-West2 database, the index 334 

numbers of the selected ground motions must be copied into the NGA-West2 search tool in order 335 

to download the ground motion files. Additional detail regarding this download process is 336 

provided in the software documentation. 337 

4 COMPUTATIONAL EXPENSE 338 

The algorithm’s initial record-by-record selection (Step 5) takes time proportional to m x n, 339 

where m is the number of candidate ground motions in the database and n is the number of 340 

selected ground motions, because the m motions are compared once each to the n simulations. 341 

The optimization (Step 7) also takes time proportional to m x n, because the m-n candidates are 342 

evaluated as candidates to replace each of the n previously selected motions. This is much better 343 

than the m-choose-n computational expense of the exhaustive search discussed in section 2.2. 344 

Any calculations within the loops over the m x n candidate evaluations were optimized to limit 345 

computational cost to the extent possible. 346 

We further manage computational expense in a few ways. First, we screen the database (Step 347 

4 in Figure 2) to limit the size of m before starting the search for motions to select. While this is 348 

conceptually simple, it was not implemented in the Jayaram et al. (2011) software. Second, 349 

within the optimization stage, we skip all ground motions that need to be scaled by a larger-than-350 
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allowable factor, before proceeding to the more expensive calculation of considering the ground 351 

motion as a potential replacement for a currently selected motion. These first two steps often lead 352 

to great reductions in the numbers of considered ground motions when typical restrictions on 353 

acceptable ground motions and scale factors are used. Third, we stop the optimization early if a 354 

selected set of ground motions is sufficiently close to the target spectrum (as evaluated using a 355 

user-specified error tolerance). Finally, the optimization step of the algorithm—the most 356 

expensive step—is optionally parallelized so that each currently selected ground motion is 357 

evaluated in parallel to see if a better alternative can be found.  358 

The computational cost of the algorithm is illustrated in Figure 4, for varying sizes of 359 

selected ground motion sets and varying sizes of the database being searched. A few 360 

observations can be made. First, the improvements discussed here have greatly reduced the 361 

algorithm’s run time relative to the previous implementation by Jayaram et al. (2011). A 362 

somewhat typical problem of selecting 20 ground motions from a pool of 2000 candidates now 363 

requires less than 30 seconds. Second, the cost of the algorithm now scales approximately 364 

linearly with the number of selected ground motions (Figure 4a) and the number of searchable 365 

ground motions (Figure 4b), as expected based on the discussion above.  366 

The Figure 4 results are produced without allowing early termination of the optimization and 367 

without parallelized optimization, in order to provide conservative run times, so users may find 368 

better performance depending upon their use of these features. The benefits of these features are 369 

problem dependent, so no general run time results are provided here. Further speed-up of the 370 

algorithm is possible, most obviously by switching to a faster programing language, and by 371 

restructuring some code for better numerical performance. We consider the current 372 

implementation to be well suited, however, for our goals of providing an educational code with 373 

reasonable run times.  374 
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 375 
Figure 4. (a) Time to select a given number of ground motions from a database of 5000 motions, for three 376 
different selection approaches. (b) Time to select 20 ground motions from a database of 5000, with 377 
varying numbers of motions remaining after screening.  378 

5 Example Ground Motion Selection 379 

To illustrate use of the software, selection of simulated and recorded motions is briefly 380 

demonstrated, referring to the numbered steps in Figure 2. In step 1, the target spectrum must be 381 

specified; the Conditional Spectrum of Figure 1b is used here as the target RotD50 spectrum. 382 

Step 2 statistically simulates realizations of spectra from this distribution, and no user choices 383 

need to be made. In step 3, the ground motion database must be specified; here we consider two 384 

alternatives—the NGA-West1 database of recorded ground motions and the Graves and Pitarka 385 

database of simulated motions discussed above. In step 4 these databases are screened for 386 

suitable ground motions. In this case, because the target spectrum is associated with a magnitude 387 

= 6.5, distance = 10 km event, we restricted selection to consider only ground motions within 50 388 

km of an earthquake with magnitude between 6 and 7. Scaling of ground motions was allowed, 389 

but scale factors were limited to a maximum of five. These criteria are somewhat consistent with 390 

typical ground motion selection procedures (e.g., NIST 2011), but are used here simply to 391 

illustrate the selection process and are not recommended values. With these criteria, the NGA-392 

West1 database had 582 ground motions satisfying the initial screening, and the GP database had 393 

6000.  394 

With the initial criteria and database screening performed, ground motions can then be 395 

selected. In step 5, initial ground motions were selected from each database to match simulated 396 
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spectra—a step which requires no user choices. In step 6, a maximum 10% error in means and 397 

standard deviations of the spectral was specified. Neither database satisfied that criterion with the 398 

initial selection (the step 6 check), so optimization (step 7) was performed in both cases. The 399 

SSE objective function of equation 9 was chosen for the optimization. For the NGA-West1 400 

database, the max errors in mean and standard deviation were 8% and 34%, respectively, before 401 

optimization and 6% and 7% after. For the Graves and Pitarka database, the max errors were 402 

41% and 32% before optimization and 29% and 26% after. 403 

In step 8, the final selections of ground motions are output. Figure 5 shows the response 404 

spectra of the selected motions. We see that, although the Graves and Pitarka selection had 405 

significantly worse error metrics in the previous paragraph, the response spectra plot does not 406 

indicate serious deficiencies in general (the periods with poor metrics are the short periods at the 407 

left of Figure 5b); these errors would need to be evaluated on a project-specific basis for 408 

acceptability. Figure 6 shows example velocity time series for both sets of selected motions. The 409 

two sets of selected motions’ time series are comparable under a cursory visual inspection. These 410 

two sets of ground motions would provide useful inputs for a more detailed study of any subtler 411 

differences in the recordings and simulations that lead them to produce different structural 412 

responses when used as input to a dynamic analysis problem. Such a study is beyond the scope 413 

of this paper but is the type of exercise that the new software features are intended to facilitate. 414 

 415 
Figure 5. Response spectra of selected ground motions with spectra matching the target Conditional 416 
Spectrum of Figure 1b. The mean and mean +/- two standard deviations of the target lnSa distribution are 417 
superimposed. (a) NGA-West1 recorded ground motions. (b) Graves and Pitarka simulated ground 418 
motions.  419 
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 420 
 421 

Figure 6. Example velocity time series from the selected motions shown in Figure 5. The time series are 422 
scaled to have the same peak ground velocity values for ease of comparison, so no velocity scale is 423 
provided. (a) NGA-West1 recorded ground motions. (b) Graves and Pitarka simulated ground motions. 424 

6 Numerical Implementation 425 

Matlab source code for the algorithm is available at 426 

https://github.com/bakerjw/CS_Selection. The repository includes metadata and documentation 427 

for five ground motion databases discussed above. In addition to the algorithmic features 428 

discussed above, this source code also improves upon the previous code from Jayaram et al. 429 

(2011) by providing a single general purpose program (the Jayaram et al. code consistent of four 430 

separate programs for conditional versus unconditional selection, and single-component versus 431 

two-component selection), and better modularization of functions related to the tasks outlined in 432 

Figure 2. 433 

7 Conclusions 434 

This paper has presented an efficient algorithm for selecting ground motions from a database 435 

that match a target response spectrum distribution (i.e., a Conditional Spectrum or Unconditional 436 

Spectrum). The motivation for this work is that when the target spectrum has a distribution, 437 

rather than a single value, it is not possible to evaluate individual ground motions for selection 438 

without considering them as part of a suite of ground motions that collectively represent the 439 

distribution. But evaluating all possible suites of ground motions is impossible when considering 440 

large ground motion databases typical in practice today. This algorithm utilizes several heuristics 441 

to quickly identify ground motion sets with close match to the target spectrum.  442 

Note that the code can also be easily adapted for the more common situation where the user 443 

wants to select ground motions that each closely match a target spectrum (e.g., for closely 444 
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matching a design spectrum from a building code, with each motion closely matching the target) 445 

by specifying the target spectrum as the mean value and setting the target variances to zero. The 446 

algorithm’s complexity is more than is needed for this simpler application, but it is well-suited 447 

for the problem and so a user-defined flag setting the variance to zero is provided in the software. 448 

The key steps in this algorithm are (1) compute a target response spectrum distribution, (2) 449 

statistically simulate response spectra from the target distribution, (3) load and screen a database 450 

of candidate ground motions, (4) select ground motions from the database that individually 451 

match the statistically simulated spectra, (5) make incremental changes to the initially selected 452 

ground motion set to further optimize its fit to the target spectrum distribution. The algorithm 453 

follows the general structure of a proposal by Jayaram et al. (2011), but incorporates a number of 454 

new features that improve its utility and speed.  455 

Data for a number of new ground motion databases are also provided, to allow users to 456 

search recently developed catalogs of recorded or simulated ground motion data. Example 457 

selection of comparable recorded and simulated ground motions are illustrated, to demonstrate 458 

the feasibility of selecting equivalent motions from differing sources. Matlab source code for the 459 

algorithm has been provided publically for readers interested in using or modifying the 460 

algorithm.  461 
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