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Use of Fragile Geologic Structures as Indicators of Unexceeded

Ground Motions and Direct Constraints on Probabilistic
Seismic Hazard Analysis

by Jack W. Baker, Norman A. Abrahamson, John W. Whitney, Mark P. Board,
and Thomas C. Hanks

Abstract We present a quantitative procedure for constraining probabilistic seis-
mic hazard analysis results at a given site, based on the existence of fragile geologic
structures at that site. We illustrate this procedure by analyzing precarious rocks and
undamaged lithophysae at Yucca Mountain, Nevada. The key metric is the probability
that the feature would have survived to the present day, assuming that the hazard re-
sults are correct. If the fragile geologic structure has an extremely low probability of
having survived (which would be inconsistent with the observed survival of the struc-
ture), then the calculations illustrate how much the hazard would have to be reduced
to result in a nonnegligible survival probability. The calculations are able to consider
structures the predicted failure probabilities of which are a function of one or more
ground-motion parameters, as well as structures that either rapidly or slowly evolved
to their current state over time. These calculations are the only way to validate seismic
hazard curves over long periods of time.

Introduction

For critical facilities, seismic hazard needs to be com-
puted for ground motions with annual rates of exceedance
of 10~ (for nuclear power plants) to 10~ (for nuclear waste
repositories). At these low exceedance rates, very large
ground-motion amplitudes are often predicted by standard
probabilistic seismic hazard analysis (PSHA) procedures.
This is in large part because ground-motion amplitudes for
a given earthquake appear to be well represented by lognor-
mal probability distributions, and extrapolating the lognor-
mal distribution to a high number of standard deviations
associated with extremely rare ground motions results in
extremely large amplitudes. Because the lognormal distribu-
tion has no upper bound, there is no absolute upper bound to
the ground-motion amplitudes that can be computed at very
low probabilities.

An example of how these extreme ground motions arise
in a standard PSHA is the 1998 Yucca Mountain Project
PSHA (Stepp et al., 2001). The hazard curves for peak
ground acceleration (PGA) and peak ground velocity (PGV)
in Figure 1 show progressively higher ground motions as
they are extended to progressively lower rates of exceedance:
at mean hazard levels of 107 /yr, 107 /yr, and 1078 /yr, the
corresponding PGAs are 3, 6, and 11g (Fig. 1a) and corre-
sponding PGVs are 3, 6.5, and 13 m/s, respectively (Fig. 1b).
These extreme ground motions, the consequence of extrapo-
lating ground-motion distribution functions to extremely low

probability levels, have generated considerable consternation
in the scientific, engineering, and regulatory communities:
the upper end of these PGVs and PGAs has never been re-
corded for earthquakes, present exceptional challenges to
the design and construction of facilities, and are regarded
by many seismologists as “physically unrealizable” (e.g.,
Andrews et al., 2007). These extreme PGV levels may be
unrealizable because the amplitude of the ground motion
traveling through a rock mass is limited by the shear strength
of the rock mass through which it propagates. It is easy to say
that the large ground motions predicted at low probability
levels from the 1998 PSHA do not seem reasonable, but it
is much more difficult to provide a technical basis for a re-
duced ground-motion value.

One source of evidence for a reduced ground-motion
value comes in the form of fragile geologic structures such
as precarious rocks, which would likely have been destroyed
by seismic ground motions if the PSHA calculations are cor-
rect. Precarious rocks, also precariously balanced rocks
(PBR) have been used as constraints on local ground motions
since Brune and Whitney (1992) and Brune (1996) recog-
nized PBRs as natural seismoscopes. PBRs are a subset of the
more general class of fragile geologic structures (FGS),
which speak to unexceeded ground motions (UGM), ground
motions that would have damaged or destroyed any object,
structure, or feature during the time in which it was fragile.
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Example output from probabilistic seismic hazard analysis. (a) Horizontal PGA, and (b) horizontal PGV, at Point A, a hypo-

thetical, reference rock outcrop site at the Yucca Mountain repository horizon (Stepp et al., 2001). From the 1998 Yucca Mountain Project
PSHA extended to 1078 /yr by BSC (2005). The color version of this figure is available only in the electronic edition.

Such FGS include natural bridges and arches, liquefiable
deposits, hoo-doos, precipitous slopes and cliffs, and litho-
physal cavities, as well as PBRs. Lithophysae (delicate voids
and crystals in welded vesicular tuff-literally, rock bubbles)
are the result of gases exsolving from cooling lava flows and
ashfall tuffs. PBRs are the most important of the FGS because
they occur widely across active tectonic terrains of the south-
western United States (e.g., Brune, 1996; O’Connell et al.,
2007; Purvance et al., 2008) and elsewhere in the world (e.g.,
Stirling and Anooshehpoor, 2006).

When used as a constraint for PSHA, one needs to know
the “fragility age” of the FGS of interest (i.e., the amount of
time it has been in its presently precarious/fragile state) as
well as the ground motions that, had they occurred, would
have damaged or destroyed it. Early work used the presence
of desert varnish on PBRs to indicate fragility ages of thou-
sands of years or greater and quasistatic estimates of toppling
accelerations to approximate a PGA that had not occurred in
the fragility age of the PBR. As recounted in Anderson et al.
(2011), techniques for estimating both the fragility ages and
toppling motions have advanced considerably in the past de-
cade to include cosmogenic dating of features (Balco et al.,
2011) and numerical modeling of dynamic toppling behavior
(Purvance et al., 2009).

The Points-in-Hazard-Space approach and graphic de-
veloped in the course of the Extreme Ground Motions re-
search program (Anderson and Brune, 1999; Abrahamson
and Hanks, 2008; Hanks and Abrahamson, 2008) allows
one to compare PBR constraints directly with seismic hazard

curves, the specific place and application being Yucca
Mountain, Nevada. Reciprocal fragility ages were used to ap-
proximate the probabilities of nonexceedance of estimates of
PGV that would have toppled the PBR, had they occurred.
This simple approach, although effective in demonstrating
that the seismic hazard at Yucca Mountain had been signifi-
cantly overstated, lacked the quantitative probabilistic frame-
work we develop in this paper.

This paper provides a description of the types of evi-
dence that have been compared to PSHA results and describes
a probabilistic procedure for performing such comparisons.
The proposed calculations can incorporate uncertainty in the
age and fragility of the observed geologic structure, so as to
be consistent with other uncertainties used to perform the
initial seismic hazard analysis computation.

Seismic Hazard Analysis

Standard PSHA is performed using a seismic source
characterization that describes the rates of occurrence of all
earthquake events in the region and using a ground-motion
prediction model to predict the distribution of ground-motion
intensities for each earthquake event. Those two models cap-
ture inherent physical variability (“aleatory” variability) in
the processes that generate ground motions at a given site.
We do not have perfect seismic source characterization
models or ground-motion prediction models, however, so
typically a logic tree is used to describe our lack of knowl-
edge (“epistemic” uncertainty) in the proper model by pro-
posing a list of plausible models via a logic tree, along with
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weights representing our degree of belief in each model
(SSHAC, 1997; Abrahamson and Bommer, 2005; McGuire
et al., 2005).

The output of such a calculation is a plot (as shown in
Fig. 1) that shows mean hazard curves and fractiles for PGA
and PGV. An important feature of these calculations is that
there is generally no upper bound on the ground-motion pre-
dictions, so there is no fixed upper limit on the amplitudes of
predicted ground motions (although large amplitudes may be
extremely infrequent).

Potential Constraints on Hazard Curves

Three general types of constraints have been proposed
to constrain PSHA predictions of large ground-motion in-
tensities: physical limits on ground motion, truncation of
ground-motion predictions, and unexceeded ground motions
associated with fragile geologic structures (Hanks et al.,
2006).

A physical limit to earthquake ground motion is a con-
straint such that motions larger than this limit cannot occur
ever. Such a limit, if it can be plausibly demonstrated and
calculated, provides a clear bound on extreme ground mo-
tions. Physical limits might arise from the limited strength
of rocks at the site of interest or anywhere along the path
between the rupture and the site. The strength of rocks in-
creases with confining pressure, so we may expect that rock
properties at or near the site will place more stringent limits
on ground motions than will rock properties at midcrustal
depths, where the earthquakes occur. Moreover, rocks at
shallow depth are easily accessible, allowing for both in situ
observation of their structure and fabric as well as sampling
for laboratory testing. Rock mechanics can then be used to
identify limits at which rock fracture would occur (BSC,
2005, Section B.2.2; Lockner and Morrow, 2008). Physical
limits to ground motion might also arise from limits on the
source excitation of crustal earthquakes, but these are diffi-
cult to discern with confidence given the inaccessibility of
earthquake sources and the short record of instrumental re-
cordings. A related approach is to identify a hard limit on
intensities that have zero probability of being exceeded under
any condition using numerical simulations, a challenging
but feasible approach (Andrews et al., 2007). Physical limits
do appear to provide useful constraints on extreme ground
motions, but are not addressed further here.

A second potential approach to constrain hazard is to
truncate predictions of ground motions at a fixed number
of standard deviations (“epsilons”) above the median predic-
tion for a given earthquake scenario. This approach is prob-
lematic because the truncation point is arbitrary and not
supported by observational evidence and because the trunca-
tion is with respect to a model prediction rather than with
respect to an absolute ground-motion intensity value where
some physical phenomenon produces the truncation. The
problems with this approach are described in detail by
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Bommer ef al. (2004), and thus this line of thinking has not
produced defensible constraints on extreme ground motion.

A third approach is to use the existence of a fragile geo-
logic structure as an indicator that ground motions with am-
plitudes large enough to fail the structure have not occurred
during its lifetime. Examples of features that indicate unex-
ceeded ground motions include undamaged lithophysae
(rock bubbles) and precariously balanced rocks. Although
these observations provide clear qualitative evidence, several
challenges are associated with using them for quantitative
comparisons to probabilistic seismic hazard calculations.
These challenges will be addressed below.

Using Fragile Geologic Structures to Constrain
Hazard

FGS are indicators of UGM—ground motions strong
enough to drive an FGS to failure but which have not oc-
curred during the time period for which the FGS has indeed
been fragile. These structures provide observations in a sin-
gle window of time from the origin of the structure until
present, whereas hazard curves quantify long-term rates of
exceedance of ground-motion amplitudes. There is also
uncertainty in the amplitude of ground motion that would
destroy those structures. For these reasons, it is not straight-
forward to compute the UGM associated with an FGS.

To illustrate the proposed approach to address these
challenges, we first consider the Topopah Spring tuff forma-
tion that underlies Yucca Mountain and is the host horizon
for the underground repository. It consists of ~300 m of
silica-rich, densely welded, pyroclastic flow units laid down
12.8 million years ago and contains distinctive upper
(Tptpul) and lower (Tptpll) lithophysal units. Lithophysae
are cavities that form in pyroclastic flows and volcanic tuffs
as a result of the volcanic gases exsolved during the cooling
process but contained within the cooling rock mass. The
cooling occurred over a relatively short period of time com-
pared to the age of the units, so the age of the lithophysae can
be taken as 12.8 million years without concern for the fra-
gility varying over that time period.

Tptpul lithophysae tend to be roughly spherical, uniform
in size and distribution, and small in dimension (diameters of
1-10 cm); the matrix material is largely unfractured. Tptpll
lithophysae are more irregular in shape, size, and distribu-
tion, as seen in Figure 2. Lithophysae range in size from
about 1 cm to nearly 2 m in dimension and have spacing that
ranges from about 10 to 50 cm, although they may be more
closely spaced in local regions. The shapes range from ellip-
tical or spherical to irregular, cuspate and merged cross sec-
tions, or elongate along fractures. The matrix between
lithophysae often has a fabric of short length (<1 m) and
discontinuous cooling fractures that have a primarily vertical
orientation. These fractures typically are not interconnected
and do not intersect lithophysal cavities. The overall porosity
of Tptpll due to the lithophysae is ~20%, and these cavities
constitute 10%-30% of the rock volume, thus weakening
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Figure 2.

Photograph and panel map (3 x 1 m) from the ECRB tunnel sidewall in Tptpll, showing traces of lithophysal cavities and

vapor-phase alteration rims. The color version of this figure is available only in the electronic edition.

the rock considerably with respect to the passage of seismic
waves. Very few of these lithophysae are cut by cooling frac-
tures or joints, and none shows appreciable effects of dam-
age, offsets, or collapse that can be attributed to the passage
of seismic waves.

Elastic properties, compressive strength, and failure
strains were determined by laboratory testing for large sam-
ples (up to 288 mm in diameter) of the lithophysal units
(BSC, 2005). These data were used to estimate the “threshold
shear strain” that would result in geologically observable
damage to the lithophysal units. Two alternative models re-
lating strain and PGV were then estimated from the site re-
sponse studies, one (Upper Mean Tuff) being based on more
linear material response to incoming ground motion and the
other (Lower Mean Tuff) based on more nonlinear behavior,
Appendix III). The derivation of these fragility curves was
complex but is well documented elsewhere. Here we take
them as a given for the purpose of demonstrating computa-
tion of an unexceeded ground motion. The resulting fragility
functions, which specify the failure probability of the object

of interest as a function of some ground-motion parameter
such as PGV, are shown in Figure 3.

Using a fragility function and a hazard curve for the site,
we can calculate the probability that a given feature would
fail in any one-year period of time. P a1 (Graits) 1S the sum
of the products of the rate of occurrence of ground motion
and the conditional probability of failure, given the ground
motion. The annual hazard curve v(z) gives the mean rate of
exceedance of scalar ground motion z, and its derivative with
respect to z gives the rate of occurrence of z. The annual
probability of failure is then given by

dv(z)
dz

= > P(Gris|PGV = 2)) Py (PGV = 7)),

Pannual(Gfails) = /P(Gfails|PGV = Zi) dz

6y

where Gy, is the event that the FGS fails, P(Gp,s|PGV = z)
is the probability that the FGS fails, conditional on occurrence
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of a ground motion with PGV = z (the FGS “fragility func-
tion”), and “|” is used to denote conditioning. The calculation
can be specified in continuous form as indicated by the in-
tegral in equation (1), but in practice it is evaluated numeri-
cally by discretizing the continuous range of PGV values of
interest and summing over those values, z;. Figure 3 shows
two fragility functions for the lithophysal units, and Figure 4
shows the Yucca Mountain mean hazard curve with respect
to PGV. For this hazard and the Lower Mean Tuff fragility
curve shown above, P, (Gris) = 4.5 x 1070 /yr.

Given the above annual failure probability, the probabil-
ity of surviving for one year is 1 — P apnua(Grails)» and the
probability of surviving for T years (assuming potential fail-
ures in each year are mutually independent) is
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P(Gnot fajled) = [1 - Pannual(Gfails)]T' (2)

For the hazard curve and Lower Mean Tuff fragility
above, and a 12.8 million year age of the Tuff, this proba-
bility is 10723 or, for all practical purposes, zero. This contra-
dicts the observed existence of the structure, suggesting that
the hazard curve is overpredicting the rate of exceedance of
the large PGV values that would cause failure of this FGS.
The approach proposed here to reconcile such a contradic-
tion is to multiply all rates of exceedance from the original
hazard curve by a constant «, so that if the original hazard
curve was v(z), the adjusted hazard is ar(z). By inspection
of equation (1), we can see that this will modify the annual
failure probability of the structure by the same constant. We
can, thus, determine the scale factor a to be applied to the
hazard curve that would lead to a specified probability P,
for which our structure does not fail during its lifetime. For
a structure that has been fragile for T years, P, is

P = [1 - aPIPannual(Gfails)]T- (3)

If we are interested in the hazard curve that would lead
to a 5% probability of the FGS not failing, we can substitute
P = 0.05 and solve for the corresponding ap,

1 —0.05"T
Q = .
005 Pannual(Gfails)

)

For this example, o5 = 1/19, Figure 4 shows the re-
sulting scaled hazard curve as a dashed line. For any hazard
curve above this scaled hazard, there is <5% chance that
the geologic structure would have survived in its existing
state of fragility for 7 = 12.8 million years. The 5% target
is a choice in this analysis and is addressed in the Discussion
section below.

We can further analyze the results from the calculations
above to identify which particular PGV values are contribut-
ing most to failures of the structure. The product of the rate of
occurrence of a given PGV and the corresponding fragility
(the integrand of equation 1) provides the contribution of
each PGV to the total failure probability of the fragile geo-
logic structure. These contributions are computed as follows
and plotted in Figure 5a

P(Gfails due toPGV = Zi)
_ P(Gfails|PGV = Zi)Pannual(PGV — Zi)

5
Pannua] (Gfails) ( )

We can also compute the cumulative contribution of all
PGVs < 7 to failure, which is computed as follows and plot-
ted in Figure 5b

P(Gfails due to PGV < Z)
_ Z;i:(] P(Gfails|PGV = Zi)Pannual(PGV = Zi)
Pannual (Gfails) ’

(6)
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The median of the PGVs contributing to failure, denoted
71, 1s taken as the UGM for this fragile geologic structure.
The 50th percentile cumulative failure probability point on
the scaled hazard curve fixed by z; is the PGV most strongly
constrained by the fragile geologic structure. This z; value is
shown in Figure 4, along with a solid red segment of the
scaled hazard curve indicating the range of PGV that covers
the 25%—75% range of the failure probability in Figure 5b,
revealing that the fragile geologic structure constrains only
part of the hazard curve (this range is chosen to illustrate that
there is not just a single PGV value for which the FGS is pro-
viding some constraint). This point tells us the following: if
the hazard curve passes through this point, then there is a 5%
probability that the structure would survive T years without
failing, and this is the median of the PGV values that would
cause failure of the structure.
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The relative values of z; and the point of 50% probabil-
ity of failure depend on the slopes of the hazard curve and the
fragility curve. Typically, z; is lower than the ground motion
at the 50% failure probability because there are so many
more small earthquakes with smaller ground motion; even
though the fragility is low, the rates of the smaller PGVs are
much higher than the rates of ground motions corresponding
to the 50% failure probability on the fragility function. If the
fragility curve is steep (e.g., the fragile geologic structure is
brittle), then the z; value will be close to the value that leads
to a 50% chance of failure because the fragility for the lower
ground-motion values will be very small, offsetting the higher
rate of occurrence of the smaller ground-motion values.

With this approach, the absolute level of the original
hazard curve does not affect the location of the UGM. If two
hazard curves differ only by a multiplicative factor on their
rates (i.e., they have the same shape), then z; as determined
by this method is unchanged and « simply adjusts for the
differences in levels of the original hazard curves. The loca-
tion of the UGM will depend upon the slope of the hazard
curve, however, as the slope tells us the relative rates of large
and small PGV, and differences in these relative rates will
affect the PGV values that most constrain the hazard curve.

As an example of the dependence of the UGM point on
the hazard curve, the UGM is shown for three different PGV
hazard curves in Figure 6: mean, 95th fractile, and 5th frac-
tile. For the mean and 95th fractile hazard curves, the shapes
are similar and so there is almost no change in the location
of the UGM. For the 5th fractile, the slope becomes much
steeper, indicating that large PGV values are predicted to
be very rare, so z; becomes smaller as the smaller PGVs thus
provide the stronger constraint. The UGM based on the Sth
fractile hazard is shifted up and to the left. All three points
fall along a line following the general slope of the hazard
curves, indicating that in all three cases the FGS provides
a consistent evaluation of the hazard curve. Note that the
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Figure 7.
electronic edition.

5th fractile hazard curve lies below the UGM points, meaning
that the FGS would have > 5% chance of surviving if it were
the true hazard curve. We note that fractile hazard curves are
not necessarily representative of actual hazard curves from
individual logic tree branches, but these calculations none-
theless serve to illustrate the role of the hazard curve slope
on UGMs. Further, Figure 4 illustrated that the UGM is
constrained by a relatively narrow range of PGV values for
which the fractile hazard curve is likely similar to an indi-
vidual hazard curve.

Fragile Geologic Structures with Vector Fragility

Many PBRs have been discovered and documented
on the west face of Yucca Mountain and elsewhere (e.g.,
Brune and Whitney, 1992, 2000; Bell et al., 1998; Anderson
and Brune, 1999; Purvance et al., 2008; Stirling et al., 2010).
These features have great potential to constrain seismic haz-
ard calculations, but two complications arise when one is
used to compute an unexceeded ground motion: its toppling
probability is a function of both PGA and PGV, requiring
knowledge of their joint probability distribution in a given
future ground motion, and the rocks evolve in shape over time
so that their fragilities are not constant over their lifetimes. To
illustrate how these complications can be addressed, we per-
form an example evaluation of the PBR named Matt-cubed,
located on the west face of Yucca Mountain. A photograph
of this rock is shown in Figure 7a, and its fragility curve is
shown in Figure 8a, as determined by Purvance et al. (2009).
The derivation of this fragility curve was complex but is well
documented elsewhere. Here we take it as a given for the pur-
pose of demonstrating computation of an unexceeded ground
motion.
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(a) Photograph of PBR Matt-cubed. (b) Photograph of PBR Tripod. The color version of this figure is available only in the

This vector fragility causes a difficulty for the UGM
computation because hazard curves provide the rate of occur-
rence of a given PGA or PGV individually and not the rate of
jointly observing a given PGA and a given PGV in a single
ground motion. To use the PBR toppling fragilities in the con-
text of a UGM calculation, which considers PGV hazard only,
we need to replace the functional dependence on PGA (which
we do not know) with some equivalent information that we
do know.

To begin, we first convert the pairs of PGA and PGV/PGA
values calculated by Purvance ez al. (2009) into pairs of PGV
and PGA/PGV values, with PGV as the abscissa, as illustrated
in Figure 8. Each coordinate in Figure 8a has some corre-
sponding coordinate in Figure 8b, and the two corresponding
coordinates have identical toppling probabilities. For a
given PGV value, Figure 8b now provides failure probabil-
ities as a function of PGA/PGYV; this is illustrated in Figure 9
for PGV = 30 cm/s.

Earthquake seismologists will know that PGV has a strong
magnitude dependence (e.g., McGarr and Fletcher, 2007) and
so does PGA/PGYV, although less strong as we shall see shortly.
So how does PGA/PGV depend on M? This is shown empiri-
cally in Figure 10, which shows observed PGA/PGV values
from ground motions on rock sites (V30 > 500 m/s) at short
distances (R < 20 km) from the Next Generation Attenuation
data set (Chiou et al., 2008). The mean value of In(PGA/PGV)
can be predicted as a function of magnitude using the follow-
ing regression equation, which is also shown in Figure 10

E[In(PGA/PGV)] = 6.08 — 0.534M — 0.074(M — 6.07)>.
(M
There is not a significant trend in this data with distance
or Vg3, so the regression equation is not dependent on those



Fragile Geologic Structures as Indicators of Unexceeded Ground Motions and Direct Constraints on PSHA

(@) os

0.2

PGV/PGA (s)

0.1F

0 0.1 0.2 0.3 0.4 0.5
PGA (g)

Figure 8.

1905

(b) 20

151 L S ‘,H:‘f;“':‘: its). = 22
Q
> : : S
S 10 : [REERA T R EEERERRRRRRRRY
o : R \ I
< :
O :
o T

5| T

10 50 100 200

PGV (cm/s)

Overturning probabilities for the PBR Matt-cubed. (a) Plotted as a function of PGA and PGV/PGA. (b) Plotted as a function of

PGV and PGA/PGV. The color version of this figure is available only in the electronic edition.

=y)

0.8 |

0.6

30 cm/s, PGA/PGV

04}

0.2}

P(Gais| PGV

20

PGA/PGV (1/s)

Figure 9.  Overturning probabilities for the PBR Matt-cubed as a
function of PGA/PGV, given PGV = 30 cm/s. The three points
marked with symbols on this fragility curve correspond to the points
with the same symbols in Figure 8. The color version of this figure
is available only in the electronic edition.

variables. The standard deviation of prediction errors from
this equation is 0.49. Assuming that PGV/PGA for a given
magnitude is a lognormal random variable, the probability
density function (PDF) for PGA/PGYV, associated with a given
magnitude M, is then

1
M=—
fPGA/PGV()’| ) 0'49%/%

Iny —[6.08 —0.534M —0.074(M — 6.07)%]\ 2
exps —0.5 0.49 .

®)
Figure 10 illustrates this PDF for M = 6 and M = 7.

100 T T

PGA/PGV (1/s)

O Empirical data
E[In(PGA/PGVY)]
L fogapavlVIM)

1
5 6 7 8

Magnitude

Figure 10. Scaling of PGA/PGV with magnitude for rock sites
(Vg3 > 500 m/s) at short distances (R < 20 km). The color
version of this figure is available only in the electronic edition.

Knowing the probability of failure of the PBR given a
PGV and PGA/PGV pair, and the distribution of PGA/PGV val-
ues given an earthquake magnitude, we can integrate over all
possible PGA/PGV values to obtain the probability of failure
for every PGV and M (at the close distances implicit in Fig. 10)

P(Gfails|PGV =z,M = m) = /P(GfaﬂsIPGV =z,

PGA/PGV =y) * fPGA/PGv (yIm)dy, )
where P(Gy,s|PGV, M) is a generalized form of the fragility
used in equation (1). These fragilities for the example rock are
plotted in Figure 11 versus PGV for a range of magnitudes.
This figure illustrates that large magnitude earthquakes require
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Figure 11.  Variation of the PGV-based fragilities for PBR Matt-
cubed, as a function of magnitude. The color version of this figure is
available only in the electronic edition.

higher PGVs in general to topple the feature because their PGA
values (relative to PGV) are smaller than for small-magnitude
earthquakes with the same PGV.

This fragility function format is useful because we know
the distribution of magnitudes associated with a given PGV
value at the site from seismic hazard deaggregation calcula-
tions (e.g., McGuire, 1995). Here we denote the deaggrega-
tion probability that a ground motion with PGV = z; was
caused by an earthquake with M = m; as deagg(m;|z;), not-
ing that the deaggregation calculation typically discretizes
the continuous range of possible magnitudes. Using this
deaggregation information and the magnitude-dependent fra-
gility function of equation (9), we can compute the annual
probability of failure of the precarious rock using

(@) 1 :

- = 20ka
08H===50ka |
—— 200 ka [ :::
o e
= oo
S 06} o
© :
= :
B 04f L
o :
o s
o Ll
02}
0
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100 1000
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Figure 12.

figure is available only in the electronic edition.
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Pannual(Gfails) = Z ZP(Gfails“)GV = Z,',M = mj)
i

X deagg(mjki)Pannual(PGV = z). (10)

This result can then be used to compute survival prob-
abilities using equation (2), and the hazard curve can again
be scaled by « to find a UGM associated with 5% survival
probability of the FGS. One additional assumption required
here when doing the hazard scaling is that the deaggregation
probabilities deagg(m;|z;) would be unchanged by the scal-
ing of the hazard curve.

With this procedure, we thus see that even vector fragil-
ity functions can be used to compute UGMs, if one can relate
the vector of fragility function inputs to information related
to the hazard curve (in this case, PGV and M).

Time-Varying Fragile Geologic Structures

In the previous sections, we considered fragile geologic
structures having constant fragilities over their lifetime. This
assumption is reasonable for fragile geologic features that
form over a short time interval relative to their age, such as
the lithophysal units. A structure formed by erosion or ex-
humation, however, will have a time-dependent fragility as
it evolves from a more stable configuration to an increasingly
more fragile one—until it fails (e.g., O’Connell et al., 2007).

An example of a time-dependent fragility is shown
in Figure 12a. The time dependence of the fragility curves
can be parameterized using the PGV that gives a 50% chance
of failing the geologic feature, denoted PGVs,. We have
two constraints on the time dependence of the fragility: the
PGVy, value based on the current configuration, and the
PGV 5 value for a rock that has just become a free face. With
respect to the PBRs on the west face of Yucca Mountain,
we know that PGVs of 500 cm/s from underground nuclear

(b) 1000

100

PGVg, (cm/s)

100 ka 50 ka
Time

150 ka

200 ka Today

(a) A time-varying fragility function for a feature. (b) Median fragility value as a function of time. The color version of this
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(a) Four models for time-varying median fragility. (b) Probability of failure in each year, given four time-varying fragility

models. The color version of this figure is available only in the electronic edition.

explosions on Pahute Mesa cause massive cliff fracturing and
failure (Brune et al., 2003), so we choose this value for the
PGVj5, of newly exposed rock. We also know the present-day
fragilities of the various PBRs. This evolution is sketched
schematically in Figure 12b, parameterized in terms of
PGVj5, the PGV that has a 50% chance of failing some PBR
or precarious rock stack. At 200 ka, we suppose that the
PBR has just been exposed and that a PGV, = 500 cm/s
is needed to topple it with 50% probability (this is hardly a
precarious rock!). As erosion works away at the cooling
joints and other fractures, PGVs, progressively decreases,
such that at the present time PGV is only 20 cm/s. Here we
assume that the log standard deviation of the fragility func-
tion is constant over its lifetime, but that parameter could also
be varied in principle if needed.

To evaluate the effect of variations in the evolutionary
model on the PBR’s implied UGM, we consider four concep-
tual models shown in Figure 13a. Each model evolves from
the intact cliff face to the current fragile feature today.
Model 1 shows a linear decrease of log PGV, with time,
and model 2 shows a quadratic decrease of log PGV, with
time. Both models slow their decrease at 15 ka, incorporating
the idea that the warmer, drier Holocene climate slowed the
erosion rate over that time period. Model 3 assumes a fixed
age of 70 ka for the PBR, and model 4 is functionally the
same as model 3 but with an age of 15 ka. 70 ka is an ap-
proximate age of Matt-cubed determined from cosmogenic
isotope dating, whereas 15 ka is a lower-bound age of the
rock determined by varnish microlamination dating (Brune
and Whitney, 2000).

Figure 13b shows the annual probabilities of failure
for these four fragility models as a function of time before
present, using the mean hazard curve from the 1998 Yucca
Mountain PSHA. These annual failure probabilities are com-
puted using the same approach as equation (1) earlier, but the

fragility function now also depends on time ¢ as well as z (the
level of PGV) so we denote it P(Ggs| PGV = z,1)

Pannual(Gfails(I)) = ZP(Gfails“)GV =4 t)

X Pannual(pGV = Zi)- (1 1)

We see in Figure 13b that model 3 failure probabilities
are constant for the past 70 ka and drop to zero before then
(in its “immovable” state). Model 4 shows the same form but
drops to zero before 15 ka. Models 1 and 2 have very low
probabilities of failure until ~100 ka, when the probabilities
begin to increase noticeably. Failure probabilities for model 1
are always higher than for model 2 because its log PGV5 is
always lower until both models become the same at 15 ka.

Given these annual failure probabilities, we can compute
the probability of the feature surviving to the present day.
The annual probability of surviving is one minus the prob-
ability of failure, and the probability of surviving all years is
the product of these survival probabilities

T
P(Gnot fajled) = 1_[{1 - Pannual[Gfails(t)]}- (12)
t=1

Note that the earlier equation (3) is a special case of this
equation, when the annual probability of failure is constant
rather than changing with .

To find a corresponding unexceeded ground motion, we
again move the hazard curve down by a factor «, which will
reduce all of the annual failure probabilities by the same factor
a, until the probability of nonfailure in equation (12) is 5%

T
0.05 = 1_[{1 — 0 05 Pannuail Graits (D]} -

t=1

13)
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Figure 14. Comparison of the unexceeded ground motions for
the four time-dependent fragility models. The color version of this
figure is available only in the electronic edition.

Additionally, we need to find the median of the PGVs
associated with failure of the feature over its lifetime and
again denote this z;. We then plot the unexceeded ground
motion at ordinate z; and at the height of the hazard curve
shifted down by the factor o determined from equation (13).
Figure 14 shows plots of the UGMs obtained using this ap-
proach for each of the four time-dependent models.

Several observations can be made regarding the results
shown in Figure 14. The model 4 UGM is plotted at a higher
rate than the other models’ UGMs because the short lifetime
assumed in this model means that the hazard would not need
to reduce as significantly (i.e., o would not need to be so
small) for the feature to have a 5% probability of surviving.
This matches our intuition, as the short lifetime should pro-
vide a weaker constraint on ground-motion hazard. Models 1
and 2 have z; values for PGV that are larger than for models 3
and 4, because in models 1 and 2 the feature is less precari-
ous for most of its lifetime, and failures of the feature in its
less precarious state are associated with larger PGV values on
average. Finally, models 1 and 2 produce nearly identical lo-
cations for the resulting UGM, indicating that the choice of
the linear or quadratic decrease in fragility for these models
is not a model parameter that significantly affects constraints
on hazard. These specific conclusions are not necessarily
general to all fragile geologic features, but they illustrate the
types of studies that are facilitated by this approach.

Numerical Results for Yucca Mountain Seismic
Hazard

The techniques outlined above have been used to com-
pute UGMs at Yucca Mountain for a variety of fragile geo-
logic structures. Shown in Figure 15 are the unexceeded
ground motions for the lithophysal units and five precari-
ously balanced rocks computed relative to the mean 1998
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Yucca Mountain PGV hazard. Also shown are fractiles of the
PGV hazard curves from the 1998 Yucca Mountain PSHA.
Each precarious rock is noted several times in the plot, using
UGMs corresponding to upper and lower bounds on esti-
mated ages and fragilities of the rock.

The 1998 mean hazard results are inconsistent with
survival of the lithophysal units and PBRs in an undamaged
state, as evidenced by the location of their UGM points below
the mean hazard curve. Although there is some uncertainty in
the fragilities and ages of these structures, the 5% survival
probabilities of these fragile geologic structures sit well be-
low the 1998 mean hazard. Whereas both the lithophysal
units and PBRs support the same conclusion, it is notable that
they constrain nonoverlapping portions of the hazard curve.
The PBRs provide constraints at exceedance rates of 107 /yr
to 2 x 107 /yr and PGVs of 10-30 cm/s, whereas the litho-
physe constraints are two orders of magnitude lower in ex-
ceedance rate and one order of magnitude larger in PGV value.

The most likely explanation for the discrepancies is that
the ground-motion prediction models available in 1998 pre-
dicted larger peak ground velocities than modern models de-
veloped in the past few years (i.e., Power et al., 2008). Both
median predictions and standard deviations of predictions
have decreased in the latest models, and it appears that haz-
ard analysis performed with these new models would pro-
duce lower hazard curves for Yucca Mountain that are
more consistent with the geological evidence considered
here. Although these fragile geologic features appear to be
inconsistent with the mean hazard curve, this is less clearly
the case for the 5th and 15th percentiles of the hazard curves,
indicating that some branches of the 1998 Yucca Mountain
logic tree produced predictions of ground-motion hazard
that are consistent with existence of these fragile geologic
features.

Discussion

The results from the above calculations can be compared
to earlier estimates produced for the same features with more
ad hoc approaches. An earlier method used to compute
UGMs was to take the ground-motion value (x axis) as the
PGV with a 95% chance of failing the FGS (determined from,
e.g., Figure 3), and the rate of exceedance (y axis) was the
inverse of the age of the FGS (Hanks er al., 2006). This
simplified approach was used as a rough check of the con-
sistency of the UGMs and the hazard curves. Figure 16 shows
a partial comparison of UGMs computed using this older ap-
proach (“old estimate”) and the approach proposed here
(“new estimate”) for the above two example fragile geologic
structures at Yucca Mountain. The new estimate of the Matt-
Cubed UGM is taken from the Model 3 result in Figure 14;
the old estimates for this feature were produced at a time
when there was greater uncertainty about the age and fragil-
ity of the PBR, so six UGM points were produced then and all
are shown in Figure 16. For the Lithophyse, the same LMT
fragility curve from Figure 3 was used in both cases; the old
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available only in the electronic edition.

estimate was produced using the simplified approach, whereas
the new estimate is taken from Figure 4. The new approach
does not significantly change the UGM locations in these two
cases, although this is an incomplete comparison of the larger
set of data from Yucca Mountain. In this case, both sets of
estimates indicate that the fragile geologic structures are
incompatible with the 1998 Yucca Mountain mean hazard
curve. In cases where the compatibility of fragile geologic
structures with a hazard curve is less clear, the proposed pro-
cedure will be useful in providing a quantitatively interpret-

Unexceeded ground motions (UGM) for the lithophysal units and precarious rocks at Yucca Mountain. The color version of

able UGM and facilitating the study of how the time-evolving
history of a feature affects its compatibility with the com-
puted hazard.

Another item related to interpretation of these results is
the specified probability target associated with the UGM. It
should be noted that the 5% probability of survival number
used to compute UGMs is not intended to indicate the most
probable location of the hazard curve as implied by the fea-
ture, but rather to indicate a region for which the ground-
motion hazard curve is inconsistent with the presence of
the observed feature. The 5% probability used above has its
origin in statistical hypothesis testing (e.g., Hogg and Tanis,
2009). This test begins with an initial “null hypothesis,”
which in this example is that the ground-motion hazard at
Yucca Mountain is correctly represented by the 1998 PSHA
curve. Then new information (in this case the presence of
an FGS) is examined to determine whether it is consistent or
inconsistent with that null hypothesis. Implied small proba-
bilities of survival of a feature that has in reality survived
serve to raise suspicion that the null hypothesis is not in fact
correct. Hypothesis testing tradition suggests (somewhat
arbitrarily) that observational evidence with <5% probabil-
ity of existing under the null hypothesis is sufficient to reject
the hypothesis (i.e., to state that the 1998 hazard curve is
not consistent with the new information). Other probability
values such as 1% or 10% are also used in hypothesis testing
and could be easily adopted to compute UGMs if desired.
This procedure is a one-way comparison: it looks for evi-
dence of contradiction with the initial hypothesis and does
not look for evidence of a match. Although the procedure
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is not without flaws, it is an informative test and is used
widely in other fields.

This approach has three notable implications for the in-
terpretation of results. First, the location of the UGMs is not
intended to indicate the most likely location of an alternative
ground-motion hazard curve based on the FGS; it is intended
to indicate whether a prior hazard curve is at a location where
one could reject its reasonableness using hypothesis testing.
Second, the 5% probability threshold is used to indicate in-
consistency of the observation with the hazard curve; it does
not relate to an implied fraction of surviving FGSs out of
some original population of FGSs. Third, this 5% probability
applies only to the probability of a single feature surviving.
In the case of Yucca Mountain, the fact that ~100 FGSs have
been found implies that the probability of the initial hypoth-
esis being true is even smaller. Computation of the exact
probability of many features surviving is possible in princi-
ple, but there are several significant practical challenges that
may not be worth the effort of addressing at that site, given
the strong evidence provided by considering the structures
individually.

Conclusions

The calculations described here facilitate the quantita-
tive comparison of fragile geologic structures to ground-
motion hazard curves obtained from PSHA. Given a
structure, with a fragility function that specifies its failure
probability as a function of ground-motion intensity and an
age or evolutionary model, one can compute a corresponding
UGM that can be plotted relative to a ground-motion hazard
curve. This approach allows one to make meaningful statis-
tical interpretations using the location of a UGM relative to
the hazard curve. The key metric considered is the probabil-
ity that the feature would have survived to the present day,
assuming that the current hazard curve is correct. If the fea-
ture has a low probability of having survived, which would
be inconsistent with the existence of the feature, then the
UGM illustrates how the hazard curve would have to be ad-
justed to result in a nonnegligible probability of survival.

The proposed calculation approach was initially illus-
trated for a feature the fragility of which was a function of
only a single ground-motion parameter (PGV) and the age
of which was clearly defined. The approach was then gen-
eralized to consider features with fragility functions that are
dependent on a vector of multiple ground-motion parame-
ters, as well as features that slowly evolved to their current
fragile state. With these generalizations, a wide range of geo-
logic evidence is able to be compared to hazard analysis
results.

Using this approach, the fragility function or time-
dependent fragility evolution model can be varied in order
to understand sensitivity of the UGM to the feature’s assumed
properties. The model for time-varying fragility evolution
was studied for the example case of a precarious rock at
Yucca Mountain, and it was observed that the resulting

J. W. Baker, N. A. Abrahamson, J. W. Whitney, M. P. Board, and T. C. Hanks

UGM was relatively insensitive to changes in the evolution-
ary model. Further experience is needed to draw more gen-
eral conclusions, but the example calculations presented here
demonstrate the potential of this approach to facilitate such
studies. Determining the fragilities and ages of fragile geo-
logic features is a sophisticated and time-consuming process,
subject to poorly understood uncertainty. The quantification
of FGS properties has advanced significantly in recent years,
and as refinements in this area continue, the analysis ap-
proaches proposed above are useful for utilizing these data
for hazard analysis. Further, the calculations above quantify
the sensitivity of the hazard constraint to uncertainty in the
feature’s fragility and age, so that resources can be prioritized
for measuring the properties that provide the most useful
constraints on hazard.

For seismic hazard analyses where ground-motion am-
plitudes with very low exceedance rates are of interest (e.g.,
nuclear facilities and nuclear waste repositories), there has to
date been limited ability to validate or constrain hazard re-
sults. The unexceeded ground motions indicated by fragile
geologic structures are potentially the only way to directly
validate seismic hazard curves at such low exceedance rates,
but any validation effort needs to be performed with compa-
rable rigor and attention to uncertainty as was used to per-
form the initial hazard analysis. The procedures described
above satisfy that need and should facilitate validation efforts
for future seismic hazard calculations.

Data and Resources

All data used in this paper came from published sources
listed in the references.
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