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Abstract

This paper proposes a model to quantify dependencies in component damage in
the FEMA P-58 seismic performance assessment methodology, and to simulate
damage realizations with the desired dependencies. The model is compatible with
the prior FEMA P-58 procedure, and can quantify more realistic dependencies in
component damage with only minor changes to the calculation algorithm and model
parameters. This paper introduces the proposed model and compares it with the
prior procedure. Example calculations are then used to illustrate the quantitative
impacts of component damage dependencies on building-level performance metrics.
The model is relatively simple to conceptualize and parameterize, so that the
degree of dependency can be easily estimated and documented. Given the
improved conceptual framing of the problem, and the significant changes it
sometimes produces in building-level performance predictions, this model represents
an improvement to the general FEMA P-58 seismic performance assessment
methodology.
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2 Earthquake Spectra (in press)

Introduction

The FEMA (2018) P-58 seismic risk assessment procedure is appealing because it
considers structure-specific features and quantifies a range of performance metrics
relevant to decision-makers (Haselton et al., 2018). FEMA P-58 builds upon and
standardizes prior performance-based and assembly-based loss assessment procedures
(Cornell and Krawinkler, 2000; Porter et al., 2001; Moehle and Deierlein, 2004).
Given a ground shaking amplitude (which can be specified as a single amplitude
or probabilistically), the procedure assesses building response, damage to individual
components of the building, and then the costs and recovery time of that damage. The
procedure is Monte-Carlo-based, where each stage of analysis is performed by sampling
realizations from specified probability distributions, and the set of simulated results is
used to quantify the distribution of predicted consequences.

This paper is concerned with the component damage stage of the FEMA P-58 analysis.
Component damage is simulated by utilizing an Engineering Demand Parameter (EDP),
such as a displacement or acceleration at a given location in the building, and a fragility
function to compute the resulting probability of a component experiencing a given
damage state.

Dependencies in the damage states of individual building components are an
important consideration in building damage, but the prior FEMA P-58 method does not
comprehensively consider dependencies. To motivate this issue, consider the damage
data and fragility function shown in Figure 1. The fragility function, represented by the
solid line, specifies the probability that a gypsum wallboard partition experiences light
cracking, as a function of the story drift ratio it experiences. The experimental data in the
figure, as well as the resulting fragility function that was fit to these data, indicate that a
partition wall may experience minor damage at drift ratios as low as 0.1%, but even at
drift levels above 0.4% damage is not certain.

There are a number of potential causes for this observed variability in the demand
levels that trigger component damage (e.g., FEMA, 2018, Section 3.8.1): 1) Damage
is predicted by a scalar demand metric (e.g., story drift ratio), but actual damage is
caused by a complex sequence of displacements, accelerations, and velocities during
shaking. The demand metric is thus an imperfect representation of the loading on
the component. 2) Components of the same ‘type’ have varying characteristics due to
inherent randomness in the materials they are made of. 3) A particular contractor or
subcontractor may do better or worse than typical when installing the component (e.g.,
in anchoring pipes and suspended ceilings). 4) A component fragility function represents
a range of specific components and a range of construction means and methods, but a
particular building will use a specific component (e.g., the ‘glass curtain wall’ component
types in FEMA P-58 represent general categories of components rather than one specific
model and installation detail).

The above sources of variability will influence multiple components throughout a
building, rather than affecting each component independently. For example, for a given
component type, the construction quality and specific component type will likely be
similar throughout a building, leading the components to be damaged at a similar level of
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Figure 1. Experimental data and fragility function for gypsum wallboard partitions
experiencing Damage State 1: first visible damage, light cracking. Points indicate the fraction
of experimental components with observed damage at a given drift ratio, and the line indicates
the fragility function that was fit to these data. Data are from Miranda and Mosqueda (2011).

demand. These can be accounted for by defining damage state dependencies. However,
the prior FEMA P-58 method generally considers damage occurrence given EDP to be
independent from component to component (with a limited exception for a few types of
components that are assumed to all take the same damage state when co-located).

Further, some building loss metrics are sensitive to assumptions about damage state
dependencies. To illustrate, consider an idealized building with 100 components, each
of which would cause building closure if damaged, and each having a 0.01 probability
of being damaged. If the components’ damage occurrences are perfectly dependent (i.e.,
either all of the components are damaged, or none are), then the building has a 0.01
probability of closure. But if the components’ damage occurrences are independent,
then the building has a 0.63 probability of closure (each of the components has a 0.99
probability of functioning, so there is a 0.991%° = (.37 probability that no components
are damaged and the building remains open). This difference in results indicates the
potential importance of damage state dependencies in the assessment. Real buildings
are more complex than this simple illustration, as component damage depends upon
EDPs that vary throughout the building, and damage occurrences are neither perfectly
dependent or independent. Those more realistic cases will be discussed below.

This paper proposes a general model to consider dependencies in component damage
that has the following characteristics: 1) It is compatible with the Monte Carlo
simulation approach for propagating uncertainties utilized by FEMA P-58. 2) It allows
for dependencies in damage among components of the same type located throughout
a building (e.g., identical ceiling tiles at multiple locations in the building), and
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4 Earthquake Spectra (in press)

dependencies in damage amongst component types with similarities (e.g., concrete
components that are all constructed by the same subcontractor). 3) Is simple to
conceptualize and parameterize, so the degree of dependency can be estimated via
judgment and easily documented.

These damage dependencies have been previously discussed in other risk analysis
studies considering multiple components. Nuclear power plant risk assessment
documents have noted the effect of component damage correlation on system failure
probabilities since the 1980s (Smith et al., 1981). There have been multiple proposals
for ways to address this. Reed et al. (1985) proposed bounding estimated system
performance, but this approach has limitations (Segarra et al., 2021) and is not amenable
to Monte Carlo analysis of the type used in FEMA P-58. Baker (2008) discussed Monte
Carlo simulation of partially correlated component capacities, but only as a basic concept
that did not consider multiple component types and multiple damage states. Segarra
et al. (2021) proposed a Bayesian Network formulation that is more general, but is not
compatible with the FEMA P-58 Monte Carlo simulation algorithm. Anup et al. (2022)
recently proposed a parameterization of component fragilities similar to that proposed
here, but with a focus on analytical system reliability calculations rather than Monte
Carlo loss assessments, and without exploring numerical implementation or presenting
system-level results to explore the impact of correlations.

Correlation of multiple spatially distributed components is also important to risk
analysis of systems such as a portfolio of properties or a lifeline system with components
located throughout a region (e.g., Bazzurro and Luco, 2004; Sousa et al., 2018). Several
researchers have studied the importance of correlations in this context. Shome et al.
(2012) proposed a model for spatial correlation of loss ratios that has the rare advantage
of being empirically calibrated, but it is relevant for continuous-valued loss ratios rather
than discrete damage states, and it was only calibrated for losses to wood houses. Lee
and Kiremidjian (2007) and Heresi and Miranda (2022) proposed applying correlation to
the discrete outcomes for each component, but their approaches are somewhat unwieldy
to calibrate and implement, and are not designed for use in Monte Carlo simulations.
The proposal presented here thus builds upon some concepts in the aforementioned
prior literature, presenting a model that is straightforward to implement for multiple
component types and damage states, and compatible with the Monte Carlo assessment
approach utilized in the FEMA P-58 methodology.

The remainder of the paper first describes the prior FEMA P-58 component damage
methodology. The proposed model with partial damage dependencies is then described
and contrasted with the prior model. An idealized simple example is then presented, to
build intuition regarding the impact of these dependencies. Finally, results from a realistic
building analysis are presented, to quantify the practical impact of these dependencies,
and to assess the sensitivity of the results to alternative parameter values for correlations.

Prior FEMA P-58 method

Here, we describe the prior FEMA P-58 method for simulating component damage, in
order to highlight the adjustment made in the proposed method. This section also defines
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relevant model parameters and documents the prior method so that it can later be used to
produce example results.

The FEMA P-58 methodology uses a fragility function to estimate the probability of
component damage from an EDP, p*. The fragility function is defined as (Kennedy and
Ravindra, 1984)

ey

p* = P(DS>ds;|D=d) = <lnd_lnel)

Bi

where DS denotes the damage state of a given component, ds; denotes the 7'
damage state threshold for that component (and damage states of increasing severity
are associated with a larger value for the index ¢), D denotes the engineering demand
parameter associated with the component’s damage (e.g., story drift ratio), and d denotes
the specific demand level from a Monte Carlo simulation of structural response. Here
and throughout the manuscript, we denote random variables with uppercase letters, and
numerical values with lowercase letters. On the right-hand-side of the equation, ® ()
denotes the standard normal cumulative distribution function (CDF), and 6#; and 3; are
parameters defining the shape of the fragility function for the given component and
damage state. Specifically, 0; is the demand level at which there is a 0.5 probability of
component damage (the median), and (; is the log-standard-deviation (or “dispersion”).

Once the probability p* is computed using Equation 1 with the appropriate fragility and
demand parameters, Monte Carlo realizations of damage state outcomes are simulated.
The component is simulated to be damaged with probability p* or undamaged with
probability 1 — p* (FEMA, 2018, Volume 1, Section 7.5.1). When there are multiple
components in the building, a separate p* is computed for each component, and an
independent damage simulation is generated for each component (FEMA, 2018, Volume
1, Section 7.5). This procedure is illustrated in Figure 2a.

h

Proposed method

Here we describe the proposed method for sampling of component damage, first for a
single component, and then for multiple components.

Capacity sampling for a single component

The proposed approach treats the capacity of the component to withstand damage as the
random variable to be sampled. This is in contrast to the prior method, where the binary
outcome of damage or no-damage is the sampled random variable.

The capacity of the component is defined as:

InC; =1Inb; + B; € ()

where C; is the capacity of the component to resist the i damage state, in units of
the EDP demand metric. If the demand on the component exceeds its capacity, the
component will be damaged, and otherwise it will not. The parameters 6; and 3; are
the same as in Equation 1. Finally, € is a standard normal random variable (i.e., with
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Figure 2. (a) Traditional method for sampling damage states for a given level of seismic
demand, d. The fragility function is evaluated to compute the probability of damage (p*). Then
damage is sampled with probability p* and non-damage with probability 1 — p*. (b) Proposed
method of sampling damage states for a given level of seismic demand, d. A component
capacity value is sampled from the Equation 2 capacity distribution. Example samples are
indicated by the dashed step functions in the figure. The component is deemed damaged if
the capacity is less than d. The capacity distribution is indicated by the superimposed
distribution, and p* of the capacity samples from that distribution (indicated by the shaded
area) will be less than d.

mean of zero and standard deviation of 1). The random variable € is the source of
variability in component capacities and resulting damage outcomes, and the magnitude
of this variability is controlled by the parameter /3;. The normally distributed e is the sole
source of uncertainty on the right-hand side, so In C; is normally distributed and thus C;
is lognormally distributed.

With this formulation, damage is simulated by generating a Monte Carlo simulation
of €, substituting it into Equation 2 to simulate a capacity value, and then comparing that
capacity to the relevant demand value from a given simulation. This process is illustrated
in Figure 2b. This process will produce identical results to the prior method, in terms of
the fraction of damaged components that are simulated for a given value of demand, and
given values of #; and [3;.

When a component has multiple damage states (and multiple associated 6; and j3;)
values, the damage state can be sampled by sampling a single e value, pairing it with
each 0; and (3; value to get a C; for that damage state, and assigning the component the
highest damage state for which the demand exceeds C;. Using a single € value for all of
the damage states will ensure that the fraction of samples having any specific damage
state will equal the probability specified by the fragility functions. That is

Ndsi _ p(DS > ds;|D = d) — P(DS > dsi1|D = d) )

Nsims
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where ng4s, is the number of simulations of damage state 7, 14,5 is the total number
of simulations, and the right-hand-side terms are the fragility function probabilities from
Equation 1. Note that this use of a single € value implies that a component’s capacities
across damage states are perfectly correlated.

Capacity sampling for multiple components

When considering multiple components, it is now straightforward to introduce
dependence in their damage outcomes via the parameter e in Equation 2. Sampling an
independent e value for each component produces independent damage outcomes, given
the demand, the same as in the prior method. But sampling dependent € values across
components will produce dependence in the damage outcomes.

To introduce partial dependence in damage outcomes, and to facilitate the
parameterization of dependence, we decompose the e term of Equation 2, to represent
this variability as a sum of contributions from multiple sources.

InC = In0; + Baucau + Bsysesys + 5]'5]' (€]

where 6[.] is the dispersion, and €[] is a standard normal random variable, associated
with each source of uncertainty. This decomposition into multiple € terms allows these
individual terms to be simulated in the Monte Carlo analysis, and re-used between some
components, introducing correlation into those components’ capacities.

We propose the following groupings of component capacity sources, in order of
increasing specificity:

¢ all - common to all components in the entire performance model
* sys - common to all components from a given ‘system’ in the building
* j - specific to the 5™ individual unit of a component type

The ‘all’ and ‘system’ groupings are motivated by the sources of component damage
correlation discussed in the Introduction. Example groupings of components into systems
are provided in Table 1. These groupings follow the system groupings used in the
Cook et al. (2022) methodology for functional recovery, and disaggregate structural
components by trade. These approximately represent groups of components likely to
be built by the same subcontractor.

When simulating damage to multiple components, some terms contributing to capacity
variability will be shared among components. To illustrate, consider two components in
the building which fall into the same system category (Figure 3). When the capacities
of these components are simulated, a single realization of €,;; will be shared by both
components, as well as all other components in the building (Figure 3a) and a single
realization of €4, s will also be used for both, and for all other components in that system
type. Separate €; terms would be simulated for each component (Figure 3b). The shared
e terms will introduce correlation in the components capacities, as illustrated in the
following equation and in Figure 3c.
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Table 1. Sample component groupings for (a) structural and (b) non-structural components.
Components within the same system all share a single ¢, realization for a given Monte
Carlo sample. The constituent component types column indicates the types of components in
each system group.

(a) (b)
System Constituent component types System Constituent component types
Concrete Gravity System Contents General
Link Beams Medical
Moment Connections Racks
Shear Walls Electrical Batteries
Steel Base Plates Distribution System
Braces Generators
Gravity System Motor Control Center
Moment Connections Switchgear
Column Splices Transformers
Roof Flexible Diaphragm Conveying Elevators
Out-of-plane Connections Envelope Cold Formed Steel
Masonry Shear Walls Cladding
Glazing
Cold Formed Steel ~ Shear Walls Masonry Infill
Wood Light Frame  Cripple Walls Wood Light Frame
Shear Walls Fire Suppression ~ Drops
Piping
HVAC Air Handling Units
Air Distribution System
Chilled Piping
Chillers
Compressors
Control Panels
Cooling Towers
Steam Piping
Interior Ceilings
Floors
Lighting
Partition Walls
Plumbing Potable Water
Sanitary Waste
Roof Chimneys
Coverings
Parapets
Stairs Stairs
In Cl = Inf + ﬂalleall + Bsysesys + ﬁjel
shared independent 5)
Prepared using sagej.cls
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where C7 and C5 denote the two components’ capacities, and €; and €5 denote their
component-specific contributions to capacity. The 6 and /3 values will also in general
vary by component, but subscripts on those terms are omitted above to highlight the
model aspects that are most relevant to correlations.

. Component 1 Both components
d damaged undamaged
= / «— .
7 T
E 5 .
N
(a) €all O |
£
Demand 2
: Component 2
R damaged
& =t
B k=-H
% Both components ~ &:
N damaged 5
B
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Figure 3. Monte Carlo simulations of residual terms and component capacities for two
components. (a) Simulations of the e,;; term, of which a single value is used for both
components in a given simulation. (b) Simulations of the ¢; term, which is independent for
each component. (c) Simulations of the component capacities using Equation 4, along with
illustrative damage thresholds. Points indicate component capacity simulations produced
using Equation 5. The shaded regions indicate the capacity values for which capacity <
demand, and thus produce a damage outcome. Because the capacities of the components
are partially correlated, the damage outcomes for the components are dependent.

The approach of decomposing the € uncertainty term in Equation 2 into multiple
contributions, with some being shared, is termed an equi-correlated model by Ditlevsen
(1981). We also note that ‘dependence’ is a general term to describe probabilistic
relationships in outcomes of component damage, while ‘correlation’ is a more narrow
measure of linear dependence. Because the above log-capacity values have a multivariate
normal distribution, dependence is fully described by the correlation in capacity values,
so we can use ‘correlation’” and ‘dependence’ interchangeably in this context.

Parameterization

This section utilizes the model from the previous section, and reframes the equations
into a format that is easy to implement and facilitates intuitive parameterization of
correlations. The variance of In C' in Equation 4 is equal to

Var[nC] = B2, + B2, + B3 (©6)

This variance should equal 32 from Equation 1, for consistency with the component’s
original fragility function. It thus follows that the uncertainty can be partitioned to
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individual sources while maintaining the overall capacity uncertainty, (3, by satisfying
the constraint

2 2 52

all sys J_

gt T

The relative contributions of each uncertainty group can thus be quantified by relative
‘weights’, w, that sum to 1 and satisfy:

1 @)

2, BB B
[wau,wsys,wj] = [ 5112”, Bg ,ﬁé‘| 8)

Substituting Equation 8 into Equation 4 to specify the capacity C in terms of weights, w,
gives:

InC =1n6+ B [\/ Wall€all + V Wsys€sys + v wjej] 9

The relative weights therefore determine how correlated the component capacities are
with capacities of components of other types.

Fully independent component capacities would be achieved by placing weight only on
the ¢€; terms that are independently simulated for each component:

[walla Wsys, wj] = [07 07 1} (10)

Fully dependent component capacities would be achieved by placing weight only on the
€411 term that is shared amongst all components:

[wall;wsy37wj] = [17070} (11)

Even with the fully dependent capacity model, the damage states could still differ
amongst components with differing demands, but this model would produce much more
similarity in damage states than that of Equation 10. Partially dependent component
capacities can be produced by other combinations of weights.

Proposed model weights We propose using the following weights for the purpose of
FEMA P-58 assessments:

[Walr, Wsys, w;] = [0.2,0.6,0.2] (12)

This model assumes that some of the uncertainty is shared by all components (20%), and
some is shared by all components of the same system (60%), with the remainder unique
to each component. Equation (12) is motivated by the observation that most sources of
component damage variability that were described in the Introduction will vary by system
(e.g., subcontractor construction quality and the specific component in a building relative
to a broader set of components of that type), suggesting that the largest weight should be
on €,4ys. Some sources of variability may be relatively common throughout the building
(e.g., the time series of displacements, velocities, and accelerations experienced in a
given earthquake, and the overall quality of construction) and some sources of variability
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are likely to be inherent to a single component, suggesting that some weight should also
be placed on the €4;; and €; terms as well.

Example results presented below suggest that some building performance metrics
are strongly affected by the choice of fully independent, fully dependent, or partially
dependent component damage. However, for a partially dependent component damage
model such as Equation 12, modest changes to the relative weights have much lesser
impact (see the Supplemental Materials for results to support this statement). The
proposed model is thus believed to capture the important characteristic of partially
dependent damage, without being highly dependent on the specific choice of weights.

Model generalizations Equation 4 was presented to be compatible with the proposed
model weighting. But the equations and model weights can be generalized in several
ways if desired, while still maintaining the general characteristic of partial correlations.

First, the number of € terms in Equation 4 can be varied. For example, additional
terms could be included in the formulation that are shared only amongst components
of a single constituent component type, as listed in Table 1. Also, an € term could be
included that is shared amongst components of a single Performance Group (in FEMA
P-58 parlance, these are components of the same type that are affected by the same EDP).
If an € term is included based on performance groups, and all the weight applied to
that term, then this approach would reproduce the ‘correlated fragility’ option that is
noted in the prior FEMA P-58 methodology (FEMA, 2018, Volume 2, Section 2.4.6).
Additional terms are simple to add algorithmically: all that is required is a mapping
to indicate which components in the building share each e term. But additional terms
require additional weights and component groupings, and this additional complexity was
not deemed justified in this case, given the lack of empirical data to constrain the weight
values.

Second, the weight vector of Equation 8 does not need to be fixed for all components
in the building. Components of different types can have unique weight vectors. This
might be appropriate if one believed, for example, that concrete components and
mechanical components had differing within-system correlations in their capacities. This
is straightforward from an algorithmic perspective, and numerically valid. Nevertheless,
the lack of empirical data to constrain these models led to a preference for the simpler
proposed model at present.

Third, dependence in component capacities does not need to be specified via the
above decomposition of € into multiple contributing sources. Instead, dependence could
be introduced by sampling capacity terms for each component from a multivariate
distribution and specifying a covariance matrix for that distribution. It can be shown that
the above decomposition weights can be converted into equivalent covariance values.
However, the authors and project reviewers found the above weighting approach more
intuitive for specifying judgment-based dependencies.

Prepared using sagej.cls



12 Earthquake Spectra (in press)

Simple example

To illustrate the impact of this formulation, we first present results for a highly
idealized case. We consider a four-story building, with story drift ratio (SDR) as
the EDP of interest. The EDPs would usually be estimated from structural analyses.
But, for illustration here, we assume they are lognormally distributed with a median
of 8 = 0.02, a log-standard deviation of 3 = 0.5, and correlations between stories of
Pln SDR; In SDR; = 0.6 (where p denotes a correlation coefficient, and SDR; and SDR;
denote SDR on stories ¢ and j, respectively). Each story has one each of five types of
components, each type from a unique system. Each component has a single damage state,
with fragility parameters § = 0.05 (in units of story drift ratio) and S = 0.5. In other
words, the median drift demand on each story is 2%, the median drift capacity is 5%,
and the variability in demands and capacities is such that the probability of any single
component failing is approximately 0.1.

Figure 4 shows component damage statistics for three permutations of analyses.
In all three cases, the model parameters in the above paragraph are used. The only
difference among the three cases are the assumed component correlations. We use the
[wa”,wsys,wﬂ characterization of Equation 9, and consider three sets of numerical
values for the weights.

Figures 4a and 4b show results for [wg,wsys, w;] = [0,0,1]. Each of the 20
components in the building has an independent capacity, since all weight is on the ¢;
term that is unique for each component. Figure 4a shows the histogram of the number
of damaged components in each simulation, from 10,000 total Monte Carlo simulations.
It shows that 60% of the simulations produce at least one damaged component, but only
2.4% produce 10 or more damaged components. Figure 4b shows a scatter plot of how
many components of “type 1 and “type 2 are damaged in each simulation (where the
numbering is used to distinguish between types, but otherwise has no meaning as all
five component types have the same fragility parameters). Each component type could
have between 0 and 5 components damaged, and the plotted points are jittered by a small
amount so that the number of repeated outcomes can be seen. This figure shows that there
is little correlation between the number of damaged components of each type, as would
be expected because their capacities are independent (although there is some correlation
because the components on a given floor are all subjected to the same demand value).
This case is equivalent to the prior FEMA P-58 assessment approach, with the small
exception of some component types that are correlated by performance group.

Figures 4c and 4d show results for [wq, wsys, w;] = [0.5,0, 0.5]. This case produces
partial correlations in component capacities, for components of all types and on all floors,
since all 20 components in the building share the ¢,;; variable that now gets 0.5 weight.
The effect of this partial correlation can be seen in Figure 4c where now only 44% of
simulations produce a damaged component (versus 60% in the Figure 4a), because some
simulations have a large €,;; value and cause all 20 components to have a higher capacity
and be more likely to avoid damage. Because of this partially correlated capacity, the
number of simulations with > 10 damaged components increases to 5.6%. The partially
correlated capacities also result in the number of damaged components of a given type
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being more correlated in Figure 4d (as evidenced by the greater number of points lying
close to the diagonal on the figure).

Finally, Figures 4e and 4f show results for [wqi, weys,w;] = [1,0,0]. In this case,
all 20 components in the building will have identical capacities for a given simulation,
because only the shared ¢,;; variable is contributing to capacity variation. Figure 4e
shows a much different pattern of damage, with only 19% of simulations producing
damage, but 11% producing 10 or more damaged components. This is because the 20
components all have identical capacities in this case, per Equation 9, so they tend to all
be undamaged, or all be damaged (with the only the story-to-story variation in SDR
demands producing some differing damage state outcomes throughout the building).
There is still some variation in demand across the building’s stories, so components
on differing stories can still take differing damage states. But on a given story, the
five components all have the same demand and capacity and so will take the same
damage state. This is seen in Figure 4e, where the numbers of damaged components
are only multiples of five, and in Figure 4f, where the number of damaged components
are perfectly correlated between the two types.

These cases provide an indication of how component capacity correlation affects
building-level damage features. In all three cases, the mean number of damaged
components, N, is unchanged. The left panels indicate that the average number is two,
as expected, since there are 20 components, each with a 0.1 probability of damage. So,
average metrics such as mean repair cost are, to a first order, not impacted by these
correlations. However, the probability of non-zero damage decreases with increasing
component correlation, as indicated by the P(N > 1) metrics in the left panels. If,
hypothetically, this building would be red-tagged if any component were damaged, then
the uncorrelated (Figure 4a) case would have the highest probability of triggering a red
tag. Conversely, the probability of extreme damage increases with increasing component
correlation, as seen in the P(N > 10) metrics in the left panels. This pattern would
influence higher-percentile loss predictions such as “probable maximum loss” analyses
that predict 90th-percentile impacts for a given loading intensity.

This simple example is intended to build intuition about the role of component capacity
correlations on predicted building-level impacts, and to demonstrate that the impact of
correlations depends upon the building-level metric of interest.
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Figure 4. Component damage statistics for the simple example, under varying component
damage correlation models. (a, b) no correlation, [wai, wsys, w;] = [0, 0, 1]. (c, d) partial

correlation: [wair, Wsys, w;] = [0.5,0,0.5]. (e, f) full correlation: [wair, wsys, w;]

=1[1,0,0].

The left-hand panels report statistics for the probability of a simulation producing at least one
damaged component (P(N > 1)), the probability of a simulation producing at least ten
damaged components (P(N > 10)), and the mean number of damaged components (V).
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Realistic example

To illustrate the impact of these component correlations in more complex and realistic
cases, we present results for several performance metrics of a case study building.
We consider a 20-story steel moment frame office building located in Los Angeles,
California, following ASCE 7-16 seismic design requirements (ASCE, 2016). Ground
motion hazard is computed using U.S. Geological Survey (2014) probabilistic hazard
results. The quantities and types of damageable components in the building are based
on the office occupancy, and on building code requirements, as embedded in the FEMA
P-58 normative quantities. Joint probability distributions of drifts and accelerations at
all floors, for a range of I M levels, are predicted using a statistical model calibrated
statistically based on response history analyses of similar buildings (Cook et al., 2018).
Component damage states and repair costs are predicted using FEMA P-58 fragility
functions (FEMA, 2018), and red-tagging and recovery metrics are computed using the
methodology of Cook et al. (2022). The red tagging approach looks at groups of structural
components, and damage states to those components that are severe enough to cause loss
of lateral or gravity load carrying capacity. If the number of damaged components in
these damaged states exceed a threshold, then the building is “red tagged” (Cook et al.,
2021). The analyses were performed using the SP3-RiskModel software.

Table 2 describes several [wq, Ways, wj] weighting schemes that are considered to
provide intuition as to how sensitive building performance metrics are to different
weighting choices. Figures 5-7 show the differences in building performance metrics
resulting from various weights.

Figure 5 shows the sensitivity of red tagging results to various correlation models.
In this and the following figures, damage simulations are run conditional on uniform
hazard spectra at varying amplitudes. The horizontal axis of Figure 5a plots Peak Ground
Acceleration as the intensity measure, for ease of interpretation, though any other spectral
ordinate from the uniform hazard spectra could be used instead.

Figure 5 shows that, as expected, the ‘Prior P-58’ and ‘Component’ schemes are
identical (because there are no components categorized as “correlated” using the prior
P-58 scheme). These fully uncorrelated cases are the upper bound for red tag probability
because the lack of correlation results in more cases where just a few components
are damaged, but this still triggers a red-tag, as discussed in the Simple Example
Section. Conversely, the other extreme is the fully correlated case, ‘All,” which sees
more zero-damage realizations and therefore predicts the lowest red-tag probabilities.
The ‘System’ scheme produces equivalent red tag results to the ‘All’ scheme because
the structural system components remain fully correlated, and the other component types
do not affect the red tagging outcome. Between these two extremes are the ‘Even’ and
‘Recommended’ cases, which each put partial weights all of the three weight categories.
As discussed in the Proposed Model Section, there is insufficient empirical data to
precisely calibrate these weights, but the reasonable agreement between the ‘Even’
and ‘Recommended’ cases (less than 0.05 difference in probability) indicates the low
sensitivity of results to the specific weights considered.
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Table 2. Summary of weighting schemes used to produce building-level performance metrics
for the realistic example building.

Scheme name

[wam Wsys, wj]

Notes

Recommended [0.2,0.6,0.2] The recommended weighting scheme, as dis-
cussed in the Proposed Model Section.

Even [1/3,1/3,1/3] Even weights are applied to each category, to
simulate some capacity correlation between and
within systems.

All [1,0,0] The capacity of all components in the building
are fully correlated.

System [0,1,0] The capacity of components in the same system
are fully correlated, but there is no correlation
between systems.

Component [0,0,1] The capacity is not correlated between or within
systems. (This is equivalent to the ‘Prior P-
58’ scheme when no correlated components are
included in the model.)

Prior P-58 N/A This is the prior FEMA P-58 correlation model,
where most components are independent, and a
few components are perfectly correlated within a
performance group.
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Figure 5. Red tagging metrics for the 20-story steel perimeter moment frame building for
various [waur, Wsys, w;] Weighting schemes. (a) Red tag probabilities as a function of the
PG A value associated with each uniform hazard spectrum. (b) A ‘vertical slice’ of results
from (a) at PGA = 0.95 g, which has a return period of 2475 years at the building location.
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Figure 6 shows the case study building’s mean, median, and 90" percentile loss ratios
(i.e., the repair costs divided by the building’s replacement value). The Simple Example
section demonstrated that the correlation does not affect the mean number of damaged
components. Figure 6a confirms this by showing that the mean loss ratio is unaffected by
the correlation model (any slight apparent variations result from the randomness of the
Monte Carlo simulations). In detailed loss simulations such as these, it is possible that
non-linearity in repair costs due to volume discounting (lower per-unit costs for higher
quantity repairs) could produce some difference in mean costs for high-damage cases,
though that effect is inconsequential for this case.

Figures 6b and 6¢ show the median and 90" percentile losses, respectively. The two
metrics have opposite trends; the 90‘" percentile loss increases, and the median loss
decreases, for the cases having stronger correlation. Both of these effects are due to
the increased likelihood of extreme outcomes (i.e., very many or very few components
simultaneously being damaged). Figure 6d summarizes these opposing trends for the
analyses performed at the 2475-year ground motion level (PG A = 0.95g).

Figure 7 shows the effect of correlation models on reoccupancy and functional
recovery time calculated using the methodology of Cook et al. (2022). With this
methodology, to maintain occupancy, most structural components should be in low-to-
moderate damage states such that the building is not tagged as unsafe; cladding, ceilings
and equipment should not pose falling hazards; and stairs should maintain vertical
load carrying capacity to support building egress. For building function, critical MEP
equipment and distributed components, such as air handling units, potable and sanitary
piping, and electrical switchgear, should continue to operate to support basic tenant
function. The plots show the probability that the building is not reoccupiable at 30 days
(Figures 7a and 7b) and not functional (Figures 7c and 7d) 30 days after shaking of
the given intensity occurs. The plots demonstrate that the ‘Prior P-58” and ‘Component’
weighting schemes result in the highest probability of failure of the functional recovery
measures due to the lack of correlation, which produces the lowest amount of ‘no
damage’ (or acceptably low damage) realizations as discussed in the Simple Example
Section. Conversely, the ‘All” variant results in the lowest probability of failure because
the correlation between all components is high and results in a larger number of ‘no
damage’ (or acceptably low damage) realizations. Here acceptably low damage implies
damage that does not trigger function or reoccupancy problems. In terms of component
capacity, the high correlation ensures that the capacities are all relatively low or relatively
high in the same realization, so there is less likely to be an outlying ‘low’ capacity
component that prevents use of the building. Between these extremes are the the other
variants ‘System’, ‘Even’, and ‘Recommended’. The ‘System’ variant for reoccupancy
is closer to the ‘All’ variant because there are fewer systems that matter for reoccupancy
than function, so the correlations across systems have less impact on this metric.

The results of this case study demonstrate that a reasonable distribution of weights
over the three sources of variability will produce a reasonable result bounded by the fully
correlated and fully uncorrelated cases.
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Figure 6. Loss metrics for the 20-story steel perimeter moment frame building for various
[Wai1, Wsys, w;] Weighting schemes. (a) Mean loss ratio. (b) Median loss ratio. (c) 9oth
percentile loss ratio. (d) All loss ratio metrics, given shaking with PG A = 0.95g, which has a
2475-year return period. Note that the vertical axis limits on subfigures a-c are varied, to
highlight trends within a given subfigure.
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Figure 7. Functional recovery time metrics for the 20-story steel perimeter moment frame
building, using the Cook et al. (2022) and various [wqi, Wsys, w;] Weighting schemes. (a)
Probability of loss of reoccupancy 30 days after shaking, for multiple ground motion amplitude
levels. (b) Probability of loss of reoccupancy 30 days after shaking, given shaking with a
144-year return period (PG A = 0.3g). (c) Probability of loss of function 30 days after
shaking. (d) Probability of loss of function 30 days after shaking, given shaking with a

144-year return period.
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Conclusions

This paper proposes a practical method for incorporating partial dependencies in
component damage outcomes when using Monte Carlo simulation to estimate risk
to systems composed of multiple components. The method is flexible in allowing
dependencies that vary based on location in the building, component type, and other
factors. For individual components, the probabilities of damage obtained with this
method are identical to prior approaches. For multiple components, this approach can
reproduce traditional approaches if desired, but can be generalized to more plausible
formulations that allow partial dependencies. Example results illustrate the impact of
component capacity correlations on loss results.

The proposed method requires the specification of numerical correlation values. While
direct empirical data to constrain dependencies remains elusive, the formulation does
provide a conceptually appealing parameterization of the problem. That is, the analyst
must specify how much of the variance in outcomes results from various sources (as
opposed to specifying less-intuitive metrics of dependence). A parameterization for use
in FEMA P-58 analysis is proposed that improves the realism of loss simulations relative
to the prior approach.

While a parameterization has been proposed here based on current judgement, further
study of damage data offers the opportunity to refine the parameterization. One data
analysis approach that would be informative would be to perform component damage
tests that hold some conditions fixed (e.g., construction method) and vary another (e.g.,
loading protocol), in order to quantify how much component capacity variability comes
from each source of uncertainty. Another approach would be to use random effects
models to study data sets like that in Figure 1 and attribute observed variability to the
tests” varying component configurations, loading conditions, and other factors. From
a modeling perspective, some components’ damage could be studied by using high-
fidelity numerical models (e.g., for steel connection fractures) and varying component
and material characteristics, as well as loading time series.

The method was presented with a focus on the FEMA P-58 assessment methodology,
but is relevant to other assessment situations that consider multiple components and
fragility functions. Only the grouping of elements and correlation structure would need
to be revisited to apply the method in other contexts focused on components with
lognormal fragility functions, given the widespread use of this formulation. However, the
method could be applied in other situations with other distribution types, as long as the
capacity distribution for the component can be decomposed into shared and independent
contributions to capacity.

Code and data availability

Demonstration code that implements the proposed model, and produces the results
presented in the Simple Example section, is available at https://github.com/
bakerjw/FEMA_P58_damage_correlation.
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