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Abstract 
 
A probabilistic description of potential ground motion intensity is computed using a Bayesian 
Probabilistic Network (BPN) representing the standard probabilistic seismic hazard analysis 
(PSHA). Two earthquake ground motion intensity parameters are used: response spectral values 
for structural failures and peak ground acceleration for geotechnical failures. The correlation of 
these parameters is also considered within a BPN. It is further shown how deaggregation of the 
seismic hazard could be easily performed using BPN’s. A systematic consideration of uncertainty 
in the values of the parameters of a particular seismic hazard model can be described by PSHA. 
But the correct choices for elements of the seismic hazard model are uncertain. Logic trees provide 
a convenient framework for the treatment of model uncertainty. The paper illustrates an alternative 
way of incorporating the model uncertainty by extending the developed BPN. Incorporation of 
time-dependant seismic hazard using a BPN is also illustrated. Finally, the uncertainty treatment in 
earthquake modeling using BPN’s is illustrated on the region Adapazari, which is located close to 
the western part of the North Anatolian Fault in Turkey. 
 
1. Introduction 
 
State-of-the-art seismic hazard studies calculate the probability of occurrence of a ground motion 
intensity parameter within a given time period due to an earthquake using earth science models for 
the characteristics of earthquakes in the region of interest. Uncertainty about the causes and effects 
of earthquakes and about the seismic characteristics of potential active faults lead to uncertainties 
in the input parameters for the seismic hazard analysis. Cornell (1968) proposed a mathematical 
approach for systematically incorporating the uncertainties for calculating probability of exceeding 
some level of earthquake ground shaking at a site. The methodology is known as Probabilistic 
Seismic Hazard Analysis (PSHA) and comprises in summary four steps: 
 
• Identification of all earthquake sources capable of producing ground motions, specifying the 

uncertainty in location. 
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• Characterization of the temporal distribution of earthquake recurrence, specifying the 
uncertainty in magnitude and time of occurrence. 

• Prediction of the resulting ground motion intensity as a function of location and magnitude. 
• Combination of the uncertainties in location, magnitude, time and ground motion intensity, 

using the total probability theorem.  
In more advanced seismic hazard studies two types of uncertainty, namely aleatory variability and 
epistemic uncertainty, are distinguished. The uncertainty in size, location and time of the next 
earthquake and the resulting ground motion are considered to be inherent to the natural physical 
process and indifferent to change in our knowledge. Hence they are called aleatory variability or 
sometimes also randomness. Epistemic uncertainty results from our imperfect knowledge about 
earthquakes and can be reduced with a better knowledge basis and additional data (NRC 1997).  
 
The combination of the aleatory variability in location, size and time and ground motion intensity 
yields a single hazard curve (i.e., a curve reporting annual rates of exceedance for varying levels of 
ground motion intensity). Considering different assumptions, hypotheses, models or parameter 
values for the location, size and time to the next earthquake and for the predicted ground motion 
yields a suite of hazard curves representing the epistemic uncertainty. These epistemic 
uncertainties are typically organized and displayed by means of logic trees (Kulkarni et al., 1985; 
Coppersmith and Youngs 1985). Quantification and treatment of these epistemic uncertainties is 
carefully considered in the SSHAC Level 4 methodology, where a systematic and well-balanced 
integration of experts was a central issue (NRC 1997; Stepp et al. 2001; Abrahamson et al. 2001). 
 
In this paper the application of the state-of-the-art PSHA methodology using Bayesian 
Probabilistic Networks (BPN) is considered. After illustrating a generic application, aspects 
regarding the correlation of several ground motion intensity measures, incorporation of epistemic 
uncertainties and non-Poisson earthquake recurrence are discussed. In traditional PSHA studies, 
the primary analysis output is the annual frequency of exceeding some level of earthquake ground 
shaking at a site. In contrast, the main output of the BPN based seismic hazard calculation is the 
probability distribution of the maximum ground motion intensity measures observed in some 
window of time. The two output formats have a one-to-one relationship, so this transformation 
from one to the other is introduced because of the needfor these distributions in a newly developed 
generic indicator-based risk assessment framework based on BPN’s, which is illustrated in an 
accompanying paper (Bayraktarli and Faber 2008). 
 
2. Bayesian probabilistic networks 
 
BPN’s constitute a flexible, intuitive and strong model framework for Bayesian probabilistic 
analysis (Jensen 2001). BPN’s may replace both fault and event trees and can be used at any stage 
of a probabilistic analysis. Due to their mind mapping characteristic, they comprise a significant 
support in the early phases of a probabilistic analysis, where the main task is to identify the 
potential scenarios and the interrelation of events leading to adverse events.  
 
N  is a Bayesian network triplet ( , , )V A P , where: 

• V  is a set of variables , 1,2,3...iv i . 

• A  is a set of links showing causal interrelations between variables. A  and V  form a directed 
acyclic graph. 

•  ( | ) : vP P v v V , where v  is the set of parents of v . In words P  is the set the 

conditional probabilities of the all variables given their parents. 
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It is common to visualize the variables in a BPN as nodes. A BPN may be formulated by the 
following steps, see also Figure 1: 
 
• Variables necessary and sufficient to model the problem framework of interest are identified. 
• Causal interrelations existing between the nodes are formulated, graphically shown by arrows. 
• A number of discrete mutually exclusive states are assigned to each variable. 
• Probability tables are assigned for the states of each of the variables.  
More formally, the BPN maps the joint probability distribution, ( )NP V , of a considered system. 
 

( ) ( | )


N v
v V

P V P v   (1) 

 
As an example, for the principle BPN in Figure 1 the joint probability is given by: 
 

( , , ) ( ) ( ) ( | , )NP A B C P A P B P C A B   (2) 
 
The marginal probability of any variable, say variable C in Figure 1, is defined by marginalizing 
all variables different from variable C out of the joint probability: 
 

/

( ) ( ) N N
V C

P C P V   (3) 

 
There may be evidence that some of the variables have specific values. For example, the variable 
B in the BPN in Figure 1 may be observed to be in State I. Then the posterior probability of any 
variable in the BPN, for example of variable C is defined as: 
 

( , State I)
( | State I)

( State I)


 


N

N
N

P C B
P C B

P B
  (4) 

 
Efficient so-called inference engines are available for the numerical evaluation of Equations (2)-
(4) (Jensen 2001). The computations in this paper are performed with the commercial software 
Hugin Researcher (2008). 
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Figure 1. A sample Bayesian Probabilistic Network. 

A Bayesian Probabilistic Network for a generic seismic source 
 
The application of the BPN approach for seismic hazard analysis is described using a generic line 
source as specified in Kramer (1996). Line sources are tectonic faults capable of producing 
earthquakes of different sizes. In case when individual faults cannot be identified, the earthquake 
sources may be described by areal zones. The application of the approach to areal sources is 
analogous to the herein described line source.  
 
To predict the ground shaking at a site, the distribution of distances from the earthquake epicenter 
to the site of interest is necessary. The seismic sources are defined by epicenteres assumed to have 
equal probability. In a line sources these equal probability locations fall along a line; in a point 
source they would fall on a single point; in other cases areal sources are postulated. Using the 
geometric characteristics of the source, the distribution of distances can be calculated easily 
(Figure 2, left). 
 
Gutenberg and Richter (1944) observed that the distribution of earthquake magnitudes in a region 
generally follows a distribution given by 
 
log m a bM     (5) 
 
where m is the rate of earthquakes with magnitude greater than m, and a  and b  are constants. 
a  and b  are generally estimated using statistical analysis of historical observations. a  indicates 
the overall rate of earthquakes in a region, and b the relative ration of small to large magnitudes. 
 
The above described Gutenberg-Richter recurrence law is sometimes applied with a lower and 
upper bound. The lower bound is represented by a minimum magnitude mmin below which 
earthquakes are ignored due to their lack of engineering importance. The upper bound is given 
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Figure 2. Specification of the generic line source and discrete probabilities of distance (a, b), Gutenberg-
Richter recurrence law and discrete probabilities of magnitude (c, d), and probability distribution of epsilon 

and discrete probabilities for 50 states (e, f). 

by the maximum magnitude mmax that a given seismic source can produce. Setting a range of 
magnitudes of interest, using the bounds Lm  and Um , Equation 6 can be used to compute the 
probability that an earthquake magnitude falls within these bounds (Figure 2, middle). 
 

     |

L U

min max

M U M L L U min max

m m

m m

F m F m P m M m m M m

 
 

     





 (6) 

 
The earthquakes are modelled by ground motion prediction equations, which predict the 
probability distribution of ground motion intensity, as a function of many variables such as the 
earthquake’s magnitude, source-to-site distance, faulting mechanism, near surface site condition, 
etc. Ground motion prediction equations, also called attenuation functions, are generally developed 
using statistical analysis of measurements from past earthquakes. As there is significant scatter in 
the measured ground motion intensities, the ground motion prediction equation provides a 
probability distribution for the intensity parameter. Generally the predictive equations specify the 
predicted mean and the standard deviation of the intensity measure. The distribution of the ground 
motion intensity measure is then calculated by adding a normalized residual to the predicted mean. 
This factor is often denoted epsilon,  .  
 
A BPN for the generic line source is constructed by conditioning the ground motion intensity 
parameter (here spectral displacement (SD)) on magnitude, M  distance, R   and epsilon,  . 
Equation 6 is used to calculate the probabilistic distribution of magnitudes into 10 bins of equal 
intervals. Using simple geometric considerations, the distribution of the distance of the site to the 
generic line source is calculated also for 10 bins. The distribution of epsilon is discretized into 50 
bins. The spectral displacement node is discretized also into 10 bins. For any of the combinations 
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of the 10 magnitudes, 10 distances and 50 epsilons the corresponding spectral displacement values 
are calculated using the ground motion prediction equation (Boore et al. 1997). The vector with 
the size of the number of bins for the spectral displacement has an entry of unity in the bin, where 
the ground motion intensity value falls. The 5000 vectors (multiplying 10x10x50) form the 
conditional probability table of spectral displacement. Having constructed the structure of the BPN 
and the corresponding probability tables, the BPN can be evaluated to yield the marginal 
distributions for any parameter in the network. These probability distributions may now be used to 
calculate the joint distribution of all or any set of the parameters in the network using simple 
probabilistic calculation schemes. In Figure 3 the BPN for seismic hazard analysis of the generic 
line source is illustrated with the marginal distribution of the spectral displacement. Once 
constructed, the BPN can be used to find the conditional distribution of any parameter, given 
knowledge of the state of any other parameter in the BPN. In Figure 3 the distribution of the 
spectral displacement is given for the situation that the magnitude is known to be 5.5 and the 
distance to be 60 km.  
 
 

 
 

Figure 3. BPN for a generic seismic line source (a), discrete probabilities of SD (T=0.49 s) evaluated using 
the BPN for the probability distributions given in Figure 2 (b, c). 

The information about which earthquake scenarios are most likely to produce a specific level of 
ground motion intensity can be retrieved from a PSHA computation through a process known as 
deaggregation (McGuire 1995). Using the constructed BPN and by instantiating, i.e. by assigning 
certainty to any state of any node, the conditional probabilities of the other nodes or the joint 
probability of any node combination can easily be retrieved. A sample deaggregation result for the 
magnitude - distance deaggregation given a SD (T=0.49 s) of between 4 mm and 5 mm is given in 
Figure 4. To verify the constructed BPN, the same magnitude-distance deaggregation is computed 
using a traditional PSHA analysis procedure (Figure 4). The small discrepancies in the 
probabilities arise from differences in the discretisation schemes between the traditional PSHA 
analysis and the BPN. 
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Figure 4. Deaggregation by magnitude and distance for SD= 4.4 mm using traditional PSHA (left), and for 

4 mm<=SD<5 mm using BPN (right). 

4. Incorporation of the Correlation of Ground motion intensity parameters 
 
By combining probabilistic descriptions of ground motion intensity with predictions of structural 
or geotechnical response as a function of that intensity, it is possible to compute the seismic 
reliability of engineering systems. This approach has been used for assessment of structural 
reliability (Bazzurro and Cornell 1994; Cornell et al. 2000) as well as geotechnical reliability 
considering liquefaction failures (Kramer et al. 2006). But reliability assessments that attempt to 
simultaneously consider both structural and geotechnical failures are currently not possible using 
this approach, because structural and geotechnical responses are generally predicted using 
different ground motion intensity parameters, and the tools are not available for determining a 
probabilistic characterization of the joint occurrence of these parameters (Baker 2007). Structural 
response (and structural failure) is often predicted using elastic spectral displacement (SD) (Pinto 
et al. 2004). Liquefaction failure, on the other hand, is typically predicted using peak ground 
acceleration (PGA) (Cetin et al. 2004; Youd et al. 2001).  
 
In this section, the correlation coefficient models necessary to achieve the goal of considering both 
structural and liquefaction failures simultaneously are developed based on Baker (2007). The 
needed correlation coefficients are obtained by first selecting a large set of recorded ground 
motions. Ground motion intensity parameters are then computed for each ground motion, along 
with predicted values for these parameters provided by ground motion prediction models. 
Correlations among the prediction residuals of the ground motion intensity parameters are then 
computed, and simple analytic equations are fitted to provide a simple means of calculating the 
required correlation coefficients. All of these intensity parameters are well represented by 
lognormal distributions, conditional upon earthquake magnitude, distance, and other parameters. 
Mean values and standard deviations for the possible values that the logarithms of these 
parameters may take in a given earthquake scenario are given by ground motion prediction 
models. The prediction model of Abrahamson and Silva (1997) is used for the SD and the model 
of Boore et al. (1997) for the PGA.  
 
Once these models are used to compute means and standard deviations of the intensity for a given 
ground motion, one can compute a normalized residual,   that indicates the number of standard 
deviations away from the mean prediction a given observation is, using the following equation: 
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ln

ln

ln X

X

x 



    (7) 

 
where x is the realization, i.e. the observed ground motion intensity (defined using one of the 
above parameters, and here denoted X), ln X  is the predicted mean value of the logarithm of that 
intensity (given magnitude, distance, etc.) and ln X  is the predicted standard deviation of the log 
intensity. These “epsilons” represent the record-to-record aleatory variability that is not explained 
by the predictive equations. This variability is explicitly considered in probabilistic assessments 
such as probabilistic seismic hazard analysis (PSHA). A given ground motion will have a different 
  value for each ground motion intensity measure considered, and it is the correlation among 
these different   values that must be considered if seismic reliability analysis is to be performed 
considering multiple intensity measure parameters (Baker and Cornell 2006). 
 
Using this approach, empirical correlation coefficients are computed for the large database of   
values. The following piecewise linear equation provides a good fit to the observed values: 
 

, ( )

0.500 0.127 ln( ) if 0.05 T<0.11

0.968 0.085 ln( ) if 0.11 T<0.25

0.568 0.204 ln( ) if 0.25 T<5.00
PGA SD T

T

T

T


   

     
    

 (8) 

 
The correlation of the ground motion intensity parameters PGA and SD is considered in the BPN 
by conditioning the epsilon values on each other. PGA  is discretized from the standard normal 

distribution into 10 states. SD  on the other hand is a conditional normal distribution with a mean 

of PGA   and a standard deviation of 21   and discretized also into 10 states. Since the 

correlation coefficient depends on the fundamental period, the node SD  is also dependent on the 

fundamental period. The extended BPN is given in Figure 5 and a sample output in form of a 
magnitude-distance deaggregation and a PGA-SD deaggregation is given in Figure 6. 
 
 

 
 

Figure 5. BPN considering correlation of ground motion intensity parameters PGA and SD. 
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Figure 6. Deaggregation by magnitude and distance using BPN for PGA=0.05g, SD=3mm (left) and by PGA 

and SD for M=6.8, R=27km (right). 

5. Incorporating Model uncertainties 
 
For one particular seismic hazard model (defined by specifying a source model, a recurrence 
model and a ground motion prediction model) the aleatory variability described by that model is 
systematically considered. But there is still an uncertainty about the best choices for elements of 
the seismic hazard model itself. This is now commonly addressed by combining the uncertainties 
about the various inputs in logic trees (Kulkarni et al. 1984; Coppersmith and Youngs, 1986; 
SSHAC 1997). Each branch of a logic tree represents a set of chosen elements for a seismic hazard 
model. For each of the seismic hazard models the hazard calculations are performed and a single 
hazard curve representing ground motion versus annual frequency of exceedance is produced. The 
relative weighting of each hazard curve is then determined by multiplying the weights in each of 
the branches. From this set of hazard curves a mean, a median and curves for different fractiles can 
be defined.  
 
The BPN for the seismic hazard model introduced before will now be extended to incorporate 
model uncertainties. For each of the elements producing branches in a logic tree, a node is 
introduced into the network and the required dependencies with the existing nodes are set using 
additional arrows. The simple logic tree shown in Figure 7 allows uncertainty in selection of 
models for ground motion prediction equations and maximum magnitude to be considered. The 
ground motion prediction equations of Boore et al. (1997) and Abrahamson and Silva (1997) are 
considered, assigning weights of 0.7 and 0.3 respectively. At the other level of nodes, weights of 
0.4 and 0.6 are assigned to the maximum magnitudes Mw=7.3 and Mw=7.7 the single line source 
is capable of producing. A sample output of the BPN in Figure 7 is given in Figure 8. 
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Figure 7. Logic tree and corresponding BPN considering modeling uncertainties. 

 
Figure 8. Contribution by ground motion prediction equation and maximum magnitude choice for 

PGA=0.15g, SD=6mm (left) and for PGA=0.25g, SD=5mm (right). 

6. Incorporating time-dependant seismic hazard 
 
Earthquake occurrences are stochastic in nature, both in time and space. Small and medium 
magnitude earthquakes may occur independently implying a Poisson model. Large magnitude 
earthquakes on a particular fault segment, however, should not be independent from each other 
according to the elastic rebound theory (Reid 1911). As earthquakes occur to release the stress 
accumulation in a fault, the occurrence of a large earthquake should reduce the chances for 
occurrence of a following independent large earthquake in the same source. Paleoseismic studies 
on fault slip data led to the ‘characteristic earthquake’ recurrence model (Kramer, 1996). The 
seismic sources tend to generate regularly earthquakes of similar sizes near to the maximum 
magnitude known as characteristic earthquakes. This tendency is not seen for smaller earthquakes, 
which occur more or less randomly. Hence the earthquakes are classified into two groups; small/ 
medium size earthquakes and characteristic earthquakes. For small and medium size earthquakes a 
time-independent recurrence model and for characteristic earthquakes a time-dependent recurrence 
model is assumed. A review of non-Poisson models is presented in Anagnos and Kiremidjian 
(1988). The application of BPN’s for non-Poisson recurrence models is illustrated using the 
Brownian Passage Time (BPT) model developed by Matthews et al. (2002) and used in Takahashi 
et al. (2004).  
 
The occurrence of earthquakes of magnitude M  constitutes a renewal process with ( , )Tf t M  
denoting the probability density function (PDF) of the interarrival times. Such a process reduces to 
the Poisson process, if ( , )Tf t M  is taken as an exponential distribution. For all non-characteristic 
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earthquakes in the source a Poisson model and for the characteristic earthquake a more generalized 
renewal model is assumed. Setting the origin of time to the most recent occurrence of the 
characteristic earthquake and denoting the waiting time to the n-th occurrence of the characteristic 
event by nW , the conditional PDF of the waiting time to the n-th characteristic event, given that 
no characteristic earthquake has happened before the start of the operating time of the structures of 
interest 0( )t t  is denoted by 1 0( , | )

nWf t M W t . In case the analysis is performed for structures 

with a life span much shorter than the mean interarrival time of the characteristic earthquake it is 
reasonable to consider the contribution to the seismic activity only from the first characteristic 
earthquake. As the results of this paper will be used in an accompanying paper on earthquake risk 
for cities with residential buildings, the contributions of the 2nd and subsequent events to the rate of 
activity are neglected (Takahashi et al. 2004).  
 
A special case of the renewal process for which the interarrival times are exponentially distributed 
is the Poisson process. The interarrival times for the non-characteristic earthquakes are modelled 
by the exponential distribution: 
 

   ( , ) expTf t M M M t       (9) 

 

where  M  is the constant mean occurrence rate of earthquakes with magnitude M . For the 

characteristic earthquake the interarrival times are modelled by the Brownian Passage Time (BPT) 
distribution: 
 

 2

2 3 2 3
( , ) exp

2 2T char

t
f t M

t t


 

 
  

 
 

  (10) 

where   is the mean recurrence time and 

 

is the aperiodicity. Since the Poisson process is 
memoryless, the conditional distribution of the waiting time to the first event, given that no event 
has occurred prior to the operating time of the structure, remains exponential with the time origin 
shifted to 0t : 
 

      
1 1 0 0( , | ) expWf t M W t M M t t M           (11) 

 
The conditional PDF for the time to the first characteristic earthquake, given that no characteristic 
earthquake Mcharhas occurred prior to the operating time of the structure, t0 is given by: 
 

1

1 0

1

1 0

0

( , )
( , | )

1 ( , )

W char
W char t

W char

f t M
f t M W t

f M d 
 

 
  (12) 

 
For the generic line source a mean recurrence time of 100 years and an aperiodicity of 0.5 is 
assumed. It is further assumed that the last characteristic earthquake occurred 10 years ago. A 
period of 50 years from t0 is considered as this is the residential building lifespan. Figure 9 
illustrates the rate of occurrence of the next characteristic earthquake. This time-varying rate is 
then combined with the Gutenberg-Richter recurrence relation (Figure 9, right). For each year of 
the building lifespan, the rate of occurrence of the characteristic earthquake (λMchar) is equal to the 
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time-varying rate, whereas the rate of smaller and medium size earthquakes is constant (following 
the Poisson model). The distribution of magnitudes is then computed using Equations 13 and 14 
for each of the 50 years. 
 

 
 

Figure 9. Mean occurrence rates using the BPT model for Mchar=7.3 and the extended Gutenberg-Richter 
equation considering characteristic earthquake. 

The mean occurrence rate of the characteristic earthquake for each year of the lifespan of the 
building is read out from the conditional BPT distribution and assigned to the Rate of exceedance 
curve. Equation 13 can be used to compute a cumulative distribution function for the magnitudes 
other than the characteristic earthquake for each year: 
 

     

'

| ,

L U

min max char

M U M L L U min max char

m m

m m m

F m F m P m M m m M m M m

 
  

      




 
  (13) 

 
The probability of having a characteristic earthquake in that year, given that there is an earthquake 
larger than a minimum magnitude can be computed using Equation 14: 
 

 
'

char

min max char

m
M char

m m m

F m


  


 
  (14) 

 
For each year of the lifespan of the building a BPN is constructed (Figure 10). The probability 
distribution of the magnitude for that year is assigned to the magnitude node and the distributions 
of PGA and SD are calculated using the BPN’s. In Figure 11 sample results of the BPN’s for 
T=10 years, T=50 years and for comparison for a Poisson process for all magnitudes are given. 
Minor changes in the probabilities can be observed for the lower PGA and SD values in the 
renewal model as they are caused by the (Poissonian) small magnitude events. In contrast, the 
probabilities for higher PGA and SD values change more over time as the probability of 
occurrence of a characteristic earthquake changes. Here only the methodical issues are discussed 
and the application is shown. In the following section an application to a real case is illustrated and 
in the accompanying paper the influence of considering the renewal process on a risk management 
and risk assessment problem is discussed. 
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Figure 10. BPN considering epistemic uncertainty. 

 
Figure 11. Discrete probabilities of PGA and SD evaluated using the BPN in Figure 10 assuming a Poisson 

process for all magnitudes (a, b), assuming a more generalized renewal model for the characteristic 
earthquake, results given for T=10 years (c, d) and for T=50 years (e, f).  

 
7. Example: PSHA using BPN for Adapazari, Turkey 
 
The application of PSHA using BPN on a real case is considered for the city of Adapazari. This 
region in Northwestern Turkey has been a site of many severe earthquakes. In an accompanying 
paper the seismic risk for the city is considered. The city includes the most affected region during 
the Kocaeli Mw7.4 earthquake as well as areas with liquefaction during the same event (DRM 
2004). Hence the output in this section in form of probability distributions of peak ground 
acceleration (for the liquefaction analysis) and spectral displacement (for the structural response 
analysis) will be used as input for the earthquake risk studies.  
 
In Figure 12 the Northwestern part of Turkey with the city of Adapazari (in red) is illustrated. The 
spatial distribution of the seismicity using the earthquake catalogue from the International 
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Seismological Centre (ISC) is given in the top-left figure. The fault segmentation model for the 
region as shown in Figure 12 top-right by Erdik et al. (2004) is used for the characteristic 
earthquake recurrence model. The characteristic earthquake parameters associated with the 
segments are given in Table 1. For the non-characteristic magnitudes the zonation model proposed 
by Atakan et al. (2002) is used. There, the earthquake sources are based on a gross zonation taking 
into account the entire North Anatolian Fault Zone a single zone. In the west of Adapazari the 
zone is divided into a northern and a southern strand following the general trend of the fault 
system (Figure 12 bottom-left). The relevant source parameters with the areas are given in Table 2. 
Hereby the regional rates of earthquake activit, a’, are calculated by relating the areal of the source 
within the considered 100km radius to the area of thatsource. In Figure 12 at the bottom-right the 
two zonation models are combined in order to use the fault segmentation model for the 
characteristic and the areal sources for the non-characteristic earthquakes. Earthquakes within 
100 km of the city center are included into the analysis.  
 

 
 

Figure 12. Spatial distribution of the seismicity in the region (Atakan et al. 2002) (top-left), seismic zonation 
models proposed by Erdik et al. (2004) (top-right) and Atakan et al. (2002) (bottom-left), hybrid zonation 

with the considered area around Adapazari (bottom-right). 

Table 1. Characteristic earthquake parameters associated with the segments. 
Segment Last characteristic EQ COV Mean recurrence time Characteristic 

magnitude 
Time since last 

characteristic EQ 
S1 1999 0.5 140 7.2 9 
S2 1999 0.5 140 7.2 9 
S3 1999 0.5 140 7.2 9 
S4 1999 0.5 140 7.2 9 
S12 1967 0.5 250 7.2 41 
S13 - 0.5 600 7.2 1000 
S14 - 0.5 600 7.2 1000 
S21 1999 0.5 250 7.2 9 
S22 1957 0.5 250 7.2 51 
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Table 2. Parameters of the areal sources. 
Segment Areal source a a’ b Characteristic/Max. 

magnitude 
S1 A1 2.14 0.98 1.12 7.2 
S2 A1 2.14 1.28 1.12 7.2 
S3 A1 2.14 1.55 1.12 7.2 
S4 A1 2.14 1.49 1.12 7.2 
S12 A1 2.14 1.31 1.12 7.2 
S13 A2 2.85 2.48 1.00 7.2 
S14 A2 2.85 2.61 1.00 7.2 
S21 A1 2.14 0.92 1.12 7.2 
S22 A1 2.14 1.15 1.12 7.2 

 Background 0.47 0.47 1.00 5.5 

 
The BPN in Figure 6 is applied for the example application. The earthquakes are classified into six 
states according to their magnitudes, 4.75≤ Mw <5.25, 5.25≤ Mw <5.75, 5.75≤ Mw <6.25, 6.25≤ 
Mw <6.75, 6.75≤ Mw <7.25, 7.25≤ Mw <7.75, and their representative values as Mw=5, Mw=5.5, 
Mw=6, Mw=6.5, Mw=7, Mw=7.5. The magnitude range 7.25≤ Mw <7.75 is assumed to represent 
the characteristic earthquakes. The occurrence of events belonging to the first five states is 
modelled as Poisson events, while the occurrence of characteristic earthquakes classified into the 
last state are modelled by a non-Poisson renewal model. The probability distributions of the 
magnitudes are calculated for each year as described in the preceding section. The earthquake 
distance node is discretized into five states; R=10km, R=30km, R=50km, R=70km, R=90km. 
Simple geometrical considerations as illustrated in Section 3 are used to calculate the probability 
distributions of the earthquake distance, R. The node of the standard normal distributed parameter 

PGA  is discretized into 10 equally spaced states between -3.5 and 3.5. The correlation of the 
ground motion intensity parameters PGA and SD is considered in the BPN by conditioning the 

SD
 on PGA . The correlation coefficient   is calculated using Equation 8 for 0.64T s , which 

is the fundamental period of the structures considered in the accompanying paper (Bayraktarli and 
Faber 2009) where the result of these analyses are used. SD  is a conditional normal distribution 
with a mean of PGA   and a standard deviation of 21   and discretized also into 10 states. 
Evaluating each state in PGA from -3.5 to 3.5 with the corresponding correlation coefficient results 
in conditional probability distributions for SD that are more likely to take extremely large or small 
values than  is PGA (because of the non-zero mean of the conditional distributions).The range of 
values for the equally spaced 10 discrete states for the node SD  is hence taken from -5 to 5.  
 
For each of the nine segments in the zonation model and each of the 50 years a BPN as given in 
Figure 5 is constructed. The probability tables of the five nodes other than the magnitude node are 
constructed with the specification of the segments. For the magnitude node the probability tables 
are calculated for each year according to the Equations 13-14 (see Figure 9). Thus 450 BPN’s are 
constructed, which yield a marginal distribution for PGA and SD for each segment and each year 
through evaluation of the corresponding BPN. In Figure 13 and Figure 14 sample results for each 
segment for the years 2018, 2038 and 2058 are given. The distributions of PGA and SD for each 
segment are also given for the case, when the occurrence of all the magnitudes is modelled as 
Poisson events. As the distribution of PGA and SD are calculated with the condition that at least 
one earthquake larger than Mw=5 will occur, the final results when using the output for further 
analyses have to be multiplied by the rate of exceeding Mw=5.  



16 

 

 
Figure 13. For each seismic source the mean occurrence rates using the BPT model for the characteristic 
earthquakes (first block), discrete probabilities of the SD evaluated using the BPN in Figure 5 assuming a 

Poisson process for all magnitudes (second block), assuming a more generalized renewal model for the 
characteristic earthquake, results given for T=10 years (third block), for T=30 years (fourth block) and for 

T=50 years (fifth block). 
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Figure 14. For each seismic source the mean occurrence rates using the BPT model for the characteristic 

earthquakes (first block), discrete probabilities of the PGA evaluated using the BPN in Figure 5 assuming a 
Poisson process for all magnitudes (second block), assuming a more generalized renewal model for the 

characteristic earthquake, results given for T=10 years (third block), for T=30 years (fourth block) and for 
T=50 years (fifth block). 
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8. Conclusions 
 
An alternative calculation and representation scheme for the standard Probabilistic Seismic Hazard 
Analysis (PSHA) using Bayesian Probabilistic Networks (BPN) is presented. BPN’s allow for 
easy calculation of the marginal probability distribution of any parameter within the model as well 
as the calculation of the joint probability distribution for a subset or all of the parameters. The 
BPN is easily extended to compute joint probability distributions for multiple ground motion 
parameters—a feature not easily implemented in standard PSHA. Backward calculation, as 
implemented using deaggregation in standard PSHA, can also easily be performed using BPN’s. 
One critical issue in constructing BPN’s is the discretisation of the parameters within the model. 
The sensitivity of the results on the discretisation scheme is discussed in the accompanying paper 
of Bayraktarli and Faber (2008), as here the general application of the methodology and the input 
for the risk study is calculated. 
 
Incorporation of model choice uncertainties and time-dependant seismic hazard into the BPN 
model for seismic hazard are also discussed. Finally, the uncertainty treatment in earthquake 
modeling using BPN is illustrated on the region Adapazari, which is located close to the western 
part of the North Anatolian Fault in Turkey. Discrete probabilities for spectral displacement and 
peak ground acceleration are calculated for Adapazari using BPN’s. These results will be used in 
the accompanying paper in this special edition, where several aspects regarding seismic risk are 
discussed (Bayraktarli and Faber 2008). 
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