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Abstract

This paper presents a novel method for prioritising bridge retrofits within a regional road
network subject to uncertain seismic hazard, using a technique that accounts for network
performance while avoiding the combinatoric computational costs of exhaustive searches.
Using global variance-based sensitivity analysis, a probabilistic ranking of bridges is de-
termined according to how much their retrofit statuses influence the expected cost of the
road network disruption. Bridges’ total-order sensitivity (Sobol’) indices are estimated with
respect to the expected cost using the hybrid-point Monte Carlo approximation method.
A bridge’s total-order Sobol’ index measures how much its retrofit status influences the
variance of the expected cost of the road network performance and accounts for the effect of
its interactions with other bridges’ retrofit states. For 71 highway bridges in San Francisco,
a retrofit strategy based on bridges’ total-order Sobol’ indices outperforms other heuristic
strategies. The proposed method remains computationally tractable while accounting for
the probabilistic nature of the seismic hazard, the uniqueness of individual bridges, network
effects, and decision-makers’ priorities. Because this method leverages existing risk assess-
ment tools and models without imposing further assumptions, it should be extensible to
other types of networks under different types of hazards and to other decision variables.

Keywords: transportation networks, sensitivity analysis, risk management, retrofitting,
earthquake engineering, decision making

1 Introduction

This paper presents a novel method for prioritising bridge retrofits within a regional road
network subject to uncertain seismic hazard, using a technique that accounts for network
effects and disruptions while avoiding the combinatoric computational costs of exhaustive
searches. This method uses global variance-based sensitivity analysis (SA) to compute a
probabilistic ranking of bridges according to how much their retrofit status influences the
decision variable of interest. The proposed method is demonstrated on a network of B = 71
unique bridges in the San Francisco Bay Area for two decision variables of interest: (1) the
expected cost of the road network performance (2) the ratio of the cost of bridge seismic
retrofits to the expected cost of the road network performance. The performance of the
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proposed method is compared to that of other heuristic retrofit prioritisation strategies.

The key contribution of this research is in providing a flexible decision-support tool with
which to manage risks to complex, real-world networks. The proposed SA-based retrofit
prioritisation method builds upon existing event-based probabilistic hazard frameworks that
include a set of potential seismic scenarios, described by magnitudes and occurrence rates
established using seismic risk assessment procedures. This method leverages existing tools
and models without imposing further assumptions – it should therefore be extensible to
other types of networks under different types of hazards and with consideration given to
different decision-makers’ priorities.

This paper is organised as follows: Section 2 reviews pre-earthquake bridge seismic
retrofit prioritisation strategies, Section 3 introduces the proposed bridge retrofit prioritisa-
tion method, Section 4 presents an example application to illustrate the proposed method
and compare its performance with that of other heuristic retrofit strategies, Section 5 pro-
vides further discussion of how to implement the proposed method, and Section 6 gives
conclusions.

2 Background

Road networks are lifelines and play an important role in everyday life as well as in response
and community recovery after an earthquake, as they enable repairs to other lifelines (Fran-
gopol & Bocchini, 2012). Bridges are often the most fragile components of road networks
subject to seismic hazard, and bridge damage due to earthquakes can be costly (e.g., Gor-
don et al., 1998). Retrofitting is an effective method of mitigating the risk of bridge damage
due to earthquakes (e.g., Giovinazzi et al., 2011). Deciding which bridges within a large
road network to retrofit to meet a particular system performance objective remains a chal-
lenging problem, due to the size and complexity of the road network, the large number of
possible retrofit combinations, and the number of earthquake rupture scenarios that must
be considered to describe the regional seismic hazard (Gomez & Baker, 2019).

Approaches to pre-earthquake bridge seismic retrofit prioritisation can be broadly cate-
gorised as heuristic or optimization-based. Heuristic approaches prioritise bridges for retrofit
according to an importance measure. Characteristic-based, conditional, reliability-based,
and network topology-based importance measures constitute four classes of commonly used
importance measures. Characteristic-based importance measures are the least computa-
tionally expensive, as they rely only on information about an individual bridge’s particular
characteristics, such as the average number of vehicles that pass over it in a day (e.g.,
Buckle et al., 2006; Miller, 2014). More sophisticated characteristic-based importance mea-
sures like the indices method proposed by Buckle et al. (2006) combine multiple criteria,
including bridges’ structural characteristics, socioeconomic importance, and site seismic
characteristics (Buckle et al., 2006; Sims, 2000). Buckle et al. (2006) also proposed the
expected damage method, which involves assessing the severity of the expected damage of
each bridge in the road network for a single earthquake, and the seismic risk assessment
method, which involves estimating the effect on system performance of bridge damage for
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a given hazard level. Rokneddin (2013) extends the expected damage method of Buckle
et al. (2006) to account for how bridge fragilities change with time by ranking bridges using
time-dependent fragility analysis. These prioritisation methods do not take into account
the topology or performance of the road network and assess bridges independently of one
another.

Conditional importance measures quantify the probability that a system component
has failed given that the system as a whole has failed, and are generally applicable to in-
frastructure network components (Rokneddin, 2013; Song & Kiureghian, 2005). They allow
the analyst to include some measure of network performance when assessing the importance
of individual components in the network. Basic conditional importance measures include
the risk achievement worth (RAW), risk reduction worth (RRW), and boundary probability
(BP), each of which estimates the sensitivity of a system’s failure probability to the states
of its constituent components – when a component is damaged (RAW), when a compo-
nent is invulnerable (RRW), and when a component is upgraded (BP) (Dutuit & Rauzy,
2015; Song & Kiureghian, 2005). Barker et al. (2013) propose two variants of the RAW
and RRW that incorporate a measure of network resilience. RAW, RRW, and BP do not
account for the vulnerability of the network components to damage, nor any dependencies
that might exist between them, and are computed in a deterministic setting, thus neglect-
ing key features of an infrastructure network (Borgonovo & Plischke, 2016; Frangopol &
Bocchini, 2012; Miller, 2014; Song & Kiureghian, 2005). Because they require estimation
of both system and component failure probabilities, conditional importance measures may
be expensive to compute compared to other importance measures (Rokneddin, 2013; Song
& Kiureghian, 2005). Miller (2014) proposes a composite importance measure to classify
bridges for preliminary retrofit screening according to how frequently they appear in dam-
age maps that result in high losses in network performance. The composite importance
measure is probabilistic and can capture non-linearities in the road network performance
that result from simultaneous bridge failures .

Moghtaderi-Zadeh and Kiureghian (1983) develop a geometric method for efficiently
identifying “critical” components (whether nodes or edges) of large lifeline networks exposed
to seismic hazard. Small changes in the strength of these critical components produce signif-
icant changes to the network’s reliability (Moghtaderi-Zadeh & Kiureghian, 1983). M. Liu
and Frangopol (2005) formulate the reliability importance factor of a bridge in a road net-
work as the ratio of the change in reliability of the road network when a bridge’s reliability
changes to that of the change in the reliability of the individual bridge. Their formulation
is intended to prioritise bridges for maintenance rather than retrofit and does not take into
account seismic hazard (M. Liu & Frangopol, 2005). The random forests importance mea-
sure proposed by Rokneddin (2013) accounts for bridges’ vulnerability and their roles in
the larger road network and results in a probabilistic ranking, but does not account for the
performance of the road network in terms of congestion. Another approach to quantify the
importance of different bridges in a road network is to adapt metrics from classic network
analysis, such as bridges’ betweenness centrality (e.g., Rokneddin et al., 2013). Rokneddin
(2013) also proposes BridgeRank, which combines a bridge’s topological importance with
its fragility to determine its importance within the road network. BridgeRank does not
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account for network performance or multiple earthquake scenarios, though it does consider
the network topology (Rokneddin, 2013).

The computational tractability of importance measures for large infrastructure networks
comes at the expense of other desirable characteristics, among them that an importance
measure should account for the likelihood of bridge damage in different scenarios, the per-
formance of the road network, and the effects of multiple bridge failures. Most of the
importance measures discussed above sacrifice at least one of these qualities. Furthermore,
most importance measures account only for the effects of bridge damage and neglect to
model the effects of bridge retrofits; none incorporate budgetary constraints.

Optimisation-based approaches select a subset of bridges within a road network to
retrofit such that a user-defined objective is met and guarantee a solution with some degree
of optimality. Two-stage stochastic programs are popular in infrastructure risk manage-
ment literature (Grass & Fischer, 2016) and allow for simultaneous consideration of pre-
and post-earthquake decisions, i.e., retrofit and repair, as well as budgetary constraints
(Barbarasoglu & Arda, 2004; Fan et al., 2010; Gomez & Baker, 2019; C. Liu et al., 2009;
Miller-Hooks et al., 2012; Peeta et al., 2010). Optimisation-based approaches also offer flex-
ibility in terms of decision-makers’ priorities: objective functions include measures of road
network sustainability (Dong et al., 2014), reliability (Zhang & Wang, 2016), resilience
(Miller-Hooks et al., 2012), maximum network flow (Chang et al., 2012), and aggregate
retrofit and repair costs (Gomez & Baker, 2019). Optimisation-based approaches have been
demonstrated on smaller systems, but application to large networks remains challenging.
Most have been applied to networks with fewer than 20 bridges (e.g., Dong et al., 2014;
Fan et al., 2010; Peeta et al., 2010), with some notable exceptions: Chang et al. (2012)
consider 616 bridges of the same structural type, and Gomez and Baker (2019) consider 65
unique bridges. Common simplifications include considering one earthquake scenario rather
than conducting a probabilistic analysis (e.g., Chang et al., 2012; Miller-Hooks et al., 2012;
Zhang & Wang, 2016), modelling bridges as having identical structural characteristics (e.g.,
Chang et al., 2012), assuming that retrofitted bridges cannot be damaged (e.g., C. Liu et al.,
2009), or assuming that bridges fail independently of one another (e.g., Peeta et al., 2010).

3 Methods

3.1 Global variance-based sensitivity analysis

Saltelli et al. (2004) define sensitivity analysis as “the study of how the uncertainty in the
output of a model . . . can be apportioned to different sources of uncertainty in the model
input”. Local (or deterministic) SA is performed around a particular point of interest in
the model input space, in contrast to global (or probabilistic) SA, which considers the
entire model input space (Borgonovo & Plischke, 2016; Saltelli et al., 2004). A global
variance-based SA aims to attribute the variability in a scalar output quantity of interest
q to variability in the nB input quantities f = [f1, f2, ...fnB ] given some function (not
necessarily expressible in closed form) relating the two, g(f) = q. Equation (1) gives the
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basic form of a global SA problem.

f → g(f)→ q (1)

Sensitivity indices quantify the portion of the variability of q associated with an input
fb, b ∈ {1, . . . , nB}. Computing the sensitivity indices of a set of inputs requires treating
each input as a random variable by assigning it a distribution. The portion of the variance
of q that can be attributed to an input fb is bounded by the first- and total-order sensitivity
indices of fb. The first-order sensitivity index, given in Equation (2), quantifies how much
of the variance in q can be attributed solely to variance in fb. In Equation (2), {b} denotes
a set containing only the input variable indexed by b.

S2
b =

V [E[q|f{b}]]
V [q]

(2)

A second-order sensitivity index quantifies how much of the variance in q can be at-
tributed to variance in fb and a second input, denoted fc, including interactions between
those two variables. An interaction is that part of the response of the output q to the values
of fb and fc “that cannot be expressed as a superposition of effects separately due to” fb
and fc (Saltelli et al., 2004). The total-order sensitivity index of fb, given in Equation (3),
is the sum of the first- and all higher-order sensitivity indices of fb. It quantifies how much
of the variance in the output quantity q can be attributed to variance in the input quantity
fb and its interactions with all other input variables, denoted by the set {b}.

S
2
b =

E(V [q|f {b}])
V [q]

(3)

Both the first and total-order index of fb take values in [0, 1]. S
2
b = 0 indicates that the

input fb is non-influential – i.e., variability in its value does not contribute to variability in
the output. It can therefore be fixed to any value within its distribution without impacting
the output variance (Saltelli et al., 2008). Larger indices indicate that the associated inputs
are more influential with respect to the output.

3.2 Estimation of total-order Sobol’ indices

The total-order sensitivity index in Equation (3) is expensive to compute exactly (Saltelli
et al., 2008). Sobol (1993) developed an estimator for the total-order sensitivity index by
using a hybrid-point Monte Carlo approximation approach, summarised for a set of input
variables and function g(f) in Algorithm 1. This estimator is referred to as the total-order
Sobol’ index.

Equation (4) gives the estimate of the unnormalised total-order Sobol’ index for an
input variable fb, where fi,b′ : f ′

i,b denotes the hybrid point, constructed by interleaving
elements of the vectors fi,b′ and f ′

i,b according to to their subscripted index sets: {i, b′}
denotes the realisations of all input variables except that indexed by b in the i-th sample of
f and {i, b} denotes the realisation of the input variable indexed by b in the i-th sample of
f ′.
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Algorithm 1 Computing normalised estimated total-order Sobol’ indices for nB input
variables.

procedure ComputeTotalSobolIndices(nB)
Assign each input variable fb an appropriate distribution
Sample N vectors, denoted fi, of size nB by sampling each input variable fb indepen-

dently
Sample N vectors, denoted f ′

i , of size nB by sampling each input variable fb indepen-
dently

for b = 1, ..., nB do

τ̂
2
b ← 0

for i = 1, ..., N do

τ̂
2
b+ = (g(fi)− g(fi,b′ : f ′

i,b))
2

τ̂
2
b ←

τ̂
2
b

2N

Ŝ
2

b ←
τ̂
2
b
σ̂2 . This is the normalised total-order Sobol’ index of input variable fb.

return Ŝ
2

. This is a vector of nB elements in which the bth element is Ŝ
2

b .

τ̂
2
b =

1

2N

N∑
i=1

(g(fi)− g(fi,b′ : f ′
i,b))

2 (4)

Equation (5) gives the estimate of the normalised total-order Sobol’ index for an input
variable fb, obtained by dividing the unnormalised estimate by the sample variance σ̂2, as
given in Equation (6). Equation (7) computes the sample mean, needed in Equation (6).

Ŝ
2

b =
τ̂
2
b

σ̂2
(5)

σ̂2 =
1

N − 1

N∑
i=1

(g(fi)− µ̂)2 (6)

µ̂ =
1

N

N∑
i=1

g(fi) (7)

3.3 Bridge retrofit prioritization as a sensitivity analysis problem

Given a set of nB bridges and a limited number of retrofits R < nB to allocate among
them, the objective is to retrofit the bridges whose improved performance results in the
greatest improvement in the performance of the road network. This requires modeling
both bridge seismic retrofit and road network performance, detailed in this section, and
formulating the SA problem. The proposed method is agnostic to the particular measure of
road network performance used, which should reflect the priorities of the analyst using the
proposed method to inform a retrofit prioritisation policy. In this paper, the road network
performance is measured by a cost C.
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3.3.1 Ground-motion and damage maps

To characterise the regional seismic hazard to which the road network is subject, nS earth-
quake scenarios are generated from a seismic source model that specifies the rates at which
earthquakes of particular magnitudes, locations, and faulting types occur. For each earth-
quake scenario j, an empirical ground-motion prediction equation (GMPE) is used to model
the ground-motion intensity at each location of interest b. A GMPE predicts the mean of
the log ground-motion intensity (lnY ) as well as the ground-motion intensity within- and
between-event residual standard deviations. A typical GMPE is function of many inputs,
including the moment magnitude of the earthquake scenario Mj , the closest horizontal dis-
tance from location b to the surface projection of the fault plane Rbj , and the average shear
wave velocity down to 30 meters at the bth location Vs30,b. For each of the nS earthquake
scenarios, m ground-motion intensity maps can be sampled by sampling m realisations of
the spatially-correlated ground-motion intensity residual terms (see, e.g., Han and David-
son, 2012 for a survey of sampling methods). The set of nS ×m ground-motion intensity
maps is indexed using n (i.e., n = 1, . . . , nS ×m). Given residuals, the total log ground-
motion intensity at a bridge b in a particular scenario n can be computed per Equation
(8),

lnYbn = lnY (Mj , Rbn, Vs30,b, . . . ) + σbnεbn + τnηn (8)

where σbn is the within-event residual standard deviation, εbn is the normalised within-
event residual in lnY , τn is the between-event residual standard deviation, ηn is the nor-
malised between-event residual in lnY , and the other parameters are as defined above.
Both εbn and ηn are standard normal random variables. εbn represents location-to-location
variability, and its vector can be modelled using a spatially-correlated multivariate normal
distribution. ηn represents between-event variability, and its vector can be modelled using
a standard univariate normal distribution. The result of this procedure is a set of nS ×m
ground-motion intensity maps. The annual rate of occurrence for the nth ground-motion
intensity map is the original rate of occurrence of the associated earthquake scenario nS ,
divided by m, since m ground-motion intensity maps are simulated per earthquake scenario.

Given a ground-motion intensity map, nD damage maps are sampled. A damage map
is a vector of nB binary variables, each indicating whether a particular bridge b is damaged.
The probability that a bridge experiences at least some level of damage given a particular
ground-motion intensity can be quantified using the bridge’s fragility function, as given in
Equation (9),

P (DSb ≥ ds|Yb = y) = Φ

(
ln y

fb

βb

)
(9)

where Yb denotes the ground-motion intensity at site b in ground-motion intensity map
n, Φ is the standard normal cumulative distribution function, and fb and βb are the mean
and standard deviation, respectively, of the lnYb value required to cause the damage state of
interest ds to occur or be exceeded for the bth bridge (Miller, 2014). In this work, values of
βb are constant, in line with the recommendations of Buckle (1994). Bridge damage results
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in the partial or total closure of the roads carried by the damaged bridge. Further details
of modeling bridge damage are given in Section 4.3.

3.3.2 Bridge seismic retrofit

The seismic retrofit of a bridge b ∈ {1, . . . , nB} is modelled as an increase in the median of
the fragility function, fb, as shown in Figure 1. The effect of a retrofit is quantified by a
scaling factor, ωb ≥ 1, by which fb is multiplied (as devised in e.g., Kim and Shinozuka, 2004;
Padgett and DesRoches, 2009 and used in e.g., Dong et al., 2014). In Figure 1, ωb = 1.25,
shifting the fragility curve to the right and reducing the probability of the bridge sustaining
at least damage state ds at every level of ground-motion intensity. The magnitude of ωb
depends on the bridge characteristics and intervention and can be determined from the
literature.

Figure 1: The fragility functions of a bridge with and without seismic retrofit, modelled
as an increase in the median of the fragility function, fb, with βb = 0.6 before and after
retrofit.

The seismic retrofit of a bridge b could be modelled more generally as a change in its
state as defined by both the median and dispersion of its fragility curve, (fb, βb), without
increasing the complexity of Algorithm 1. Padgett and DesRoches (2009) note, “Shifts in
the median value are often indications of the most notable changes in vulnerability.” An
analyst implementing the proposed method should consider whether modeling changes in
dispersion as a result of retrofit is appropriate for their particular use case.
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3.3.3 Costs of road network performance

Disruptions to a road network can result in direct and indirect costs. Direct costs are those
associated with restoring damaged road network components to their original states (Dong
et al., 2014; Hackl et al., 2018). In addition to repairing damage from ground-shaking,
restoration may be necessary to rehabilitate aging bridges or to repair damage due to traf-
fic accidents, and including these costs is important when performing life-cycle analyses or
coupling the proposed method with life-cycle costs (Decò & Frangopol, 2013). Restoring
all network components to full functionality takes time t, during which the network will
experience some level of disruption relative to its undamaged state (e.g., Kiremidjian et al.,
2007). These ongoing disruptions can result in various indirect costs, including travel delays
(due to congestion or rerouting) relative to the undamaged road network and connectivity
losses, which occur when destinations that were reachable on the undamaged network be-
come unreachable on the network with damaged components (Hackl et al., 2018). Other
indirect costs include those associated with operating the road network, casualties, and
environmental impacts such as carbon dioxide emissions and energy waste (Decò & Fran-
gopol, 2013; Dong et al., 2014). Whichever sources of indirect cost considered, translating
these network-level impacts of bridge damage to monetary units allows the consideration
of multiple modes of loss at once. For each of the nS ×m ground-motion intensity maps
considered, nD damage maps are sampled, over which the average cost of the road network
performance is computed for that particular ground-motion intensity map. The expected
cost of the road network performance, E[C], can then be computed as the weighted average
of the average cost associated with each ground-motion intensity map. The example of
Section 4 includes the details of implementing a simple cost model; the proposed method is
agnostic to the particular cost model used.

3.3.4 Sensitivity analysis problem formulation

The bridge retrofit problem is formulated as the SA problem in Equation (10),

f → Ψ̂(f)→ ES [C(f)] (10)

where f ∈ RnB is a vector in which each element is fb, the median of the fragility
function of bridge b ∈ {1, . . . , nB} that is associated with the damage state of interest,
and Ψ̂(f) is a function that approximates ES [C(f)], the expected cost of the road network
performance given bridge fragilities f and a set of ground-motion intensity maps, denoted
S, as in Equation (11),

Ψ̂(fi) =

nS∑
j=1

wj
1

nD

nD∑
k=1

C(Djk(fi)) (11)

where fi is the i-th sample (vector) of bridge fragility function parameters, nS is the
number of ground-motion intensity maps in S (i.e., m = 1 ground-motion intensity map
per earthquake scenario), wj is the annual probability (or weight) of the ground-motion
intensity map j, nD is the number of damage maps per ground-motion intensity map, Djk

is the k-th realisation of the damage map sampled from ground-motion intensity map j,
and C() is the cost model. The cost with no bridge damage is 0, and therefore not included
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in Equation (11). In this formulation, the total-order Sobol’ index τ̂
2
b of a bridge’s fragility

function parameter fb quantifies how much its variance contributes to the variance in the ex-
pected total cost of the road network’s performance. The larger a bridge’s total-order Sobol’
index, the more influence its fragility has on the expected total cost of the road network’s
performance. To identify the bridges whose retrofit results in the greatest improvement in

the road network’s performance, the total-order Sobol’ index τ̂
2
b of every bridge is estimated.

As described in Section 3.1, τ̂
2
b includes the interactions, of all orders, of the bridge’s

fragility function parameter with those of all other bridges in the group of bridges under
study. The inclusion of these interactions between bridges’ fragilities preserves the net-
worked nature of this problem, i.e., that the bridges are part of a larger road network whose
performance depends non-linearly and non-additively on their fragilities.

Using N samples of the fragility function parameter vector f , the total-order Sobol’ in-

dex τ̂
2
b of each bridge b ∈ {1, . . . , nB} is estimated using Equation (4), where i ∈ {1, . . . , N}

indexes the sample of f and the generic function g() is replaced with our approximation of
the expected cost, Ψ̂() (Sobol, 1993). To facilitate the comparison of bridges’ total-order

Sobol’ indices, their normalised values, Ŝ
2

b , are reported using Equations (5) through (7).
There are three prerequisites for setting up the SA problem in Equation (10) such that
Sobol’ indices can be computed.

1. The input variables fb are independent.

2. The distribution of each input variable fb is known (i.e., can be sampled from).

3. The output quantity of interest ES [C(f)] is a deterministic function of the input f .

With respect to Prerequisite 1, bridge fragilities are assumed to be independent of one
another. Because of Prerequisite 1, no retrofit budget can be imposed as a constraint when
computing Sobol’ indices – doing so would make bridges’ fragility function parameters de-
pendent. With respect to Prerequisite 2, the fragility function parameter fb of each bridge
is modelled as a binomial random variable with equal probabilities of being unretrofitted
and retrofitted. With respect to Prerequisite 3, given a fixed set of ground-motion intensity
maps and a fixed seed for damage simulation, ES [C(f)] is deterministic.

Once the total-order Sobol’ indices of a set of nB bridges have been estimated following
Algorithm 1, with the function Ψ̂(f) replacing g(f), the bridges are ranked in decreasing
order of importance. This SA will be valid for the given set of ground-motion intensity
maps; Section 4 will involve testing whether the resulting ranking is stable over other sets
of ground-motion intensity maps.

4 Illustrative example

Each step in the proposed method is demonstrated on nB = 71 state-owned highway bridges
in San Francisco. Results are presented for the expected total cost of the road network
performance (E[C]), and a strategy for incorporating retrofit costs is demonstrated. The
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particular models used and assumptions made in this example are not necessary to apply
the proposed method; an analyst implementing the proposed method should select models
and make assumptions appropriate for their particular use case.

4.1 Ground motion and damage maps

A set of 1992 ground-motion intensity maps is generated using the OpenSHA Event Set
Calculator. As described in Section 3.3.1, each map comprises spatially correlated ground-
motion intensities at all nB = 71 bridge sites of interest and has an associated rupture
scenario and annual occurrence rate (Miller, 2014). The ground-motion intensity measure
for these maps is the 5%-damped pseudo absolute spectral acceleration (Sa) at a period of
1 second, the required input to the bridge fragility functions provided by Caltrans (Miller,
2014). Settings for the OpenSHA Event Set calculator were the Second Uniform California
Earthquake Rupture Forecast (UCERF2) as the seismic source model, the Boore and Atk-
ison ground-motion prediction equation (Boore & Atkinson, 2008), and Wald and Allen’s
topographic slope model for the the shear wave velocity, Vs30 (Miller, 2014).

To reduce computational expense, a subset of 30 ground-motion intensity maps, de-
noted S1, is initially selected from the set of 1992 ground-motion intensity maps using an
optimisation method that minimises the difference between the annual exceedance curves
of S1 and the full set of maps (Miller & Baker, 2013). The total-order Sobol’ indices of
each bridge in the set of interest are estimated using S1 according to Algorithm 1. Another
subset of 45 ground-motion intensity maps S2 is then selected from the same portfolio of
ground-motion maps using the same optimisation method and settings used to produce S1.
S2 contains 19 maps also included in S1, though they are weighted differently (i.e., have
different annual occurrence rates wj) in each set. S2 is used to test (1) the performance of
various bridge retrofit selection strategies and (2) whether bridge Sobol’ indices computed
on a smaller set of scenarios (S1) result in good performance on a larger set of scenarios.
Both S1 and S2 produce the same ground-motion hazard at selected locations and the same
distribution of numbers of damaged bridges – within a user-defined tolerance – as would
the full set of maps, and are therefore hazard-consistent (Miller & Baker, 2013).

In this example, fb is the median of the fragility function associated with the extensive
damage state of bridge b; values of fb were provided by Caltrans (Miller, 2014). Extensive
bridge damage necessitates complete closure of the carried road and any associated under-
passes, which are modelled as modifications of edge properties in the graph of the road
network as detailed in Section 4.3.2. For this example, bridges not in the set of interest are
considered invulnerable, an assumption not necessary to implement the proposed method.

4.2 Bridge seismic retrofit

The parameter ω is chosen according to each bridge’s structural class, taking values ranging
from ω = 1.17 to ω = 1.33 from Padgett and DesRoches (2009). While these values
are associated with particular structural interventions (such as installing steel restrainer
cables or column jackets), here they are taken as illustrative values only, for the purpose of
demonstrating the proposed method.
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4.3 Cost of road network performance

As shown in Equation (12), the cost of road network performance C is modelled as a
function of Cdirect, the costs associated with repairing damaged bridges, Cindirect, the costs
associated with delays and unsatisfied travel demand, and t, the time period over which
damage and the resulting drop in network performance persist (Hackl et al., 2018). The
specification of this model’s parameters is described here for a single damage map. The
traffic and cost model used in this example is relatively simple. More sophisticated models
might include variable demand on the road network after an earthquake (e.g., Feng et al.,
2020) or more detailed modelling of road network restoration after an earthquake.

C = Cdirect + t× Cindirect (12)

4.3.1 Direct costs

The direct cost, Cdirect, is the sum of the repair costs of all the bridges in the road network
for a given damage map.

Cdirect =
B∑
b=1

C
(b)
direct (13)

The direct cost associated with bridge b is computed per Equation (14),

C
(b)
direct = 1

(b) ×RCR×Ab × unit replacement cost (14)

where 1
(b) is an indicator function that evaluates to 1 if bridge b is damaged and 0

otherwise, RCR is the mean repair cost ratio associated with the extensive damage state,
and Ab denotes the area of bridge b. The product of the latter two terms in Equation
(14) is the replacement cost of bridge b. In this example, the unit replacement cost of a
bridge is 293 USD per square foot, or 3153.8 USD per square meter (Recording and Coding
Guide for the Structure Inventory and Appraisal of the Nation’s Bridges, 1995). An analyst
who wished to incorporate more detailed information on the replacement costs of particular
bridges could do so by modifying the latter two terms of Equation 14).

4.3.2 Indirect costs

The indirect cost of the road network performance, Cindirect, is modelled as a function of
delays and unsatisfied travel demand for a given damage map. Aggregate travel time T
and unsatisfied demand U are estimated on both undamaged and damaged versions of the
road network using a graph of the road network, the demand on the road network, and
an iterative traffic assignment (ITA) algorithm. The San Francisco Bay Area road network
is modelled as a directed graph G = (V,E): V comprises 11, 958 vertices representing
road intersections and E comprises 33, 005 edges representing road links (Miller, 2014).
The graph also includes 34 dummy nodes representing the centroids of travel superdistricts
specified by the San Francisco Metropolitan Transportation Commission’s travel model
(Erhardt et al., 2012). The dummy nodes are used as the origins and destinations for the
ITA algorithm. Each dummy node is connected to at least one real node and one real edge
(Miller, 2014). Each edge in E has properties that determine its traversal time given a
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traffic volume according to the Bureau of Public Roads travel time function,

ta = tf

(
1 + 0.15

(
qa
cf

)4
)

(15)

where tf is the free-flow travel time, ta is the capacity-dependent travel time, cf is the
hourly capacity, and qa is the hourly flow on the edge (Bureau of Public Roads, 1964). All
bridges in the road network are associated with edges in E. To model a complete road clo-
sure due to a damaged bridge, the associated edges are modified to have an hourly capacity
cf = 0 and both free-flow and capacity-dependent travel times tf , ta =∞ to ensure no trips
use those edges.

The daily demand on the road network is defined using the Bay Area Household Travel
Survey of 2000 (International, 2000). In this example, the demand is fixed, i.e., invariant
before and after an earthquake. The edge capacities of the links in G are hourly; the daily
demand is scaled by a factor of 0.053 to get the hourly demand during the 6 am - 10 am
window (Miller, 2014; Wang et al., 2012). Using an ITA algorithm, about 580, 000 trips
are assigned to the road network between the 1156 OD pairs throughout the region. These
trips represent the demand on the road network during one hour of the 6am - 10am peak
travel window. The ITA algorithm divides the demand into four parts containing 40%,
30%, 20%, and 10% of the total trips. It assigns the first 40% of the trips to the shortest
path, in terms of the sum of the traversed edges’ free-flow travel times tf , between the
origin and destination. The shortest path is found using Djikstra’s algorithm. The link
flows qa are updated to reflect the assigned trips, and the capacity-dependent travel times
ta are updated according to Equation (15). The ITA algorithm then assigns each remaining
portion of the demand in a similar fashion; at each iteration, the edge weights considered
by Djikstra’s shortest path algorithm are ta rather than tf , reflecting congestion already on
the road network.

For a given damage map, the costs associated with delays, Cdelays, and those associated
with unsatisfied demand, Cconnectivity, are summed to get the indirect cost of the road
network performance per Equation (16) (Hackl et al., 2018).

Cindirect = Cdelays + Cconnectivity (16)

= α×∆T + γ ×∆U (17)

where α is the value of time, γ is labor productivity, ∆T is the increase in travel time, and
∆U is the increase in unsatisfied demand; both ∆T and ∆U are computed relative to the
undamaged network.

The parameters α and γ vary regionally and are estimated here for the San Francisco
Bay Area. In this example, the demand on the road network as surveyed in 2000 is used as
an input to the travel model; therefore, economic data from the year closest to 2000 is used
to compute α and γ – that year is 2007, the first year for which state-level gross regional
product information is available from the United States Bureau of Labor Statistics. For
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the San Francisco Bay Area, the median household income in 2007 was 100, 118.38 in 2020
dollars (Metropolitan Transportation Commission, 2019), resulting per Equation (18) in a
value of travel time α = 48 USD per hour of delay (Belenky, 2011).

α =
median household income, USD

2080 hours worked per year
(18)

The gross regional product of California in 2007 was 1, 955, 856 million USD in 2020
dollars while the number of labor hours in 2007 was 25, 101 million (Pabilonia et al., 2019),
resulting per Equation (19) in γ = 78 USD per hour per lost trip.

γ =
Annual gross regional product of California

Annual labor hours in California
(19)

When a commuter cannot make a trip due to damage on the road network, it is assumed
that they miss an 8-hour work-day. Commuters are assumed to have a five-day (40 hour)
work week, and all trips considered during the one hour modelled are assumed to be com-
mutes. Delays and connectivity losses for the single hour of demand assigned to the road
network are assumed to persist throughout the day.

A restoration time of t = 125 days for an extensively damaged bridge is used per Shi-
nozuka et al. (2003). The hourly indirect costs from Equation (16) are therefore multiplied
by 125 days and 24 hours per day to get Equation (20).

Cindirect = 125 days× 24
hours

day
× (Cdelays + Cconnectivity) (20)

Assuming that demand during a peak commuting window persists throughout the day,
that all trips in that window are commutes, and that the road network is not restored before
125 days almost certainly results in an over-estimate of indirect losses in this example.

4.4 Results: total-order Sobol’ indices

Using Algorithm 1, each bridge’s total-order Sobol’ index with respect to E[C] is estimated
using N = 370 samples of the fragility function parameter vector f and the smaller set of
ground-motion maps S1, with nD = 10 damage maps per ground-motion map. Table 1 lists
the normalised estimated total-order Sobol’ indices of the 10 most influential bridges, and
Figure 2 shows their locations.

4.5 Results: testing retrofit strategies

For comparison with the results of the proposed method, bridges are ranked according to
five other heuristic retrofit strategies. To get the composite ranking of a bridge, bridges are
first ranked according to their age (from oldest to youngest), fragility function parameter
fb (from least to greatest), and daily average traffic volume (from most to least busy). The
ranking of each bridge (ranging from 1 to 71) according to each of these characteristics
is then summed to get a composite score; the bridges with the smallest composite scores
are the most important. The retrofit strategy referred to as one-at-a-time (OAT ) analysis
is the only retrofit strategy besides the total-order Sobol’ index-based strategy that takes
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Ranking Ŝ
2

b , E[C]

1 0.707
2 0.087
3 0.062
4 0.027
5 0.027
6 0.026
7 0.017
8 0.007
9 0.006
10 0.004
. . . . . .
Σ 0.97

Table 1: The 10 most influential bridges with respect to the expected total cost of the road
network performance, E[C], and their normalised estimated total-order Sobol’ indices based
on N = 370 samples.

Figure 2: A map showing bridge locations and the relative magnitudes of their estimated
total-order Sobol’ indices, with respect to the expected total cost of the road network
performance (E[C]), based on N = 370 samples.

into account the performance of the road network to prioritise bridges. OAT analysis is a
classic local (deterministic) sensitivity analysis technique, often used for networks, in which
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(a) (b)

Figure 3: Reduction in the expected total cost of the road network performance, E[C], given
varying numbers of bridges retrofitted according to different prioritisation strategies. (a)
Results for R ≤ 71. (b) Results for R ≤ 10.

the performance of the network when a single component is damaged is assessed for each
component in the network (Borgonovo & Plischke, 2016). The components are then ranked
according to the reduction in network performance that occurs when they are individually
damaged.

Figure 3a shows the percent reduction in E[C] as a function of R, the number of bridges
retrofitted. Expected cost is computed using the testing set, S2, to ensure that the results
are not due to over-fitting. The performance of each retrofit strategy is bounded by the
percent reduction in E[C] when R = 0 (0%) and when R = nB (34.6%). At every value
of R, the retrofit strategy based on bridges’ total-order Sobol’ indices (henceforth referred
to as the Sobol’ strategy) produces the largest reduction in expected cost. The amount
by which the Sobol’ strategy outperforms the next best strategy is particularly striking in
Figure 3a from R = 2 to R = 50. Figure 3b shows the percent reduction in E[C] for just
R ≤ 10. The gap between the Sobol’ strategy and the next-best method is almost 5% at
R = 2 and grows to more than 10% at R = 10, at which point the 10 retrofits selected by
the Sobol’ strategy account for almost 71% of the total reduction in the expected cost of
the road network performance that can be achieved by retrofitting all bridges.

Figure 4 shows exceedance curves for the total cost of the road network performance,
C, when R = 8 bridges are retrofitted according to each of the six retrofit strategies tested.
For each strategy shown, the annual rate of exceedance, λ, of the cost (or loss) is computed
using Equation (21),

λ =

nS∑
j=1

wj
1

nD

nD∑
k=1

1(Cjk ≥ c) (21)

where nS is the number of ground-motion intensity maps in S2, wj is the annual rate
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of occurrence of the rupture associated with the ground-motion intensity map indexed by
j ∈ {1, . . . , nS}, nD is the number of damage maps sampled per ground-motion intensity
map, and 1() is an indicator function that evaluates to 1 if the cost Cjk associated with the
k-th realisation of the damage map sampled from ground-motion intensity map j exceeds
c, a cost threshold of interest, and to 0 otherwise. While the loss exceedance curve of the
Sobol’ strategy is comparable to those of the other retrofit prioritisation strategies at more
frequent and lower-cost events, it performs much better than the other strategies at costs
> 2× 109 USD, hewing closely to the curve associated with retrofitting all bridges. This
suggests that the Sobol’ strategy mitigates the more costly impacts of lower-probability
events more effectively than the other retrofit strategies.

Figure 4: The annual rate of exceedance, λ, of the total cost of the road network perfor-
mance, C, for R = 8 retrofits chosen according to six of the retrofit strategies tested.

4.6 Network effects

Figure 5 shows that the Sobol’ strategy performs better than other strategies tested in part
because it more quickly identifies network effects among bridges. A network effect occurs
when the reduction in the expected total cost that occurs when two bridges are retrofitted is
greater than the sum of the reductions that occur when each bridge is retrofitted separately
(e.g., Saltelli et al., 2004). This is expressed mathematically in Equation (22), where R
denotes the number of retrofits carried out, E[C|R = 0] denotes the expected cost of the road
network performance when no retrofits have been carried out, E[C|{r1, . . . , rR}] denotes the
expected cost of the road network performance given a particular set of retrofits {r1, . . . , rR},
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and E[C|rn] denotes the expected cost of the road network performance given a single retrofit
rn.

E[C|R = 0]− E[C|{r1, ..., rR}] >
R∑
n=1

(E[C|R = 0]− E[C|rn]) (22)

Figure 5 plots Equation (23), the difference between the left- and right-hand sides of
Equation (22) when expressed as percentages. A positive result of Equation (23) indicates
a network effect. The Sobol’ strategy achieves the maximum network effect of almost 3%
at R = 10; the retrofit strategy based on bridges’ ages is the next to attain the maximum
network effect but does so only at R = 23. Other strategies never achieve the maximum
network effect.

network effect =

(
E[C|R = 0]− E[C|{r1, ..., rR}]

E[C|R = 0]
−

R∑
n=1

(E[C|R = 0]− E[C|rn])

E[C|R = 0]

)
× 100%

(23)

Figure 5: Network effects (as given by Equation (23) of bridge retrofits carried out according
to six retrofit prioritisation strategies.
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4.7 Accounting for retrofit costs

The proposed method does not allow for an explicit constraint on the total cost of bridge
seismic retrofits as an optimisation problem might (e.g., Gomez & Baker, 2019). By chang-
ing the function whose sensitivity is being analysed, budgetary considerations can be incor-
porated into an analysis. To choose a set of retrofits that maximises the reduction in the
expected cost of the road network performance per dollar spent on retrofits, Equation (24)
can be used, where CR(f) denotes the cost of a set of retrofits described in f .

Ψ̂(f) =
E[C]

CR(f)
(24)

To implement Equation (24), it is assumed that retrofitting a bridge costs 25% as much
as repairing it. Figure 6 shows that a strategy based on total-order Sobol’ indices estimated
with respect to Equation (24) outperforms the six other strategies tested. For just 13% of
the cost of retrofitting all 71 bridges, the Sobol’ cost-ratio-based strategy achieves 87.5%
of the total reduction in the network performance cost that can be achieved by retrofitting
bridges. That the Sobol’ cost-ratio-based strategy performs so well is not surprising, since
none of the other strategies can take into account the cost of retrofits, a commonly cited
limitation of heuristic methods for retrofit prioritisation. Because the total-order Sobol’
indices with respect to Equation (24) were estimated using the same set of N = 370 sample
evaluations used to prioritise bridges with respect to E[C] in Sections 4.4 and 4.5, no
additional simulations of road network performance were required.

5 Discussion

Implementing Algorithm 1 is straightforward; standard verification problems are well doc-
umented, e.g., estimating the Sobol’ indices of the Ishigami function (Ishigami & Homma,
1990). This section discusses other practical considerations for using this method: its
computational complexity, the number of samples required, and the effect of the binomial
distribution parameter p.

5.1 Computational complexity

Evaluating Ψ̂(fi) requires sampling damage maps and simulating traffic on each damage
map. Simulating traffic is much more computationally expensive than sampling damage
maps. Therefore, knowing the number of traffic simulations required for a particular number
of bridges, nB, number of ground-motion maps, nS , number of damage maps per ground-
motion map, nD, and number of samples of f , N , is necessary to plan experiments. Equation
(25) gives the number of function evaluations nf required to compute the total-order Sobol’

indices for each bridge in a set of nB bridges for the function Ψ̂(fi) ≈ ES [C(f)] using
Algorithm 1.

nf = (N × nS × nD)(nB + 1) (25)

Though nf may seem large, the Sobol’ index method is well suited to parallelisation over
samples of f because each sample is evaluated independently. As described in Section 4, if
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Figure 6: Reduction in the expected total cost of road network performance, E[C], versus the
cost of retrofitting varying numbers of bridges according to different prioritisation strategies,
one of which is the Sobol’ index strategy based on Equation (24), which accounts for both
the road network performance and the cost of retrofits.

multiple outputs of interest are stored from each sample evaluation, the same set of samples
can be used to evaluate the sensitivities of each output.

5.2 Number of samples required

The number of samples required to estimate the Sobol’ indices of a set of bridges is not
evident a priori, in part because the criteria that define a satisfactory estimate vary by
application. If the objective of a study is to develop a probabilistic ranking of bridges to
retrofit, then one criterion might be that the ranking is a confident one, e.g., that the 95%
confidence intervals of the bridges’ sensitivity indices do not overlap. This may be difficult
to achieve in practice. If the objective of a study is to select a limited number R of bridges
to retrofit, a more achievable criterion might be that the 95% confidence intervals of the R
and R+ 1 most influential bridges should not overlap.

Finding an appropriate sample size for an application will likely prove an iterative pro-
cess and depend on available computational resources and objective, as it did in the case
study, for which 370 samples were used as the basis for the Sobol’ strategy. To investigate
the goodness of the ranking established on the basis of that sample size, in this section
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90 additional samples (an increase of about 25%) are used to estimate bridges’ total-order
Sobol’ indices and establish a “final” ranking against which rankings based on smaller sam-
ple sizes can be compared.

Figure 7 shows the convergence of the total-order Sobol’ indices (with respect to E[C])
as a function of the sample size, N , for the bridges ranked 3rd through 7th most important.
Figure 7 was produced using bootstrapping: at each value of N ≤ 460, N samples of the
fragility function parameter vector f that had been previously generated were randomly
chosen (with replacement), on the basis of which bridges’ total-order Sobol’ indices were
estimated according to Algorithm 1. At each N , the aforementioned step was repeated
100 times to estimate the mean, standard deviation, and 95% confidence interval of each
bridge’s total-order Sobol’ index. Previous evaluations of f and associated hybrid points
were used.

Figure 7: The convergence of the total-order Sobol’ indices of the bridges ranked 3th through
7th most important with respect to the expected total cost of road network performance
(E[C]) computed over S1. Whiskers indicate 95% confidence intervals.

While the relative importance of the 3rd and 7th most important bridges in Figure 7 is
clear even at N = 10, the 95% confidence intervals of the 4th, 5th, and 6th ranked bridges
overlap even at the maximum N = 460. If our objective were to select R = 4 bridges to
retrofit, this result would be less than ideal. The similarity of the three bridges’ total-order
Sobol’ indices may indicate that selecting any one of them as the fourth retrofit would have a
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similar effect on E[C] – however, that cannot be inferred from their total-order indices alone.
Let b4, b5, and b6 denote the three bridges with similar total-order Sobol’ indices as ranked
using N = 460 samples (i.e., without bootstrapping). To know which bridge would have
the greatest effect on EC as the fourth retrofit, each bridge’s fourth-order sensitivity index
with respect to the three bridges already selected for retrofit would have to be estimated.
In lieu of that inconvenient computation, these three bridges can instead be ranked in
decreasing order of their estimated first-order Sobol’ indices (per Sobol, 1993 and using
370 samples): b6, b5, b4. Because b6 has a larger first-order Sobol’ index than the other
two bridges but a similar total-order index, retrofitting b6 fourth would be expected to
reduce E[C] more than retrofitting b4 or b5. This result is evident in Figure 8, which shows
the performance of Sobol’ index-based retrofit strategies for R ≤ 10 based on sample sizes
of N = 100, 150, 200, 300, 400, and 460. At R = 4, the best-performing strategy chooses
b6, beating the other strategies by about 1.5%. At R = 5, the best-performing strategies
choose b6, beating the other strategy by about 2.25%. Whether estimating bridges’ first-
order Sobol’ indices is warranted depends on the objective and the results of the total-order
analysis – since the method developed by Sobol’ for first-order index estimation requires
evaluating different hybrid points than those used to estimate total-order Sobol’ indices,
the additional computational expense may be considerable (Sobol, 1993).

Figure 8: Reduction in E[C] as a function of the number of retrofits, R, with retrofits chosen
using bridges’ total-order Sobol’ indices computed using different sample sizes, N .

Figures 9a and 9b show the convergence of the rankings of different subsets of the
B = 71 bridges of interest with increasing N . The final rankings in both Figure 9a and 9b
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are based on bridges’ total-order Sobol’ indices with respect to E[C] and estimated using
N = 460 samples of f . The subsets in Figure 9a are overlapping, while those in Figure 9b
are disjoint. The y-axis of both figures plots the fraction of bridges in a particular subset
whose rankings at a sample size N < 460 match their rankings using the full set of N = 460
samples; a value of 1 indicates that the ranking of every bridge in the subset matches its
ranking using N = 460 samples.

(a) (b)

Figure 9: The convergence of sets of bridges to their ranking using N = 460 samples with
increasing sample size N . (a) Results for (overlapping) sets of the most important bridges.
(b) Results for disjoint sets of 10 bridges.

In both Figures 9a and 9b, the convergence of subsets of bridges’ rankings is noisy,
though the convergence of the overall ranking (denoted “all”) is generally increasing with
N . This noisiness stems from two related factors: (1) the difficulty of estimating small Sobol’
indices: at N = 460, the total-order Sobol’ index of the 24th most important bridge is on the
order of 10−5, while that of the 70th most important bridge is on the order of 10−10 and (2)
bridges with similarly valued total-order Sobol’ indices (as in Figure 7) switching places in
the rankings as N changes. With regard to (1), techniques exist for better estimating small
Sobol’ indices, using estimators other than the one described in Section 3 (Owen, 2013,
e.g., ). For typical prioritisation applications, these may be unnecessary, since such small
normalised total-order Sobol’ indices indicate the retrofits are non-influential. With regard
to (2), attempting to establish a confident ranking of bridges with similarly valued estimated
total-order Sobol’ indices may be worth the effort and additional computational expense if
those bridges are not non-influential. In that case, using bootstrapping is an inexpensive
way to initially investigate the accuracy of the estimated indices. Certain situations may call
for the estimation of first-order Sobol’ indices. However, if the magnitudes of the similarly-
valued normalised total-order Sobol’ indices are very small, further investigation will not
improve the results of a particular retrofit prioritisation. Despite the apparent instability
of the rankings shown in Figures 9a and 9b, the performance of bridge retrofit strategies
based on different sample sizes shows notable discrepancies only at R = 4 and R = 5, as
shown in Figure 8, and is identical at R > 10 (not shown).
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5.3 Effect of binomial distribution parameter p

In Sections 3 and 4, each bridge’s fragility function parameter fb is modelled as a binomial
random variable with equally probable (p = 0.5) outcomes of taking on unretrofitted and
retrofitted values. The choice of p = 0.5 is not obvious. Therefore, three sets of N =
190 samples of the fragility vector f are constructed using binomial distributions with
retrofit probabilities p = 0.2, p = 0.5, and p = 0.8. Bridges’ total-order Sobol’ indices are
then estimated using each set of samples and the three resulting retrofit strategies tested.
The three sets of indices produce nearly identical rankings, with only two small deviations
that result from the finite sample sizes used for estimation. These discrepancies may be
resolved with larger N . No one value of p consistently results in a better or worse retrofit
prioritization.

5.4 Limitations of the proposed method

The proposed method does not guarantee an optimal set of bridge retrofits, nor can it
take into account a retrofit budget, which is typically a constraint in real applications.
Though different structural interventions can be considered for different bridges, the pro-
posed method does not consider multiple levels of structural intervention for a single bridge.
The proposed method is more computationally expensive than the other heuristic strategies
tested in Section 4 because our function Ψ̂ requires traffic simulation that accounts for the
bulk (> 99%) of the total runtime. Faster traffic simulation would dramatically reduce the
computational cost of the proposed method; the actual number of samples required may be
quite modest.

6 Conclusions

This paper (1) details a global sensitivity-analysis-based method for prioritising bridge
seismic retrofits within a regional road network, (2) shows that the proposed method out-
performs extant heuristic bridge retrofit prioritisation strategies in a case study of San
Francisco, and (3) discusses practical considerations for using the proposed method for in-
frastructure management problems beyond our example.

The inputs of the SA problem are the medians of bridges’ fragility functions for a dam-
age state of interest and the output is a network performance metric of interest. Each
bridge’s fragility function median is modelled as an independent binary variable that takes
values corresponding to unretrofitted and retrofitted states. The output is the expected cost
of the road network performance over a set of ground-motion intensity maps S1, estimated
using a probabilistic seismic risk assessment framework. The sensitivity of the expected cost
to the retrofit status of each bridge is quantified by estimating bridges’ total-order Sobol’
indices using the hybrid-point Monte Carlo approximation technique developed by Sobol’.
The greater a bridge’s total-order Sobol’ index, the more important retrofitting that bridge
is to reduce the expected cost.

The proposed method is demonstrated on 71 unique bridges in the County of San

24

https://doi.org/10.1080/15732479.2021.1931892


Bhattacharjee, G., and Baker, J. W. (2023). “Using global variance-based sensitivity
analysis to prioritise bridge retrofits in a regional road network subject to seismic hazard.”
Structure and Infrastructure Engineering 19(2), 164-177. https://doi.org/10.1080/15732479.2021.1931892

Francisco, considering a travel model for the nine-county Bay Area. The performance of
a retrofit strategy based on bridges’ total-order Sobol’ indices is compared with that of
five other heuristic retrofit prioritisation strategies by computing the reductions in the ex-
pected cost of network performance that result from retrofitting bridges over a larger set
of ground-motion intensity maps, S2. The Sobol’-index-based strategy outperforms the
other strategies in part because it identifies network effects between bridges. The computa-
tional cost of the proposed method is dominated by the number of traffic model evaluations
required, which is a function of the seismic risk analysis parameters and the number of
samples of bridges’ fragility function medians. Because each input sample is evaluated in-
dependently, the proposed method is easily parallelised. For some applications, a small
number of samples may suffice.

The proposed bridge retrofit prioritisation method remains computationally tractable
while accounting for the probabilistic nature of the seismic hazard, the uniqueness of indi-
vidual bridges, the link between road network performance and individual bridges’ retrofit
statuses, and network effects in terms of bridge damage and bridge retrofit. It can also
incorporate budgetary considerations (though not constraints). Because this method lever-
ages existing risk assessment tools and models without imposing further assumptions, it
should be extensible to other types of networks under different types of hazards and with
consideration given to different decision-makers’ priorities.
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