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Abstract

Seismic instrumentation in a building is used to accurately capture its response during an
earthquake, and so should enable enhanced rapid post-earthquake predictions of the event’s
consequences for the building (among other benefits). Such instrumentation is costly, how-
ever, thus it is useful to know the extent to which varying degrees of its implementation
within a building affect the accuracy of these predictions. The purpose of this study is
to develop a methodology for quantifying the errors in post-earthquake damage and loss
consequence predictions calculated from the FEMA P-58 Seismic Performance Assessment
procedure, when different numbers of building instruments are used to capture the response
of a building in a given event. We use responses measured in instrumented buildings during
the 1994 Northridge earthquake, and obtain consequence predictions via the FEMA P-58
methodology. The density of instrumentation examined ranges from the case in which all
floors are instrumented to that in which no instrumentation is present and FEMA P-58
simplified procedures are used to predict response and corresponding consequences. We find
that errors in consequences predictions decrease as the number of building instruments is
increased and that the reduction in error is substantial as soon as more than a small number
of floors are instrumented. This is valuable information for a building owner if they wish to
use seismic instrumentation as a means of rapidly obtaining damage and loss information
for post-earthquake decision-making.

Keywords: Seimic instrumentation, FEMA P-58 methodology, Seismic damage and loss
predictions, Post-earthquake decision-making

1. Introduction

Recordings from instrumented structures have proven to be a valuable asset to the earth-
quake engineering community. They have contributed to the progression of design and
analysis procedures, including code provisions [1]. Studies of instrumented buildings have
enhanced understanding of the relationship between response and damage [e.g. 2, 3, 4, 5].
Instrumented responses can also facilitate decisions to retrofit the structural system [1, 6],
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which can lead to reduced downtime following an earthquake [7]. Building instrumentation is
considered so important that suggestions for its implementation have been made in building
codes [e.g. 8].

In this study, we quantify the benefits of building instrumentation in a different context.
We study the relationship between the level of seismic instrumentation present in a struc-
ture during a seismic event, and the accuracy of the resulting damage and loss consequence
predictions according to the FEMA P-58 Seismic Performance Assessment procedure. It
is important that these predictions are accurate as they can facilitate the post-earthquake
decision-making and planning of building owners, such as rapidly evaluating whether a build-
ing can be re-occupied [9]. It is important to quantify the level of building instrumentation
required for accurate consequence predictions, since one of the main limitations of building
instrumentation is its large capital cost, making it largely uneconomical to install sensors
on every level of a structure. Although attempts have been made to reduce these costs, for
example by using wireless technologies [10, 11, 12, 13, 14, 15].

Few previous studies have explicitly related instrumentation to the Performance-based
Earthquake Engineering (PBEE) framework, i.e. FEMA P-58, despite its potential for use
in the required validation of PBEE technologies [16, 17]. Notable exceptions include [18,
19], who addressed how PBEE methods can be modified to incorporate accelerometer data
from instrumented buildings to produce rapid estimates of repair cost, safety, and probable
locations of physical damage. A key distinction between that work and our study is the
manner in which the PBEE framework is modified to account for recorded responses; [18, 19]
used Bayesian updating with observed sensor data to change the probability distribution of
structural responses resulting from a nonlinear time-history analysis of a structural model,
while we derive the structural responses directly from the sensor data. The work of [20, 21], in
which a wavelet-based damage-sensitive feature is used with building geometric information
to predict the building damage state at a given seismic intensity level, also demonstrated
how instrumented buildings can facilitate rapid loss assessments. Another example of a
study that combined sensor information with PBEE is [22], where recorded accelerations of
a 24-story steel-frame building are used to compute story drift ratios that are then compared
with the FEMA 273-style performance levels, i.e. ‘Operational’, ‘Immediately Occupiable’,
‘Life Safety’, and ‘Collapse Prevention’ [23]. Finally, [24] proposed a set of methodologies
for automated post-earthquake damage assessment of instrumented buildings, using fragility
functions to translate the recorded responses to damage levels that could be used to provide
guidance on the threshold of motion that may necessitate inspection or evacuation of the
building. However, these damage levels are consistent with the procedures of ATC-20 [25]
rather than the performance levels associated with FEMA P-58.

1.1. PBEE Framework

The PBEE framework (FEMA P-58) combines ground motion hazard (IM - Intensity
Measure), structural response (EDP - Engineering Demand Parameter), and prediction of
component damage (DM - Damage Measure) to make a prediction of building loss (DV -
Decision Variable) under earthquake loading. Note that IM , EDP , DM , and DV can be
vectors. The methodology is probabilistic in nature, reflecting the uncertainty associated
with seismic performance prediction. It is traditionally expressed in terms of the following
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triple integral [26]:

λ(DV ) =

∫∫∫
G(DV |DM)|dG(DM |EDP )|dG(EDP |IM)| dλ(IM)| (1)

G(DV |DM) is the complementary cumulative probability distribution function of DV con-
ditioned on DM , i.e., G(DV |DM) = p(DV ≥ x1|DM = x2), while |dG(DV |DM)| =
fDV |DM(x1|x2)dx1 is the conditional probability density function times dx1. G(DM |EDP )
and G(EDP |IM) are defined similarly. λ (.) is the mean annual rate of exceedance. Note
that this is a time-based equation that considers all earthquakes and the frequencies of
occurrence of resulting IMs within a 1-year period. We will focus on scenario-based and
intensity-based assessments in this study, which deal with only one seismic event of interest.
For these assessments, the framework may be more appropriately expressed as:

p(DV ≥ x1) =

∫∫∫
G(DV |DM)|dG(DM |EDP )|dG(EDP |IM)|fIM(x4) dx4 (2)

and the exceedance probability for damage can be expressed as:

p(DM ≥ x2) =

∫∫
G(DM |EDP )|dG(EDP |IM)|fIM(x4) dx4 (3)

1.2. Seismic Instrumentation and PBEE

Let N be the number of floors (including the roof) in a structure and n the number of
floors with seismic instrumentation. Possible seismic instrumentation density in the struc-
ture can be divided into 3 categories: n = 0 (no instrumentation), 0 < n < N (partial
instrumentation), and n = N (full instrumentation).

When n = 0, neither the IMs nor the EDP s are measured for the structure in a seismic
event. Thus, there is uncertainty in all four variables of the PBEE framework. Exceedance
probabilities for damage and loss can be calculated from equations 2-3.

When 0 < n < N , there is at least ground floor instrumentation present in the structure,
which we assume eliminates uncertainty in the IMs. (Note that this could be a simplifying
assumption if there is considerable soil-structure interaction). There is still uncertainty
in the EDP s, which depends on the number of floors instrumented. Damage and loss
predictions are thus dependent on the ground motion measured (n = 1 only) and the level
of instrumentation present in the structure. Damage and loss exceedance probabilities can
be expressed as follows:

p(DM ≥ x2) =

∫
G(DM |EDP )fEDP (x3) dx3 (4)

and

p(DV ≥ x1) =

∫∫
G(DV |DM)|dG(DM |EDP )|fEDP (x3) dx3 (5)

When n = N , both the IMs and all EDP s are measured during a seismic event, elimi-
nating their uncertainty (note that this is an idealized assumption for drift-related EDP s,
since there will be error due to double integration). Damage and loss exceedance probabili-
ties can be expressed as follows:

p(DM ≥ x2) = G(DM |EDP ) (6)
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and

p(DV ≥ x1) =

∫
G(DV |DM)|dG(DM |EDP )| (7)

By reducing or eliminating uncertainty in some of the random variables in equations 2-
3, seismic instrumentation in a building should reduce the uncertainty and increase the
accuracy of consequence predictions calculated according to the FEMA P-58 methodology
for a building in a given seismic event.
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Figure 1: Graphical summary of the benchmarking procedure.
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2. Methodology

We examine a building of interest subjected to a given seismic event. The building has
N floors (including the roof), n of which have seismic instrumentation. We vary the level
of instrumentation present in the building and investigate the effect on uncertainty in the
building’s damage and loss predictions for the considered seismic event from the FEMA P-58
methodology, by benchmarking the predictions against those of the fully instrumented case
(n = N). We use the SP3 software tool [27] to run the FEMA P-58 analyses.

We assume the ground floor is always instrumented for n > 0, and the roof is always
instrumented for n > 1. We examine all possible locations of other instruments for each
level of instrumentation in this study. The optimal layouts of instrumentation suggested
by previous studies [e.g. 28, 29, 30, 31, 32, 33, 34] have not been optimized specifically for
accuracy in FEMA P-58 damage and loss predictions, so no guidance exists yet for the given
situation. Figure 1 provides a graphical summary of the benchmarking procedure. It involves
the following steps:

1. Define the IM and EDP inputs:

I. Determine the IMs (if n ≤ 1).

II. Determine the EDP s.

III. Determine uncertainty in the EDP s.

IV. Determine correlation between the EDP s.

2. Run the P-58 analysis using the IM and EDP inputs.

3. Benchmark the damage and loss predictions of interest.

These steps are described in greater detail in the following subsections.

2.1. Determine the IMs

IMs are explicitly considered for n ≤ 1, where they are used as inputs to the FEMA P-
58 simplified analysis method. For all other values of n, IMs are only implicitly accounted
for in the EDP s at the ground floor. IMs of interest for n ≤ 1 are the peak ground
acceleration (PGA) and the 5% damped spectral acceleration at the building’s fundamental
period, Sa(T ).

When n = 0, IM values are the median values obtained from a ground motion prediction
equation. The fundamental period is assumed to be the average of the periods in the two
orthogonal directions. Uncertainty in the values is included as an uncertainty in the EDP s
(βgm in Section 2.3). The selection of an appropriate ground motion prediction equation may
be site or region specific and is therefore left to each individual user of the methodology.

When n = 1, the IMs are assumed to be captured by the instruments on the ground
floor. PGA is taken to be the largest absolute value of acceleration recorded at the ground
floor in either orthogonal direction. The value of Sa(T ) is the value recorded on the same
instrument as the PGA, at the fundamental period of the building in the direction of the
instrument. No uncertainty is applied to the values, since they are directly measured.
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2.2. Determine the EDP s

The EDP s considered are story drift ratio (SDR) and peak floor acceleration (PFA).
PFA at floor i in a given orthogonal direction is defined as the maximum absolute acceler-
ation in the time series for that floor, i.e.

PFAi = max|ai(t)| (8)

where ai(t) is the acceleration at floor i for time t. SDR at story i in a given orthogonal
direction is obtained from the displacement time series for that floor and the adjacent floor,
according to the following equation:

SDRi =
max|di(t)− di+1(t)|

hsi
(9)

where di(t) is the displacement at floor i for time t and hsi is the height of story i. When
n = N (the benchmark case), PFA and SDR are obtained from the instrumented values of
ai(t) and di(t) at each floor. If the building does not contain instruments in each orthogonal
direction on all floors, we assume the true values of ai(t) and di(t) at non-instrumented floors
are those obtained using cubic spline interpolation of the data time series at instrumented
floors. Note that this may be a simplifying assumption, but the technique has been used in
previous studies to recover structural demands at non-instrumented floors [29, 35]. A cubic
spline is a third-order polynomial of the form:

f(hi) = ah3
i + bh2

i + chi + d (10)

where hi is the height of floor i relative to the ground, f(hi) is ai(t) or di(t), and a,b,c are
coefficients obtained by forcing the f(hi) values and their derivatives to be equal at each
floor when calculated from adjacent stories. We implement the simple and popular “not-a-
knot” version of spline interpolation, which requires the third derivative of the spline to be
continuous at both the second lowest and second highest instrumented floors [36].

When n ≤ 1, median EDP s are predicted from the IMs, using the FEMA P-58 simplified
analysis method [9]. Note that this method has a number of simplifying assumptions and may
not be reliable in certain cases (see Appendix C for additional details). When n > 1, EDP s
fully constrained by instrumented data time series are equivalent to the corresponding EDP s
of the benchmark case. When 1 < n < 4, we obtain ai(t) and di(t) at non-instrumented
floors using not-a-knot cubic spline interpolation of the data time series at instrumented
floors. Relevant EDP s are then derived from these values. When n ≥ 4, we have a sufficient
number of instruments available to use the jackknife re-sampling technique [37] to recover
median EDP predictions not fully constrained by instrumented data. This technique has
been used extensively in previous studies to quantify errors and uncertainties in interpolated
data [38, 39, 40, 41, 42]. For these cases, the median EDP prediction of interest (r̃) is
obtained as follows:

1. Generate n-2 jackknife samples. Each jackknife sample contains the relevant data time
series from n-1 of the available instruments, with a different set of non-boundary instru-
mented data being omitted from each sample. Data from the boundary instruments
are included in each sample to facilitate the cubic spline interpolation carried out in
the next step.
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2. For each jackknife sample, estimate ai(t) and di(t) at non-instrumented floors using
not-a-knot cubic spline interpolation of the available instrumented data time series.
Use these estimates to compute the EDP parameter of interest (ri).

3. Compute the logarithmic mean of all n-2 samples of ri, x̄ln r.

4. Compute r̃: r̃ = ex̄ln r .

2.3. Determine Uncertainty in the EDP s

When n = N , there is no uncertainty in the EDP s, since they are directly measured.
When n < N , we apply three different types of uncertainty to median EDP s: record-to-
record variability (βa), epistemic uncertainty (βu), and ground motion uncertainty (βgm).
Note that these are all log standard deviations. The uncertainties are applied to EDP s at
all floors when n ≤ 1, in line with the P-58 simplified analysis method, and EDP s not fully
constrained by instrumented data when n > 1.

When n ≤ 1, βa is equivalent to the values of record-to-record variability included in
a FEMA P-58 simplified analysis method for the building. βa may differ between PFA
and SDR, and in both orthogonal directions of the building. Values are applied directly
in line with the P-58 simplified analysis method when n ≤ 1. When 1 < n < 4, we do
not have a method of quantifying this uncertainty as we only have one set of interpolated
EDP values, so it is estimated as the average of all βa values for n ≤ 1. When n ≥ 4,
this uncertainty measure is a quantification of uncertainty in the interpolation used in the
jackknife re-sampling process. It is calculated as follows:

βa =

√∑n−2
i=1 (ln(ri)− x̄ln r)2

n− 3
(11)

where ri is the estimate of the EDP parameter of interest for the ith jackknife sample and
x̄ln r is the logarithmic mean of the n-2 jackknife samples of ri.

βu is equivalent to the P-58 simplified analysis method modeling uncertainty when n ≤ 1.
When n > 1, we include a number of different values for this measure in our analyses ranging
from 0.1 to the value applied when n ≤ 1, and leave the final selection to the user’s judgment.
Note that βu could also be applied to EDP s fully constrained by instrumented data for cases
where instruments are not believed to provide perfect measurements of EDP s, however we
do not consider such cases in this study.

βgm is only non-zero when n = 0. It is equivalent to the uncertainty in Sa(T ) computed
from the ground motion prediction equation used to obtain the median IM values.

Note that the total log standard deviation of EDP input to the P-58 analysis is an
aggregation of the different types of EDP uncertainties computed, using the sum of the
squares rule because the various contributions to uncertainty are independent:

β =
√
β 2

a + β 2
u + β 2

gm (12)
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2.4. Determine Correlation between the EDP s

When n = N , the correlation matrix is irrelevant since there are no EDP uncertainties.
Perfect correlation is assumed between EDP s when n ≤ 1, in line with the P-58 simplified
analysis method. When n > 1, the correlation matrix is estimated using the logarithm of all
N -2 sets of median EDP s for n = 3 (note that this correlation matrix cannot be computed
for N = 3; in this case when n = 2, a reasonable correlation matrix should be estimated
from a reliable source, e.g. an analysis of the building under multiple ground motions).

2.5. Run the P-58 Analysis using the IM and EDP inputs

The EDP inputs are used as parameters in a multivariate normal distribution of lnEDP .
The mean vector (µ) and covariance matrix (Σ) of the lnEDP distribution can be expressed
as follows:

µ = ln(R̃) (13)

and

Σ = β × ρ× β (14)

where R̃ is the set of all median EDP s, β is the diagonal matrix of log standard deviations
of EDP s, and ρ is the correlation matrix of the lnEDP s. Simulated lnEDP s are sampled
from the multivariate normal distribution with parameters given by equations 13-14 for each
run of the P-58 Analysis.

All components in the building should be specified, as they are needed to predict dam-
age. DMs are calculated in a probabilistic manner for the given set of simulated EDP s,
using fragility functions for each component. (Note that we assume the building has not
collapsed and does not experience residual drift). Each function represents the probability
of occurrence of a particular damage state of a component, conditioned on the magnitude of
the associated EDP . Possible components of interest are those that could cause the building
to be assigned an unsafe placard, since an error in their damage prediction could give a false
initial indication of the building’s level of safety. Each fragility function is associated with
a statistical distribution of repair costs, repair time, and casualties, which are equivalent to
DV s.

2.6. Benchmark the Damage and Loss Predictions of Interest

The sets of damage and loss predictions of interest are then benchmarked against the
corresponding sets of predictions calculated for n = N . An error metric that can be used to
benchmark predictions is:

Error =

√∑ns

i=1(L̄− L̂i)2

ns

(15)

where L̂i is the predictions of interest for the ith P-58 Monte Carlo sample, L̄ is the mean
of all L̂i when n = N , and ns is the number of Monte Carlo samples. Note that this metric
results in a non-zero error for the n = N case, as the EDP s are assumed known but not the
resulting loss.
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3. Application

To illustrate the methodology outlined in the previous section, we consider a specific
building and seismic event. The building of interest is the Van Nuys hotel building in
its condition prior to the 1994 Northridge earthquake, which has been extensively studied
in previous work [e.g. 43, 5, 44]. We study the instrumented response of the building to
the 1994 Northridge earthquake (Mw 6.7) and examine two P-58 consequence predictions.
The building is a 7-story reinforced concrete structure (Figure 2). Further details on its
construction can be found in Table A.2. The replacement value is the default set by the SP3
program based on the building’s occupancy type, and we assume a total loss threshold of
100%. It is seismically instrumented at floors 1, 2, 3 and 6, as well as at the roof. We only
use one set of instruments (listed in Table A.2) in each orthogonal direction in the building
to capture the response (i.e. we ignore torsional effects). We hypothetically add and remove
instruments from the building, examining all levels of instrumentation from n = 0 to n = N .
To “add” instruments to the building, we interpolate the data time series at instrumented
floors and treat the interpolated results as true (as discussed in Section 2.2).

3.1. IM and EDP Inputs

IM and EDP inputs are obtained according to the methodology in the previous section,
using data from [45]. When n ≤ 1, the parameter values used in the FEMA P-58 simplified
analysis method are the default values for the building calculated by the SP3 program (see
Table C.4). When n = 0, the [46] ground motion prediction equation is used to compute
the IM predictions. Values used for the parameters of the equation are found in Table
B.3. Earthquake parameter values are obtained directly from the NGA-West2 database [47].
Distance parameter values used are those of the nearest recording station in the NGA-West2
database (located 3.2 km from the site). The VS30 value for the site is obtained from a
previous study of the building [48]. Average uncertainties in the median EDP s for each
level of instrumentation are summarized in Table 1.

Table 1: Average EDP uncertainties for different levels of instrumentation.

Level of Instrumentation β a β u β gm

n = 0 0.36 0.5 0.65
n = 1 0.36 0.5 0
n = 2 0.36 0.1-0.5 0
n = 3 0.36 0.1-0.5 0
n = 4 0.16 0.1-0.5 0
n = 5 0.07 0.1-0.5 0
n = 6 0.02 0.1-0.5 0
n = 7 0.01 0.1-0.5 0
n = N 0 0 0
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Figure 2: Details of the Van Nuys hotel building [45].

(a) (b)

Figure 3: (a) Peak floor acceleration and (b) story drift ratio of the Van Nuys Hotel building when n = N .

10



3.2. P-58 Analysis

10000 Monte Carlo samples are used in each P-58 analysis. The damage prediction of
interest is the mean damage state of curtain walls per story in a given orthogonal direction:

d̄sf,a =

∑2
i=0DSi × cf,a,i

mf,a

(16)

where d̄sf,a is the mean damage state of curtain walls in story f in the orthogonal direction
a, DSi is the number of damage state i, cf,a,i is the number of units of the curtain wall
component in story f in the direction a in DSi, and mf,a is the total number of units of
the curtain wall component in story f in the direction a. The curtain wall component in
the building model has Fragility ID ‘B2022.002’ under the P-58 methodology. This type of
curtain wall has two damage states, in addition to the occurrence of no damage. The first
damage state involves the cracking of glass and the second damage state involves the falling
of glass from its frame. This component is of interest because the second damage state has
the potential to cause an unsafe placard to be assigned to the building. The loss prediction
of interest is the building repair cost:

Building Repair Cost (%) =

∑k
i=1RCi

Building Replacement Cost
× 100 (17)

where RCi is the repair cost associated with the ith component and k is the total number
of components within the building.

3.3. Benchmarking Damage and Loss Predictions

3.3.1. Mean Damage State of Curtain Walls

We use equation 15 to benchmark predictions, with L̂i representing the P-58 curtain
wall mean damage state prediction for a given story in a given orthogonal direction for the
ith Monte Carlo sample. Figure 4 shows the range of error in the prediction of the mean
damage state of curtain walls in the longer direction of the building across the seven stories
of the building for different values of n, when βu = 0.5. The error values plotted for a given
story and a given value of n are the minimum and the mean across all combinations of
instrumentation for that value of n.

Errors in the prediction of the mean damage state of curtain walls per story in the longer
direction of the building are significant for n ≤ 1, but the minimum errors become negligible
for n > 3. Note the small range of errors obtained when n = 2. This is because the variance
dominates the error for this value of n, and values of the variance are very similar for all
stories since the median SDR and its uncertainty are identical at all stories for this value of
n. Similar results are observed for different values of βu.

Figure 5 shows the range of error in the prediction of the mean damage state of curtain
walls in the longer direction on the 5th story for different values of n, when βu = 0.5. Errors
for combinations of instrumentation that involve instrumenting both the 5th and 6th floor
are negligible compared to errors for combinations of instrumentation in which instruments
are omitted from either the 5th or 6th floor, independent of the value of n. This makes
intuitive sense, since the median EDP predictions on the 5th story are only influenced by
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Figure 4: Ranges of error in the mean damage state of curtain walls per story in the longer direction, when
βu = 0.5.

Figure 5: Ranges of error in the mean damage state of curtain walls on the 5th story in the longer direction,
when βu = 0.5. Note that there cannot be instruments at both the 5th and 6th floors when n = 3, since the
ground floor and the roof are always instrumented.
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the presence of instrumentation on the 5th floor and the 6th floor. In addition, the size of
the error ranges for combinations of instrumentation in which instruments are omitted from
either the 5th or 6th floor vary significantly for different values of n. We can conclude that
adding instrumentation does not always result in a lower error in the prediction of the mean
damage state of curtain walls on a given story, and the sensitivity of the prediction error
to different instrumentation layouts differs between different values of n. Similar results are
observed for other values of βu.

3.3.2. Building Repair Cost

We use equation 15 to benchmark predictions, with L̂i denoting the P-58 building repair
cost prediction for a given arrangement of instrumentation at a given value of n for the
ith Monte Carlo sample. Figure 6 provides histograms of L̂i for a given arrangement of
instrumentation at each value of n, when βu = 0.5. Figure 6 indicates that there is an

Figure 6: Histograms of building repair cost predictions, when βu = 0.5.

overall decrease in building repair cost prediction error as the number of instruments in the
building is increased. The prediction error is significantly larger for n ≤ 1 than for all other
values of n. A summary of the error in building repair cost prediction across the total range
of n is found in Figure 7 for various values of βu. Both the minimum and the mean error
values across all combinations of instrumentation are plotted for a given value of n. The
error in building repair cost generally decreases as n increases and the errors associated with
n ≤ 1 are notably larger than the errors associated with any other value of n, across all
values of βu examined.

Figure 8 shows the range of error in building repair cost predictions across all combi-
nations of instrumentation for different values of n, when βu = 0.5. Values of n < 3 are
not included, since each value of n in this case is associated with only one combination of
instrumentation and the error can be obtained from Figure 7. It can be seen that the size
of the error ranges vary across the different values of n. For example, the difference between
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Figure 7: Summary of building repair cost prediction error.

Figure 8: Ranges of building repair cost prediction error, when βu = 0.5.

14



the maximum and minimum error is approximately 4.1% when n = 3, whereas it is approxi-
mately 12.1% when n = 5. The sensitivity of the error in building repair cost predictions to
different instrumentation layouts for a given n is therefore dependent on the value of n. It
is interesting to note that the maximum error associated with n = 5 is larger than errors for
both n = 4 and n = 3. This is because the cubic spline interpolation method fortuitously
leads to more accurate EDP predictions when n = 4 and n = 3, than for certain cases
when n = 5. Thus, adding instrumentation does not always guarantee a lower error in the
building repair cost prediction, according to our methodology. Similar results are observed
for different values of βu.

3.4. Sensitivity to EDP Inputs

To determine whether the above damage and loss predictions are consistent across other
events, we double EDP s and examine the effect this has on the errors of the consequence
predictions associated with different values of n, keeping everything else about the analyses
constant. (Note that this is only an idealized approximation of the building response to a
higher seismic intensity level, as we do not have building response data for any other event).

For n ≤ 1, we multiply the IM inputs by two and use these updated values to compute
new median EDP predictions according to the P-58 simplified analysis method. For n > 1,
we modify the EDP s by simply doubling the median EDP predictions input to the P-58
analysis. Values of βu and βgm are unchanged. The average value of βa is 0.35 for n < 4, in
line with the P-58 simplified analysis method for the updated strength ratio of the structure.
Values of βa are unchanged for n ≥ 4.

Figure 9(a) compares the errors in the prediction of the mean damage state of curtain
walls in the longer direction of the building on the 5th story of the building, for all values of
n and βu =0.5. There are non-negligible differences in mean damage state prediction errors
for most values of n. We can conclude that the magnitude of the error is sensitive to the
response of the building for certain values of n. However, the general pattern of error across
the different values of n is similar for both sets of EDP s.

Figure 9(b) compares the errors in building repair cost predictions for both sets of building
EDP s across all values of n, when βu = 0.5. It can be seen that differences in building repair
cost prediction error are negligible for n ≥ 2, but there is a difference of approximately 15%
for n ≤ 1. However for both sets of EDP s, the error is generally decreasing as n increases
and is significantly larger for n ≤ 1 than any other value of n.

4. Additional Application

To further exercise our methodology, we apply it to a significantly different second build-
ing for the same event and examine if similar trends in repair cost prediction error are
observed. The building of interest is a 17-story residential reinforced concrete structure
(Figure 10) located in Los Angeles, that was also shaken in the Northridge earthquake. Fur-
ther details on its construction can be found in Table A.2. The replacement value is the
default set by the SP3 program based on the building’s occupancy type, and we assume
a total loss threshold of 100%. The building is seismically instrumented at floors 1,7, and
13, as well as at the roof. We only use one set of instruments (listed in Table A.2) in each
orthogonal direction in the building to capture the response (i.e. we ignore torsional effects).
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(a)

(b)

Figure 9: Errors in predictions of (a) damage state of curtain walls on the 5th story in the longer direction
and (b) building repair cost, for both sets of EDPs when βu = 0.5.
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We hypothetically add and remove instruments from the building, investigating five levels
of instrumentation (n = 0 to n = 3, and n = N).

Figure 10: Details of the residential building [45].

4.1. IM and EDP Inputs

IM and EDP inputs are obtained according to the methodology, using data from [45].
When n ≤ 1, the parameter values used in the FEMA P-58 simplified analysis method are
the default values for the building calculated by the SP3 program (see Table C.4). Note that
the number of stories in the building exceeds the upper limit for which the P-58 simplified
analysis method was calibrated, however the median EDP s predicted for the building were
judged to be reasonable. When n = 0, we used the [46] ground motion prediction equation
to compute the IM predictions. Values used for the parameters of the equation are found
in Table B.3. Earthquake parameter values are identical to those used for the Van Nuys
hotel building. Distance parameter values and the VS30 value used are those of the nearest
recording station in the NGA-West2 database (located 692 m from the site). The equation
yields a value of 0.68 for βgm. The average value of βa used is 0.21 when n = 0, 0.31 when
n = 1, and 0.26 when 1 < n < 4, and the value of βu is 0.25 when n ≤ 1, all in accordance
with the P-58 simplified analysis method. Note that these uncertainties are smaller than
those calculated according to the P-58 simplified analysis method for the Van Nuys building,
since there is less non-linearity of the strength ratio in this case. We investigate values for
βu of 0.1 and 0.25 at other values of n.
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(a) (b)

Figure 11: (a) Peak floor acceleration and (b) story drift ratio of the residential building for n = N .

4.2. P-58 Analysis

10000 Monte Carlo samples are used in each P-58 analysis. We examine the set of building
repair cost predictions for this building.

4.3. Benchmarking Loss Predictions

We use the same error metric to benchmark the repair cost predictions (Equation 15).
Figure 12(a) provides histograms of L̂i for a given arrangement of instrumentation at each
value of n examined, when βu = 0.25. The figure indicates that there is generally a decrease
in building repair cost prediction error as the number of instruments in the building is
increased, similar to the Van Nuys hotel building. Figure 12(b) summarizes the error in
building repair cost prediction across each value of n examined, for the two values of βu.
Both the minimum and the mean error values across all combinations of instrumentation are
plotted for a given value of n. The error in building repair cost prediction tends to decrease
as n increases and the errors associated with n ≤ 1 are larger than the errors associated with
any other value of n, across both values of βu examined. The trend in error is very similar
to that observed for the Van Nuys hotel building.

5. Conclusions

This study provides a method for quantifying the benefits of building instrumentation, by
measuring errors in damage and loss consequence predictions calculated from the FEMA P-58
Seismic Performance Assessment procedure, when different numbers of building instruments
are used to capture the response of the structure in a given event. The accuracy of these
predictions is important to quantify, as they can be used to facilitate the post-earthquake
decision-making and planning of building owners. The density of instrumentation examined
ranges from the case in which all floors are instrumented to that in which no instrumen-
tation is present and FEMA P-58 simplified procedures are used to predict response and
corresponding consequences.
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(a) (b)

Figure 12: (a) Histograms of building repair cost predictions, when βu =0.25. (b) Summary of building
repair cost prediction error.

We have demonstrated the methodology by applying it to a 7-story structure for two
different sets of seismic responses. We used the methodology to measure the error in pre-
dictions of the mean damage state of curtain walls per story in a given orthogonal direction
and building repair cost, when different numbers of building instruments are used to record
responses. To further exercise the methodology, we have also applied it to a building with
significantly different properties. We quantified the errors in the same loss prediction for
varying levels of instrumentation and observed similar trends in these errors to those of the
other structure.

The errors in consequence predictions tend to decrease as the number of building in-
struments is increased, and the reduction in error is substantial as soon as more than a
small number of floors are instrumented. This conclusion may only hold for certain ar-
rangements of instruments at the different levels of instrumentation, however. It is therefore
not crucial to have a very high density of instrumentation to obtain reasonable accuracy in
FEMA P-58 consequence predictions for a building, but the accuracy achieved for the chosen
level of instrumentation may be highly dependent on the arrangement of instruments within
the building. The optimum arrangement of instruments for a given level of instrumenta-
tion depends on the consequence prediction of interest. For example, if the consequence
is only dependent on the drift of the 5th story, instrumentation arrangements that include
instrumenting the 5th and 6th floors will yield lower consequence prediction errors than
instrumentation arrangements that do not include instrumenting these stories.

The above findings provide actionable information for a building owner if they wish to
use seismic instrumentation as a means of rapidly obtaining damage and loss information
for post-earthquake decision-making.
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Appendix A. Building Information

Table A.2: Supplementary information for application buildings. The periods of the Van Nuys hotel are
estimated using Table 2.4 of [43], which presents three approximations of the building’s period calculated
by different research teams. The periods of the residential building were estimated in [45], by analyzing
instrumented records of the building for the Northridge earthquake.

Building Name Van Nuys Hotel Residential Building

CSMIP Station No. 24386 24601
Number of Stories 7 17

Design Year 1965 1980
Dimension [N-S] (ft) 63.00 226.67
Dimension [E-W] (ft) 151.00 79.75

Building Area (sf) 66591 307300
Period [N-S] (s) 1.5 0.8
Period [E-W] (s) 1.5 1.0

CSMIP Instrument
Channel Nos. Used (N-S)

3, 4, 6, 8, 13, 14 5, 8, 10, 14

CSMIP Instrument
Channel Nos. Used (E-W)

9, 10, 11, 12, 16 4, 7, 9, 12

Lateral System

Reinforced Concrete
Interior Column-Slab
Frames and Exterior

Column-Spandrel Beam
Frames

Precast Concrete Shear
Wall

Lateral System Modeled in
P-58 Analyses

Reinforced Concrete
Perimeter Moment Frame

Reinforced Concrete Shear
Wall
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Appendix B. Ground Motion Prediction Equation

We used the [46] ground motion prediction equation (GMPE) for both application build-
ings. This GMPE predicts horizontal ground motion amplitudes caused by shallow crustal
earthquakes, and is based on analysis of the NGA-West2 database [47] as well as numerical
simulations. Parameter values used in the equation for both buildings are found in Table
B.3.

Table B.3: GMPE parameter values for application buildings.

Building Name Van Nuys Hotel Residential Building

M 6.69 6.69
δ 40◦ 40◦

λ 103◦ 103◦

ZTOR (km) 5 5
T (s) 1.5 0.9

RRUP (km) 8.44 31.48
RJB (km) 0 28.82
RX (km) 7.18 13.73
Z1.0 (km) Unknown Unknown
VS30 (m/s) 218.00 452.15

∆DPP 0 0
Finferred 1 1
FMeasured 0 0
FRV 1 1
FNM 0 0
FHW 1 0

Region California California
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Appendix C. FEMA P-58 Simplified Analysis Method

The FEMA P-58 simplified analysis method [9] computes building EDP s using linear
models, static analyses, and the lateral yield strength of the structure. It is important to
note that this method contains a number of simplifying assumptions:

1. The method neglects vertical earthquake shaking, torsion, and soil-structure interaction
effects.

2. The framing systems and responses are assumed to be independent along each hori-
zontal axis of the building.

3. The method assumes that there are no significant discontinuities in strength and stiff-
ness.

4. Story drift ratios cannot exceed 4%, and P -delta effects are ignored.

5. Story drift ratios are assumed to be less than four times the yield drift ratio, it is
assumed that there is not excessive degradation in strength and stiffness, and bilinear
elastic-plastic component behavior is assumed to be reasonable.

6. The method is calibrated for buildings less than 15 stories, and higher mode contribu-
tions are neglected.

Table C.4 provides parameter values used for both buildings in the method’s equations
(detailed in Section 5.3.1 of [9]). a and α are used to compute ∆i in equation 5-10 of [9],
using the equations for lateral displacement provided in [49].

Table C.4: FEMA P-58 simplified analysis parameter values for application buildings.

Building Name Van Nuys Hotel Residential Building

Vy 0.067 0.15
∆y 0.0075 0.0025

Soil Site Class D D
First Mode Mass Ratio 1.0 0.8

a 0.01 0.01
α 12.5 1.0
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