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Abstract: A study by FEMA suggests that 20-40% of modern code-conforming buildings in the United States 
would be unfit for re-occupancy following a major earthquake (taking months or years to repair) and 15-20% 
would be rendered irreparable. To address this gap, recovery-based design has been proposed to link building-
level engineering with broader community resilience goals. However, the relationship between above-code 
design improvements and recovery performance is highly nonlinear and varies on a building-and site-specific 
basis, presenting a challenge to engineers, code developers, and policymakers. Furthermore, downtime 
simulations (e.g., FEMA P-58 + ATC-138) are computationally expensive, hindering exploration of the full 
design space. This paper summarizes our recent efforts to develop a framework to rapidly identify optimal 
above-code design improvements to achieve building-specific recovery objectives. The framework leverages 
surrogate models to allow for computationally efficient probing of recovery performance under a range of user-
defined improvements, and optimization techniques that can be repeated for different stakeholder priorities. 
We demonstrate the framework through analysis of two modern steel building archetypes. For each building, 
optimal structural and nonstructural component improvements are identified for a range of recovery 
performance objectives. The study illustrates how the framework can be applied at scale to support the 
selection of building-specific recovery performance objectives. 

1 Introduction 
The increasing human and economic exposure in seismically active regions underscores the need to bridge 
the gap between national seismic design provisions (which do not consider time to recovery) and community 
resilience goals. Using current design provisions, many at-risk communities will struggle to meet recovery time 
goals (e.g., SPUR, 2009), and control economic loss, with recent estimates placing the national expected 
annual loss from earthquakes at $14.7 billion (FEMA-USGS, 2023).  

To address this issue, functional recovery has been proposed as a building performance objective that 
explicitly links design with organizational- or community-level resilience goals (EERI, 2019). Buildings 
designed for functional recovery are expected to recover their basic, tenant-specific functions within a target 
time, 𝑇𝑡𝑎𝑟𝑔𝑒𝑡, and also satisfy existing life safety objectives. Research in the area of performance-based 
earthquake engineering (PBEE), coupled with the emergence of enabling software (e.g., Zsarnóczay and 
Deierlein, 2020, HB-Risk, 2023) has led to early adoptions of recovery-based design by individual owners 
(Zimmerman and Herdrich, 2022; Mar and Aher, 2022; Forell/Elsesser Engineers, Inc., 2018). However, 
current applications of recovery-based design are typically developed through trial-and-error approaches. 
These approaches are tedious, since a variety of design strategies can be used to achieve a given post-
earthquake recovery performance objective. Furthermore, the relationship between these improvements and 
recovery performance is highly nonlinear. Increasing structural strength and stiffness, for example, may reduce 
damage to displacement-sensitive components, but amplify floor accelerations, and in the process, increase 
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damage to acceleration-sensitive components. For both reasons, it is difficult to identify effective recovery-
based design strategies and guide performance-objective selection. 

A growing body of literature explores how optimization can be used to derive design insights using PBEE-
based approaches (Rojas et al., 2019; Burton et al., 2019; Steneker et al., 2020; Steneker et al., 2022; 
Ghasemof et al., 2022; Karami et al., 2022; Amiri and Estekanchi, 2023). However, these studies typically 
focus on a single application (e.g., structural improvements to a building with a specific structural system), and 
do not demonstrate how such tools can be applied across different structural systems, building configurations, 
and upgrade strategies of interest. Reduced generality often stems from computational barriers associated 
with performing optimization, which requires tens to hundreds of thousands of building recovery performance 
realizations depending on the size of the design space. Lastly, none of these studies focus on controlling the 
functional recovery time of buildings, which is necessary to achieve community resilience goals. 

To overcome these limitations, machine learning-based optimization methods can flexibly and rapidly isolate 
above-code building improvements to achieve recovery performance goals (Issa et al., 2023). This paper uses 
those methods to identify optimal improvement strategies across a large set of performance objectives. To 
understand how optimal strategies may change across different buildings, we repeat the analysis for two 
modern steel archetypes: one designed to code, and one in which the design drift limit is cut in half. The results 
illustrate the effect of reducing the drift limit on the necessary nonstructural improvement scope across all 
performance objectives explored, and the breadth of insights that are available when surrogate modelling is 
used in place of computational simulations. 

2 Machine learning-based optimization framework 
In this section, we describe the optimization framework used in the case study, which is adopted from Issa et 
al., (2023). The framework, which consists of five steps, can be used to isolate optimal recovery-based design 
improvements for a user-defined building, performance objective, and scope of improvements.  

The framework (shown in Figure 1 for an intensity-based assessment) is split into two parts. Part I covers 
recovery modeling decisions along with design modification scoping. A baseline assessment is first performed 
to quantify the functional recovery time in absence of design improvements. Next, a performance objective, 
which defines the specific intensity and conditional reliability of interest, is defined (Equation 1).  
 

𝑃#𝑇&' > 𝑇()*+,(	&	𝐷&') < 𝑌%     (1) 

 

where: 𝑇&' = functional recovery time 
 𝑇()*+,( = target functional recovery time 

	𝐷&'  = selected hazard level for recovery-based design 
𝑌% = conditional probability of exceedance  

 

Finally, building modifications (e.g., structural, nonstructural, utility backup) that will be used to achieve the 
performance objective are defined. The improvements considered in the design strategy are represented in 
an array of design parameters, 𝑿. 

Part II covers the optimization procedure, which is responsible for isolating the optimal design solution 𝑿∗ that 
minimizes a user-defined objective function. In this part of the framework, a feasibility check is first performed 
to ensure that the optimization algorithm will converge. If this is successful, then an optimization analysis using 
an objective function and algorithm of choice is performed to convergence. The generalized form of the 
optimization problem is shown in Equation 2. 

𝐗∗ = argmin	(𝑓(𝐗))      (2) 

with the constraints that 1) functional recovery time is less than the target, and 2) the design strategy 𝐗 is in 
the design space. 
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Figure 1: Overview of the recovery-based design optimization framework, applied to intensity-based 
performance objectives (Issa et al 2023).  

Using surrogate models in place of direct FEMA P-58 and ATC-138 building recovery simulations (FEMA, 
2018, Cook et al., 2022) during the optimization step (Stage 5 in Figure 1) can significantly reduce 
computational cost and enable exploration of the design space. As introduced in Issa et al., (2023), we use a 
surrogate model that de-couples structural and nonstructural improvements by including engineering demand 
parameters (EDPs) in the input feature vector. While this increases model complexity, it allows for use of the 
surrogate model across different hazard levels and structural upgrades without the need for retraining. 

3 Case study using modern steel archetypes 
3.1 Introduction 
In this section, we apply the proposed framework to identify the optimal set of nonstructural component 
upgrades for two modern steel archetypes in Oakland, CA. The goal of this analysis is to study the implications 
of the selected performance objective on design. To facilitate this, we perform optimization analyses across a 
large set of performance objectives, spanning multiple target recovery times and hazard levels, repeated for 
each building. Hazard levels explored include the 72-, 224-, and 475-year return period. 
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Both building archetypes share the configuration shown in Figure 3 and are designed in accordance with ASCE 
7-16 using the Equivalent Lateral Force (ELF) parameters in Table 1. The two buildings only differ in structural 
stiffness by varying the drift limit. 

 

 
Figure 2: The location, floor plan, and elevation view of the three-story office building used in the case study. 

 

Table 1: ASCE-7 ELF design parameters for each case study building. 
 

 Site 
Class 

Risk 
Category 

Importance 
factor 𝑰𝒆 

Drift 
limit 𝑺𝒔 𝑺𝟏 𝑹 𝑪𝒅 

Archetype I D II 1.00 2.5% 1.559g 0.614g 8 5.5 

Archetype II D II 1.00 1.25% 1.559g 0.614g 8 5.5 

 

3.2 Application of optimization framework 
Next, we describe the application of the framework shown in Figure 1, focusing on key decisions. 

As part of Stage 1, each building is evaluated for baseline recovery performance (excludes any potential 
upgrades). We perform this assessment using a damage and loss assessment (FEMA P-58), followed by a 
downtime assessment (ATC-138) to compute functional recovery time.  

For each archetype, we prepare an analytical structural model, a set of ground motions, and a building 
performance model. Analytical structural models are generated using Auto-SDA (Guan et al., 2020). Using the 
geometry and parameters in Figure 3 and Table 1, a OpenSees 2-D frame model for the X and Y direction is 
generated. For each building, 40 ground motions are selected using a Uniform Hazard Spectrum (UHS) target 
at the Oakland site, repeated for each return period considered in the case study. Performance models for 
office occupancy are directly adopted from the Issa et al., (2023) archetype, which consists of 41 components 
across nine building systems. The 50th-percentile baseline functional recovery times for each archetype are 
shown in Table 2. These times include any impeding factors that would prevent repairs from initiating. 
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Table 2: Baseline functional recovery times for each archetype, evaluated at three hazard levels of interest. 
 

Hazard level Archetype I 
(Drift limit = 2.5%) 

Archetype II 
(Drift limit = 1.25%) 

72-year 29 days 20 days 
224-year 102 days 73 days 
475-year 154 days 116 days 

 

In Stage 2, the performance objective space is defined. To illustrate the breadth of performance objectives 
that can be explored using the framework, we consider target times spanning from 7 to 180 days for each of 
the hazard levels in Table 2. In each case, the conditional probability of exceedance is set to 50% as a proof 
of concept. While a lower probability of exceedance may be desired in real-world applications, using 50% 
allows us to compare the median functional recovery time directly with the target time. 

As part of Stage 3, we explore nonstructural component improvements as the sole enhancement strategy for 
each archetype. Strengthening for each component (i.e., achieving a higher median capacity across all 
damage states) is modeled using the scheme introduced in Issa et al., (2023). Improvements to a single 
component are modeled by a scalar strengthening factor, 𝑥2, which is applied to the fragility medians for all 
damage states. All original capacities for each component are derived directly from the FEMA P-58 fragility 
database. We assume that 𝑥2 varies continuously from 𝑥2 = 1.00 (no change) to 𝑥2 = 3.00 (triple the median 
capacity across all damage states). All values of 𝑥2 (one for each component) are organized in the array, 𝐗𝐍𝐒.  

𝐗𝐍𝐒 =	 @

𝑥5
𝑥6
⋮
𝑥7

B	        (3) 

where 𝑁 is the number of nonstructural components in the performance model. Component fragility functions 
are modified directly during each optimization evaluation using the values in 𝐗𝐍𝐒, and are used directly in 
recovery performance evaluations.  

In Stage 4, we perform a feasibility assessment for each archetype and hazard level of interest to ensure that 
all optimization assessments converge for each performance objective (i.e., a viable design solution exists in 
each case). This is done by assessing the 50th percentile functional recovery time under maximal enhancement 
(in this case, tripling the median capacity of each component) for each archetype, and checking that the result 
less than 7 days, which is the minimum target time explored as part of the case study. We find that for each 
archetype, and each hazard level, an acceptable solution exists. 

Finally, we perform the optimization as part of Stage 5 for each building. We select a cost-agnostic objective 
function 𝑓(𝑿) that measures the average nonstructural component improvement across all components in the 
performance model, which we assume to be an appropriate proxy for scope of work across the building 
(Equation 4). As part of the optimization, our goal is to minimize this, constrained by having the 50th percentile 
functional recovery time 𝑇&',9: meet the target time of interest. 

𝑓(𝑿) = 	
1
𝑁 D 𝑥2

;!∈𝑿𝑵𝑺

 

 
s.t. 

𝑇&',9: < 𝑇()*+,( 
𝑥2 ∈ [1.00, 3.00]	∀	𝑥2 ∈ 𝐗𝐍𝐒 

 

To reduce the computational cost associated with each evaluation of 𝑓(𝑿) , we estimate 𝑇&',9:  using a 
calibrated surrogate model that maps EDPs and building improvements 𝐗𝐍𝐒 directly to 𝑇&',9:. We employ real-
valued genetic algorithms for all analyses, since they work well in high-dimensional space, and are also 
compatible with simulation-based approaches (e.g., FEMA P-58 and ATC-138), which we use to validate select 
results.  
 

(4) 



WCEE2024  Issa et al. 

 
 

6 

3.3 Results 
In this section, we discuss the results of the optimization for each archetype building, using the setup defined 
in Sections 3.1 and 3.2. Optimal designs in this section correspond to functional recovery target times from 7 
to 180 days at the Oakland site with a conditional probability of exceedance of 50%. Optimal designs are 
generated for these objectives at the 72-, 224-, and 475-year hazard levels. 

Optimal objective function values 𝑓(𝑿∗) for each building across the performance objective space are shown 
in Figure 4a. Here, 𝑓(𝑿∗) can be interpreted as a proxy for the nonstructural scope of work necessary to 
achieve the target time. Solid and dashed lines correspond to 𝑓(𝑿∗) values for Archetype I (at-code) and 
Archetype II (structurally improved), respectively.  

To quantify the effect that the reduced drift limit has on scope, we estimate the value of 𝑓(𝑿∗)∆$!%!&?5.69% −
𝑓(𝑿∗)∆$!%!&?6.9% in Figure 4b. When this difference is negative, structural improvements (i.e., cutting the drift 
limit in half) lead to a reduced nonstructural scope of work. When this difference is positive, the opposite is 
true. From this plot, we can quickly interpret performance objective ranges where reducing the drift limit has a 
positive and negative impact on the optimal nonstructural scope of work. 

 
Figure 3: Optimal objective function (average NS hardening) values for each building, across different 

performance objectives (a) and the difference between objective function values for the two buildings (b) 

A few observations can be made from the results in Figure 4a. First, we observe that for the majority of the 
target times and hazard levels explored, reducing the drift limit leads to reductions in 𝑓(𝑿∗). In general, these 
reductions are higher at higher hazard levels, which is also observed in Figure 4b. At the lowest intensity 
explored, we observe that the effect of reducing the drift limit is less pronounced and 𝑓(𝑿∗) values are roughly 
identical for both archetypes.  
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At higher hazard levels, we also observe that there are relatively large target time ranges in which reducing 
the drift limit warrants no additional nonstructural upgrades at all (i.e., 𝑓(𝑿∗) = 1.00). For example, we observe 
that at the 475-year return period, 𝑓(𝑿∗) = 1.00 from 𝑇()*+,( = 120 days to 𝑇()*+,( = 155 days when the drift 
limit is reduced. At the 224-year return period, the same is true from 𝑇()*+,( = 70 days to 𝑇()*+,( = 120 days.  

Finally, we can isolate target times in which reducing the drift limit leads to an increase in 𝑓(𝑿∗), and hence, 
an increase in nonstructural scope. These regions are typically at very short target recovery times. At the 224 
and 475-year return periods, this occurs when the target recovery time is less than 21 days. At the 72-year 
return period, this occurs when the target time is less than 14 days. An increase in 𝑓(𝑿∗) in these target time 
regions may be attributed to increased peak floor accelerations when the building is stiffened, which may 
increase the number of nonstructural components that require hardening. 

These findings can also be deduced from Figure 4b, which illustrates the specific target time regions in which 
stiffening the building has a positive, negative, or negligible effect on optimal objective function values. The 
magnitude of the difference, along with the subset of target times in which stiffening is beneficial, both generally 
grow with increasingly large hazard levels. As observed in Figure 4a, at very low target times, reducing the 
drift limit triggers increasingly large objective function values. Such results suggest that at these target times, 
reducing the drift limit can be detrimental. 

We draw several conclusions from these results. First, the breadth of the results illustrated in Figure 4 are 
made possible by surrogate modelling approaches that replace computationally expensive simulations during 
the optimization step. All analyses conducted in this case study were performed using a single surrogate 
model, since the input feature vector can accommodate different EDPs attributed to differing structural 
configurations and hazard levels of interest. Repeating this analysis using simulation-based approaches would 
prove to be computationally challenging in practice. 

Second, the results clearly convey the impact of a structural improvement on the nonstructural scope of work 
for each hazard level. Due to the nonlinear relationship between building improvements and recovery 
performance, the degree to which structural improvements reduce nonstructural scope varies depending on 
both the hazard level and target time selected. Applying the framework to this problem helps to unveil trends 
that would otherwise be difficult to uncover using trial-and-error approaches.  

Finally, the objective function values (particularly those in Figure 4b) can be used to guide performance 
objective selection, since they implicitly show how much nonstructural hardening is needed on average to 
achieve a given objective. These insights are prerequisites to supporting benefit-cost analysis studies, which 
quantify the benefits of reduced recovery time across the lifetime of the building to the costs associated with 
building upgrades. While the objective function in this case study is cost-agnostic, and the upper and lower 
bound constraints are likely not realistic for each component, refinements to both can make rapid and scalable 
benefit-cost studies a possibility when considering a broad set of performance objectives. Such studies can 
also be used to gauge the efficacy of specific recovery-based design strategies for the purposes of individual 
design and the development of provisions. 

4 Conclusions  
Identifying efficient recovery-based design strategies can be challenging in practice due to the computational 
cost of building recovery simulations, and the nonlinearity between these strategies and recovery performance. 
In this paper, we summarized our recent work to approach this problem using machine learning-based 
optimization and applied it to a new case study involving modern steel archetypes.  

The framework was used to support the selection of recovery-based performance objectives by quantifying 
changes in optimal design strategies. For two building archetypes that differ in structural stiffness, we 
quantified the changes in the optimal objective function value: the average nonstructural hardening across an 
inventory of building components. This was repeated for three different hazard levels under consideration, and 
a set of target recovery times of interest.  

Results illustrated specific target performance objectives where stiffening the building led to increased, 
decreased, and negligible changes in additional nonstructural upgrades. We found that at very low target 
recovery times, particularly at high hazard levels, the utility of reducing the drift limit is diminished, and can 
even be detrimental.  
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Finally, surrogate modeling, which maps building improvements directly to functional recovery time, is the 
enabling contribution of the framework that makes such broad analysis possible. These models significantly 
reduce the computational time associated with building recovery modeling and unlock the ability to perform 
optimization analyses at scale. Repeating this across a larger set of archetypes, building locations, and design 
strategies will improve recovery-based design intuition and support the development of future recovery-based 
provisions. 
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