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Large earthquakes cause widespread damage and can result in substantial direct and5
indirect economic losses. Previous researchers have proposed separate models for pre-6
dicting region-wide direct and indirect losses due to future earthquakes; however, com-7
prehensive simulation approaches that include both remain underdeveloped. In partic-8
ular, the propagation of uncertainty along the various modeling steps has not been pre-9
viously considered. This paper addresses that gap by proposing a three-stage model to10
assess economic impacts of possible future earthquakes, consisting of regional ground11
motion simulation, damage and direct loss modeling, and macroeconomic recovery12
modeling. In this model, economic indicators such as direct asset losses and changes13
in economic sectors’ value added and employment are quantified. The model also cap-14
tures uncertainty in the spatial distribution of earthquake shaking and damage patterns,15
which in turn is reflected in post-disaster economic indicators. The results show that16
considering uncertainty leads to a wide range of possible economic outcomes and high17
variance in direct and indirect losses. A cross-model sensitivity analysis is performed18
to evaluate the effect of different model parameters on the quantification of economic19
consequences.20

INTRODUCTION21

Disasters affect societies in many ways; they cause injuries and fatalities, displacement of the22
population, societal disruptions, damages to man-made and natural capital, and economic losses.23
Economic impacts are commonly classified into direct and indirect losses (Rose and Lim, 2002;24
Brookshire et al., 1997; Hallegatte and Przyluski, 2010). One definition of direct economic losses25
is that they stem from damages to productive capital (i.e. physical capital used in the production26
process) and are measured in terms of the value of destroyed assets or the cost of repairing dam-27
aged assets (Hallegatte, 2008; Howe and Cochrane, 1993). Some authors also include business28
interruption losses that result from direct damage (e.g. loss to a business that cannot operate due29
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to damage to its facilities) as direct losses (Brookshire et al., 1997; Rose et al., 1997), while oth-30
ers consider such losses as indirect (Federal Emergency Management Agency, 2012; Grossi and31
Kunreuther, 2005). Indirect economic losses are associated with the disruption of services and re-32
duction in output, and can be measured in terms of losses to value added (Hallegatte and Przyluski,33
2010; Howe and Cochrane, 1993). Value added can be approximated by compensation to employ-34
ees and profits before taxes. Indirect losses include “higher-order effects” such as output changes35
resulting from supply and demand changes, also known as forward and backward linkages (Rose,36
2004). Such losses can result even when no direct damage to an entity is observed.37

Indirect losses can make up a significant portion of the overall economic impact of a disaster,38
and sometimes exceed direct losses (Daniell et al., 2011). Direct and indirect losses during five39
large earthquakes are provided in Table 1. The loss amplification factor, or total economic loss40
(direct plus indirect) divided by direct loss, ranges from 1.08 to 1.37, signifying the wide range41
of indirect impacts that can occur. Previous research suggests that in addition to the magnitude of42
damage, indirect losses are influenced by the state of the economy at the time of disaster, where43
during the economy’s expansion stage losses can be amplified and during recession dampened by44
the utilization of unused resources (Hallegatte and Ghil, 2007). Indirect losses also vary depending45
on the sector, where some sectors such as construction often experience gains due to reconstruction46
stimulus (Parker et al., 2012).47

Table 1. Direct and indirect losses from five large earthquakes.

Earthquake name Mw* Direct loss Indirect loss Loss amplifi- Reference
and year (billion USD) (billion USD) cation factor**
1989 Loma Prieta 6.9 5.9 0.2-0.7 1.08 Brady and Perkins (1991)
1994 Northridge 6.7 42 7.3 1.17 Petak and Elahi (2000)
1999 Marmara 7.6 3.0-6.5 1.2-2.0 1.34 World Bank (2003)
2008 Wenchuan 7.9 124 44 1.35 Wu et al. (2012)
2011 Tohoku *** 9.0 211 78 1.37 MacKenzie et al. (2012)

Kajitani et al. (2013)

*Mw = moment magnitude
** Loss amplification factor is calculated using the midpoint for direct and indirect loss ranges
*** Earthquake and tsunami damages are considered

Direct and indirect economic losses are typically quantified following a disaster or predicted48
before a disaster even occurs. Government entities and insurers routinely estimate economic losses49
following an earthquake for loss accounting, forensic loss analysis, claim settlement, budgeting,50
and future planning. Prediction of economic losses due to potential future earthquakes (i.e., seismic51
risk assessment) is also a common practice in the insurance industry and is starting to be used by52
government entities in planning and mitigation efforts (Brechwald, 2018b,a; Detweiler and Wein,53
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2018; Rose et al., 2011b; Jones et al., 2008). Historically, regional seismic risk assessments have54
focused on predicting direct losses (e.g. Silva et al., 2015; Grossi and Kunreuther, 2005); more re-55
cently, potential indirect losses stemming from disruption of lifelines and utility services have been56
increasingly investigated (e.g. Chang et al., 2015; Martinelli et al., 2014; Rose and Liao, 2005).57
However, unlike direct losses associated with damaged buildings and infrastructure, quantification58
of indirect losses is not yet a standard practice in regional seismic risk assessments, leading to a59
systematic underestimation of overall economic losses. In addition, predictions of indirect losses60
have not previously considered the large uncertainties stemming from ground shaking and damage61
patterns, which can lead to misrepresentation of disaster impacts. Inclusion of uncertainty has been62
highlighted as one of the needed areas of improvement in post-disaster economic impact assess-63
ment (Okuyama and Santos, 2014). Engineering estimations of the physical recovery of productive64
capital are not commonly considered in economic recovery models, where previous implementa-65
tions either make assumptions about the recovery rate (Hallegatte, 2014) or do not explicitly take66
the rate into account (Cutler et al., 2016; Sue Wing et al., 2021).67

The research presented in this paper integrates regional earthquake risk analysis with an input-68
output (I-O) economic recovery model (Adaptive Regional Input-Output model, Hallegatte, 2014,69
2008). The integrated end-to-end approach creates a pipeline for quantifying total economic losses,70
considering how uncertainty in the ground shaking and damage propogate to post-disaster eco-71
nomic recovery indicators, such as value added, employment, and regional capital reconstruction72
time. This approach also allows one to constrain the economic capital recovery model using phys-73
ical asset repair times, and on the other hand, constrain the physical reconstruction with macro-74
economic conditions – a two-way relationship not previously considered in regional seismic risk75
analysis. The methodology is applied to a hypothetical Mw7.2 earthquake scenario on the Hay-76
ward fault to model the impact on the San Francisco Bay Area’s economy. Physical damages,77
direct losses, and changes in value added and employment in 15 interdependent economic sectors78
are modeled as a function of time. The results bring insight into how uncertainty from the seismic79
risk analysis affects economic recovery predictions. In addition, a cross-model sensitivity anal-80
ysis of parameters from different stages of modeling is performed, evaluating their effect on the81
prediction of economic consequences.82

OVERVIEW OF PREVIOUS ECONOMIC LOSS MODELING APPROACHES83

DIRECT ECONOMIC LOSSES DUE TO EARTHQUAKE DAMAGE84

Several engineering frameworks and computational tools exist for predicting regional direct as-85
set losses and business interruption losses that result from an earthquake (Elhaddad et al., 2019;86
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FEMA, 2015; Pagani et al., 2014; Rojahn and Sharpe, 1985). These frameworks require catego-87
rization of the building stock in the region of interest into a set of representative structural and88
occupancy typologies. Different frameworks employ either analytical or simulation approaches,89
but in general the analysis is performed in several computational stages. First, regional ground90
motion maps that represent ground shaking caused by an earthquake scenario are produced. Then,91
discrete damage states or damage ratios that depend on the ground shaking are predicted for each92
building in the building stock. This is typically done using building-level fragility or vulnerability93
functions. Finally, the damage states or damage ratios are translated into monetary losses, using a94
replacement cost corresponding to the building’s occupancy type.95

Business interruption losses require an additional computational step that estimates the repair96
and re-occupancy time of a building given a damage state. The time is then used to calculate97
income losses. While several methodologies exist to quantify this time (Burton et al., 2015; FEMA,98
2015; Almufti and Willford, 2013), these times do not explicitly incorporate regional factors such99
as the capacity of the construction sector, post-earthquake cordons, or real estate market conditions.100

There are also several rapid, empirically-based direct economic loss models such as the Prompt101
Assessment of Global Earthquakes for Response (PAGER) (Jaiswal and Wald, 2013) and the102
reduced-form rapid economic consequence model (Heatwole et al., 2013). While these models103
are simple, transparent, and provide rapidity, they do not quantify loss metrics (e.g. sector-specific104
direct losses) that can be linked to indirect economic loss modeling.105

INDIRECT ECONOMIC LOSSES106

The two most common approaches to computing indirect economic losses are input-output (I-O)107
(Giannopoulos, 2018; Okuyama and Santos, 2014; Rose and Wei, 2013; Haimes et al., 2005) and108
computable general equilibrium (CGE) (Prager et al., 2018; Pauw et al., 2011; Rose and Liao,109
2005) economic models. The I-O framework is widely used in disaster economics, typically with110
linear models that use an I-O matrix to represent all the purchases and sales between different111
industry sectors in a bounded economy (Okuyama, 2007). I-O models allow one to see the effects112
of changes in demand and supply due to disaster damage on the output of businesses along the113
supply chain (i.e. higher-order effects). These models are popular due to their ability to reflect114
industry inter-dependencies, their relative simplicity, and the easy link that can be made between115
direct damages and losses originating from engineering risk models and higher-order impacts.116
Some shortcomings of traditional I-O models are their linearity, lack of behavioral content (e.g.117
consumer behavior change based on commodity prices), lack of input and import substitutions,118
lack of explicit resource constraints, and lack of interdependence between price and output (Rose,119
2004).120
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Several extensions of the I-O model have been proposed to overcome some of the shortcom-121
ings, including the Adaptive Regional Input-Output (ARIO) model (Hallegatte, 2014, 2008). The122
ARIO model captures demand-driven changes in output caused by changes in inter-industry and123
household consumption, reduction in productive capacity of industries due to earthquake damage,124
and supply constraints. In addition, it considers the role of input inventories and adaptive behavior125
of industries and households following a disaster. This model has been validated against Hurricane126
Katrina economic losses (Hallegatte, 2008), and used to assess economic losses after the 2008127
Wenchuan earthquake (Wu et al., 2012).128

CGE analyses model the entire regional economy based on a behavioral model of individual129
producers and consumers in response to multi-market price signals (Rose and Liao, 2005). A CGE130
model retains multi-sector characteristics and interdependence of the I-O model, but also explic-131
itly considers supply constraints, input and import substitutions, and behavioral response to price132
changes (Rose, 2004). However, a CGE model without extensions assumes generous input and133
import substitution elasticities and optimizes behavior based on non-disaster assumptions, which134
can lead to over-estimates of resilience and business adaptation, and thus under-estimate economic135
impacts (Rose and Liao, 2005). In addition, a CGE model requires many more parameters and has136
larger data requirements than an I-O model.137

The above models have largely been used to analyze previous disasters (e.g., Oosterhaven and138
Többen, 2017; Okuyama, 2014; Wu et al., 2012; Guimaraes et al., 1993). Several authors have139
used them to model future indirect economic impacts of earthquakes, in particular the influence140
of lifeline disruptions on business activities (e.g., Chang et al., 2015; Martinelli et al., 2014; Rose141
et al., 2011a; Rose and Liao, 2005). However, these studies do not consider uncertainty in the142
ground shaking or building damage distribution, nor do they include hazard-dependent recovery143
times of the overall capital stock in economic recovery modeling. Such assumptions can lead to144
misrepresentation of disaster impacts, where consideration of uncertainty has been highlighted as145
one of the needed areas of improvement in post-disaster economic modeling (Okuyama and Santos,146
2014).147

METHODOLOGY148

In order to model regional direct and indirect economic losses during an earthquake considering149
uncertainty, three separate models are integrated: a regional ground motion simulation, a physical150
damage and direct loss model, and an ARIO economic recovery model. In this integrated model151
we define direct and indirect loss as in Hallegatte (2014), where direct loss is the aggregate value152
of asset damages and indirect loss results from reduced economic value added.153
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First, for a given earthquake scenario, multiple regional ground motion maps are simulated to154
represent the possible ground shaking that can occur across the region. Then, physical damage to155
the built environment and losses associated with the cost of damage repair are predicted for each of156
the simulations. The time required to repair the damage is also quantified. Once the asset losses and157
repair times are calculated, they become an input into the ARIO economic model, which evaluates158
the effect of the damages on the production of economic sectors. Unlike previous implementations159
of the ARIO model that do not explicitly quantify damage repair time, this study considers both160
the damage repair time and the ability of economic sectors to satisfy reconstruction demand. The161
three-stage model is used to assess the economic impact of a possible earthquake scenario on the162
San Francisco Bay Area (herein referred to as the Bay Area) – a region in Northern California163
comprised of nine counties.164

REGIONAL GROUND MOTION SIMULATION165

In order to simulate damage due to an earthquake, ground motion maps that represent ground shak-166
ing across the region must be generated for a particular scenario. To generate the ground motion167
maps, Ground Motion Prediction Equations (GMPEs) are used (Abrahamson et al., 2014; Boore168
et al., 2014; Campbell and Bozorgnia, 2014; Chiou and Youngs, 2014). GMPEs predict the median169
and standard deviation of ground shaking intensity, for a particular magnitude, distance to rupture,170
and faulting type. Ground shaking intensity can be expressed as, for example, peak ground accel-171
eration (PGA) or spectral acceleration at a period of vibration and it is characterized by between-172
and within-even uncertainty. Between-event uncertainty captures the variability between differ-173
ent earthquakes events, and within-event uncertainty represents ground motion variability between174
different locations for the same event. Within-event uncertainty exhibits spatial correlation and175
cross-correlation between different ground motion intensity measures.176

In order to capture the large variability in ground motion considering multiple locations, Monte177
Carlo simulation can be used to generate numerous ground motions maps using a spatial correlation178
model (Goda and Hong, 2008; Loth and Baker, 2013; Markhvida et al., 2018).179

This study considers a moment-magnitude (Mw) 7.2 scenario on the Hayward fault from the180
U.S. Geological Survey (USGS) UCERF2 Earthquake Rupture Forecast (Field et al., 2003). In181
order to capture uncertainty in the ground motion, 1000 peak ground acceleration (PGA) ground182
motion maps were generated using (Abrahamson et al., 2014) GMPE and (Markhvida et al., 2018)183
cross-correlation model. Three sample simulations are shown in Figure 1. For each of the ground184
motion maps, PGAs are simulated at the census tract centroids, which is where building stock185
information is aggregated.186
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Figure 1. Example simulations of ground motion maps for the San Francisco Bay Area, using peak ground
acceleration (PGA) as the ground shaking intensity.

PHYSICAL DAMAGE AND DIRECT LOSS MODELING187

This study uses FEMA’s regional loss estimation framework – HAZUS earthquake model – which188
is intended to be used by the government at different administrative levels for emergency pre-189
paredness, response, recovery, risk mitigation and planning (FEMA, 2015). In addition to being190
a computational engine, the publicly available software contains a large amount of data on build-191
ing stock and lifelines in the United States. The HAZUS model is primarily aimed at estimating192
economic losses and casualties associated with physical damage to building infrastructure. Direct193
loss estimation includes buildings’ structural and non-structural repair costs and the value of lost194
contents. In this study, we only consider structural and non-structural repair costs as direct losses,195
as data on contents is not readily available.196

The exposure dataset in this study is built using building stock data from the HAZUS database.197
This database contains information on the number of buildings and their replacement costs subdi-198
vided into 33 occupancy categories. In addition, a region-dependent mapping scheme is provided199
to further subdivide occupancy categories into structural types considering different heights and200
design levels. The resulting dataset contains the building count for each census tract in the Bay201
Area (aggregated at the centroid of the tract), subdivided into 698 building categories varying by202
occupancy, structural type, height, and design level. For example, single-family residential/light-203
frame wood/low-rise/high-code is one of the building categories in the final dataset. The building204
replacement costs are also adjusted to 2016 dollars (i.e. the study base rate).205

HAZUS provides a methodology for calculating the mean building loss for a specified level206
of ground shaking intensity. We extend this formulation to arrive at a probabilistic distribution207
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of loss considering uncertainty in the ground motion and building damage. For each of the 1000208
ground motion maps, damage for each building in the exposure dataset is simulated given a PGA209
at a centroid of the census tract to which that building belongs. For simulation i, a damage state210
(DS) is drawn from a categorical distribution for each building j in the Bay Area (Equation 1).211
Damage states, ds1-ds5, correspond to none, slight, moderate, extensive, and complete.212

DSi,j ∼ Categorical
(
P (ds1), P (ds2), P (ds3), P (ds4), P (ds5)

)
(1)

The probability of building j being in a particular damage state (Equation 2) is calculated213
using probability of damage state exceedance (Equation 3), which is conditioned on the structural214
typology (sj) and peak ground acceleration at the building location (pgai,j).215

P (DSi,j = dsk) =


1− P (DSi,j ≥ dsk|sj, pgai,j) for k = 1

P (DSi,j ≥ dsk|sj, pgai,j)− P (DSi,j ≥ dsk+1|sj, pgai,j) for 1 < k < 5

P (DSi,j ≥ dsk|sj, pgai,j) for k = 5

(2)
The probability of being in or exceeding a particular damage state is expressed through a fragility216
function as:217

P (DSi,j ≥ dsk|sj, pgai,j) = Φ

(
ln(pgai,j/θsj)

βsj

)
(3)

where P (DSi,j ≥ dsk|bj, pgai,j) is the probability of building type j being in or exceeding dam-218
age state dsk when PGA = pgai,j , Φ(.) is the standard normal cumulative distribution function,219
and θsj and βsj are median and logarithmic stanrdard deviation for building type j. This study220
uses simplified HAZUS fragility functions that use peak ground acceleration as the input ground221
motion.222

Once the damage state for building j is simulated, the loss is determined by multiplying the223
building replacement cost and a loss ratio that corresponds to the simulated damage state. Loss224
ratio is the repair cost associated with structural and non-structural damage expressed as a frac-225
tion of the building replacement cost, and it is a function of the building occupancy category (e.g.226
single-family house, multi-family apartment, commercial) and the damage state. In order to obtain227
the probability distribution of the aggregate direct loss, for each of the 1000 ground motion simu-228
lations, individual building losses are summed up across the region. The probability distribution is229
then constructed considering multiple simulations.230

The building repair time at an economic sector level is also of interest, as it constrains the rate231
of reconstruction of productive capital (i.e. physical capital used in the production process) across232
different sectors – an input requirement for the economic recovery modeling. This study considers233
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only buildings as productive capital, due to limited data on machinery and equipment values. The234
HAZUS methodology provides repair times for buildings in different occupancy categories and235
damage states. For each of the 1000 simulations, a repair time is assigned to each damaged building236
in accordance with its simulated damage state. Then, for each simulation, i, we construct an237
aggregate reconstruction trajectory for productive capital within each occupancy category as per238
Equation 4:239

PCi,occ(t) =
∑
j∈Occ

(
1− 1(t < RTi,j)× LRi,j

)
×RCj (4)

where PCi,occ(t) is the aggregate productive capital of occupancy category occ for simulation i at240
time t after the earthquake; RTi,j and LRi,j are building j’s repair time and loss ratio, respectively,241
corresponding to its damage state in simulation i; RCj is the replacement cost of building j; and242
1(t < RTi,j) is an indicator function that evaluates to 1 when t < RTi,j or is otherwise 0. Once243
productive capital’s recovery trajectory is calculated, the time required to repair 95% of damaged244
capital in each of the occupancy categories, τ occr , not considering factors such as availability of245
construction workers, is determined and used in the following model stage.246

ARIO ECONOMIC RECOVERY MODELING247

The macroeconomic recovery model described herein is based on the ARIO model and other meth-248
ods described in (Hallegatte, 2014). This model was chosen due to its relative simplicity of imple-249
mentation and a smaller number of modeling parameters requiring calibration. Details related to250
its implementation in this research are provided in this section.251

Input data pre-processing252

In order to apply the ARIO model, data on different economic sectors must be gathered and pre-253
processed. Required data include the regional input-output matrix as well as data on sectors’254
productive capital, employment, and annual value added. In our analysis, we describe the Bay255
Area economy using 15 aggregate economic sectors, or industries, (see Table 2) as defined by the256
U.S. Bureau of Economic Analysis (BEA). BEA data from 2016 is used as the base for modeling257
pre-earthquake conditions (U.S. Bureau of Economic Analysis, 2016a,c,b).258

The pre-disaster productive capital in the Bay Area is imputed using the region’s value added259
and a ratio of productive capital (or fixed assets) to value added, which is calculated using national260
statistics. This data along with the number of employees in each sector is summarized in Table 2.261
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Table 2. San Francisco Bay Area pre-earthquake industry data summary.

Industry Productive
capital stock,
billion USD

Value
added,

billion USD

Ratio of
capital stock

to value

Employed

Agriculture, forestry, fishing, & hunting 25.98 6.89 3.8 27,800
Mining 6.34 0.82 7.8 2,400
Utilities 115.29 14.02 8.2 24,700
Construction 10.30 29.25 0.4 189,600
Manufacturing 225.84 124.56 1.8 386,200
Wholesale trade 30.04 50.51 0.6 88,500
Retail trade 45.90 35.37 1.3 371,800
Transportation & warehousing 26.41 10.67 2.5 120,300
Information 146.12 61.28 2.4 118,500
Finance, insurance, real estate, rental, &
leasing (including housing)

897.19 148.24 6.1 239,300

Professional & business services 77.09 143.40 0.5 620,400
Educational services, health care, & so-
cial assistance

72.07 51.76 1.4 773,400

Arts, entertainment, recreation, accom-
modation, & food services

35.05 27.79 1.3 336,800

Other services, except government 24.38 13.96 1.7 185,400
Government 379.22 62.65 6.1 132,100

Data is taken from U.S. Bureau of Economic Analysis, considering 2016 as the base year (U.S. Bureau
of Economic Analysis, 2016a,c).

To calculate the sector’s loss of productive capital, direct losses calculated for different HAZUS262
occupancy categories are converted to losses in 15 BEA economic sectors, using a mapping scheme263
similar to the one in the HayWired study (Wein, 2018). This mapping scheme is also used to264
calculate τ indr – the time required to repair 95% of the regional damage in each of the 15 economic265
sectors, or industries.266

The final data pre-processing step is the derivation of a local input-output matrix that reflects267
interdependencies of local economic sectors. The appendix provided in the electronic supplement268
provides a summary of the method used to derive the input-output matrix suitable for this analysis.269
Following the pre-processing, the economic recovery and indirect loss modeling is performed on270
the aggregate sector level, where final indirect losses are reported at the regional (Bay Area) level.271

ARIO formulation272

A summary of the ARIO model and its extension are provided below; for a complete model for-273
mulation, the reader should refer to Hallegatte (2008) and Hallegatte (2014). The model is applied274
to each of the ground motion simulations and direct loss results in order to quantify uncertainty on275
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the economic recovery.276

In this model, at each time step t, Nind sectors produce commodities to satisfy demand from277
final consumption, intermediate consumption (i.e. inter-industry), export, and post-earthquake278
reconstruction. During the production process, industries use stocked inventories of input com-279
modities in accordance with I-O matrix coefficients. It is assumed that input commodities and280
services from sectors such as utilities and transportation cannot be stocked. At each time step the281
used inventories are then replenished by placing orders to other sectors.282

The process and equations described below are repeated for each time step throughout a 10283
year recovery period, considering a time increment, ∆t, of one week. First, demand to sector j,284
Dj(t), is calculated as per Equation 5, without considering supply bottlenecks. In this equation,285
Oi,j(t) is order from sector i to sector j to restore inventories, Cj(t) is local final demand to sector286
j, Rj(t) is the reconstruction demand to sector j, and Ej(t) is demand to sector j related to export.287

Dj(t) =

Nind∑
i=1

Oi,j(t) + Cj(t) +Rj(t) + Ej(t) (5)

Reconstruction demand to a sector is calculated using a reconstruction demand matrix (RDM )288
as follows,289

Rj(t) =

Nind∑
i=1

RDMi,j(t)

τ ir
(6)

where RDMi,j is the reconstruction demand from sector i to sector j and τ ir is the recovery time290
calculated using HAZUS. The use of τr based on asset repair time has not been considered in291
previous ARIO models.292

Several indirect loss frameworks suggest that reconstruction expenditures should be primar-293
ily assigned to the construction and manufacturing sectors (FEMA, 2015; Hallegatte, 2008). To294
populate the reconstruction matrix, we use the previous assumption in Hallegatte (2008) which295
is based on insurance data that 75% of direct losses incurred by sector i translate into a demand296
to the construction sector and 25% to the manufacturing sector. This assumption requires further297
investigation, in particular the contribution of reconstruction expenditures to the ‘margin’ sectors298
such as wholesale, retail, and transportation, which do not include the cost of items sold or shipped299
but rather the cost of doing business.300

Each sector, j, tries to satisfy the initial demand,Dj(t), through production of commodities and301
services, Pj(t). However, the sector’s ability to satisfy the initial demand and its actual production,302
P a
j (t), are subject to several constraints. We assume that the production capacity is reduced as303
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a results of damage to the productive capital. In this model, reduction of production capacity304
is proportional to the reduction in productive capital. In addition, the production capacity can305
be limited by insufficient inventories of production inputs. Production can also increase due to306
overproduction capacity stemming from utilization of unused resources. Further details on each of307
these constraints can be found in Hallegatte (2014).308

If supply constraints exist, i.e. Dj(t) > P a
j (t), a proportional rationing scheme is applied309

across inter-industry demand, local final demand, reconstruction demand, and exports such that:310

O∗
i,j(t) = Oi,j(t) ·

P a
j (t)

Dj(t)
(7)

311

C∗
j (t) = Cj(t) ·

P a
j (t)

Dj(t)
(8)

312

R∗
j (t) = Rj(t) ·

P a
j (t)

Dj(t)
(9)

313

E∗
j (t) = Ej(t) ·

P a
j (t)

Dj(t)
(10)

The resultant demand, D∗
j (t), to sector j at time t is equal to the sector’s actual production314

P a
j (t), as in Equation 11.315

D∗
j (t) =

Nind∑
i=1

O∗
i,j(t) + C∗

j (t) +R∗
j (t) + E∗

j (t) = P a
j (t) (11)

At the end of each time step, the inventory orders are updated as per Equation 12, to account316
for intermediate input inventory used up in the production process (A(j, i)P a

i (t)) and any further317
depletion of the stock, i.e. the difference between target stock levels (St

i,j(t)) and current stock318
levels (Si,j(t)).319

Oi,j(t+∆t) = A(j, i)P a
i (t) +

1

τ js
(St

i,j(t)− Si,j(t)) (12)

In the above equation A(j, i) is a coefficient from the local input-output matrix, representing the320
input from industry j required to produce $1 of industry i output. Si,j(t) is the inventory level of321
commodity from industry j available as input for industry i at time t and St

i,j(t) is the target level322
of inventory.323

Reconstruction needs are also updated based on the ability of industries to satisfy reconstruc-324
tion demand:325

RDMi,j(t+∆t) = RDMi,j(t)−
RDMi,j(t)

τ ir ·Rj(t)
R∗

j (t)∆t (13)
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The value added for each sector j, V Aj(t), is calculated at the end of each time step by rebal-326
ancing the economy as per Equation 14.327

V Aj(t) = P a
j (t)−

Nind∑
i=1

A(i, j)P a
j (t)− Ij(t) (14)

In this equation, Ij(t) is the import of commodity j from outside of the region, which helps satisfy328
demand to sector j (for details see Hallegatte (2014)). The change in employment is assumed to329
be proportional to the change in the value added.330

Due to the lack of necessary data, the current implementation of the model does not con-331
sider indirect losses stemming from the disruption of lifelines. Transportation network disruptions332
caused by damages to roads, bridges, railways, ports, etc., increase travel time and travel distance333
and can result in passengers and freight flow perturbations. Previous research has translated these334
disruptions into indirect economic impacts by introducing changes in household consumption, re-335
ducing labor efficiency, and increasing labor and transportation margin costs (Wei et al., 2022).336
Damages to utility networks, such as electricity, gas, data and voice, potable water and wastewater337
can lead to service interruption and reduced operational and productive capacities. For example,338
disruptions in electricity, water supply, and data and voice networks in the HayWired scenario (i.e.,339
Mw 7.0 earthquake scenario on the Hayward Fault) are estimated to result in a 0.1% reduction in340
California’s gross regional product (Sue Wing et al., 2021).341

SAN FRANCISCO BAY AREA ECONOMIC RECOVERY AND RECONSTRUCTION342

REGIONAL DIRECT AND INDIRECT ECONOMIC LOSSES343

There is a large variability in potential economic consequences from a Mw7.2 earthquake event on344
the Hayward fault. The aggregate direct losses are shown in Figure 2, left, where the mean direct345
loss is $116 billion, and $45 to $201 billion is the 80% confidence interval. Direct losses have high346
variance and a heavy right tail, meaning that very large, rare losses are possible. Therefore it is347
important to consider the full distribution of direct losses in economic recovery modeling, and not348
just the mean direct losses as commonly done in risk assessment methodologies such as HAZUS.349

Running the modified ARIO model on the 1000 direct loss simulations yields 1000 economic350
recovery paths. Figure 2, right, shows how the value added changes throughout the recovery for351
different simulations. On average, value added initially reduces by 6.1% and recovers in approxi-352
mately 2.6 years, after which the economy experiences a period of production that is slightly higher353
than the pre-disaster one. In several cases, where direct losses are large, supply bottlenecks cause354
exhaustion of sector inventory, leading to a rapid decrease in production and value added, which355
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can be seen in Figure 2, right. The recovery of large fluctuations can take several years. The pos-356
sible exhaustion of inventories and large output losses point to the need for post-disaster economic357
resilience tactics, such as scarce input conservation and substitution (Rose, 2007).358

Figure 2. Left: probability distribution of aggregate Bay Area direct economic losses; Right: results from
1000 simulations of post-earthquake changes in value added over the recovery period.

Integrating the area under value added curves in Figure 2, right, will result in a net indirect359
economic loss metric, which represents lost profits, wages, and taxes over the recovery period.360
Figure 3, left, shows the distribution of the indirect losses, which is more positively skewed than361
the distribution of the direct loss. The mean indirect loss is $36 billion and the 80% confidence362
interval is $6.7 billion to $52 billion. If we only use the mean direct loss as an input into ARIO363
model, the indirect loss is $21 billion, which is only 58% of the mean indirect loss. This points to364
the non-linearity of the economic recovery model and the resulting skewness of the indirect loss365
distribution, showing the importance of considering the full distribution of results and not just the366
mean values.The mean loss in value added is comparable to the results obtained in the HayWired367
scenario that considered a smaller Mw 7.0 earthquake on the Hayward Fault, where the loss in Bay368
Area gross regional product was estimated to be $37.9 billion 2012 dollars (Sue Wing et al., 2021).369
It should be noted that the HayWired study also included losses due to fire following earthquake,370
aftershocks and utility-service disruption.371

The variation in loss amplification factor, or total economic loss divided by direct loss, is372
shown in Figure 3, right, where 80% of the simulations lie in the range of 1.15 to 1.37. For direct373
losses below $200 billion, the amplification factor tends to increase linearly with greater losses.374
Once direct losses exceed $210 billion, the sectors in the model start experiencing large production375
constraints and inability to satisfy reconstruction demand, causing larger indirect losses. This result376
is in line with previous observations where indirect loss can be small for one threshold of direct377
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losses and large for another threshold. For example, in the 1989 Loma Prieta earthquake, while378
direct losses were $5.9 billion, the amplification factor was estimated to be 1.03-1.12 (Brady and379
Perkins, 1991). On the other hand, a larger 1994 Northridge earthquake caused $41.8 billion in380
direct and $7.3 billion in indirect losses, resulting in an amplification factor of 1.17 (Petak and381
Elahi, 2000).382

Figure 3. Left: probability distribution of Bay Area indirect economic losses for all sectors. Right: loss
amplification factor, defined as total loss divided by direct loss. Total loss is the sum of direct and indirect
economic losses.

Reconstruction time383

We examine the regional capital reconstruction time with and without considering productive con-384
straints of the construction sector. The regional reconstruction trajectory without production con-385
straints is obtained by aggregating individual building repair times from HAZUS, as described in386
the Physical damage and direct loss modeling section. To consider economic sectors’ productive387
constraints, we derive a reconstruction trajectory from the ARIO model, which encompasses both388
building repair times and the construction and manufacturing sectors’ ability to satisfy reconstruc-389
tion demand. Lastly, we also compare a reconstruction trajectory from ARIO that uses assumed390
repair times as in Hallegatte (2014), i.e. repair times that are not based on the level of physical391
damage.392

The capital reconstruction trajectories and distribution of reconstruction time are shown in393
Figure 4. The region is assumed to be reconstructed when 99% of the capital is repaired. The394
average reconstruction time considering HAZUS repair times is 2.1 years. Like other engineering395
risk assessment methodologies (e.g. Almufti and Willford, 2013), this repair time does not take into396
consideration supply constraints and the ability of the construction sector to satisfy reconstruction397
demand.398
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Previous implementations of the ARIO model assume a 0.5 year repair time for all buildings399
and infrastructure, since there is no explicit repair time quantification. Under this assumption,400
the average reconstruction time of Bay Area capital is 2.0 years. This result assumes a uniform401
reconstruction rate for all economic sector, which does not depend on the level of asset damage.402

Combining both building repair time and construction and manufacturing sectors’ constraints403
more than doubles the average reconstruction to 5.6 years. This result takes into account the404
variability in the repair time across different sectors as a result of the variable level of damage.405

Figure 4. Left: capital reconstruction path for three models: HAZUS repair time, ARIO with assumed 0.5
year repair time for all sectors, and current ARIO model with HAZUS repair time for each sector. The
shaded region represents 80% confidence interval. Right: distribution of time to full reconstruction (99%
capital reconstructed) for ARIO model with assumed 0.5 years repair time across all sectors, and current
ARIO model with HAZUS repair time for each sector.

INDIVIDUAL SECTOR RESULTS406

Insight into each sector’s physical and productive vulnerability can be gained by looking at indi-407
vidual sectors’ economic losses. Direct losses (Figure 5, right) are the largest in the finance and408
real estate sector (58% of the direct losses), which includes residential housing. This is consistent409
with observations in previous disasters. The next three sectors with the largest direct economic410
losses are educational services, health care, and social assistance (7% of the all direct losses);411
manufacturing (6%); professional and business services (5%).412

The industries suffering the largest indirect losses are professional and business services (22%413
of all indirect losses); finance, insurance, and real estate (21%); and education services, health414
care, and social assistance (15%). Industries involved in reconstruction, such as construction and415
manufacturing, on average experience a net gain in value added, where the construction value416
added gain over the recovery period is on average $14.5 billion.417
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When we consider the most affected sectors in relative terms (i.e. total economic losses as418
a percentage of the annual value added), the most vulnerable sector is other services (see Figure419
5, right), which includes services such as equipment and machinery repairing, promoting or ad-420
ministering religious activities, grant-making, advocacy, dry-cleaning and laundry, personal care,421
death care, pet care, photofinishing, temporary parking, and dating services. The mean total loss422
amounts to 82% of value added.423

Figure 5. Direct, indirect and total economic losses for the 15 sectors in terms of absolute monetary value
(left) and as fraction of pre-earthquake annual value added, sorted by total economic losses (right). An 80%
confidence interval is indicated by vertical error bars.

Reconstruction of different sectors occurs at different rates. These rates depend on the level424
of damage within a particular sector and the construction sector’s ability to supply services. For425
example, as shown in Figure 6, left, while the mining sector has the largest percentage of initially426
destructed capital, the residential (finance and real estate) and other services sectors take longer to427
recover. When considering sectors’ value added (Figure 6, right) the recovery occurs at a faster428
rate than capital reconstruction due to the sector’s post-disaster increase in production capacity429
(overproduction). For example, the manufacturing sector takes on average 5.7 years to reconstruct430
99% of pre-earthquake productive capital, but the value added recovers in 1.6 years. The eventual431
increase in value added of several sectors is consistent with previous research, which partially432
attributes such increases to reconstruction-boom and accelerated replacement of capital (Hallegatte433
and Dumas, 2009).434
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Figure 6. Left: mean productive capital reconstruction path for the 15 economic sectors, expressed a
percentage of the pre-earthquake productive capital value. Right: mean value added recovery for the 15
economic sectors, expressed as percent change from the pre-earthquake value added.

Lastly, changes in industries’ human capital related to employment are determined based on the435
changes in value added. Figure 7, shows that educational services, health care, and social assistance436
will be heavily impacted, along with other services, and professional and business services.437

Figure 7. Mean changes in sector employment over the recovery period, and 80% confidence interval
(indicated by error bars), expressed as employee-years.

SENSITIVITY ANALYSIS438

The proposed methodology is comprised of multiple stages, and it is of interest to investigate how439
model parameters from different stages influence the aggregate direct and indirect losses. We440
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perform a sensitivity analysis using the regression tree ensemble method, which is described in441
Grujic (2017) and applied in the context of seismic risk assessment in Markhvida et al. (2020). In442
this analysis, 5000 samples of model parameters that are characterized by epistemic uncertainty443
are randomly drawn and the three-stage indirect loss calculation is performed. Then, a sensitivity444
index is calculated by fitting regression trees and using bagging, where the model parameters are445
predictor variables and indirect loss is the output variable. The model parameters considered in this446
sensitivity analysis are described below and the associated probability distributions are summarized447
in Table 3.448

Ground motion simulation parameters: for regional hazard modeling, variation in ground mo-449
tion prediction equation (GMPE), and median ground motion predictions are considered. The450
choice of GMPEs can affect the spatial distribution and scale of the ground shaking. In this case,451
a GMPE model is sampled from four models (Abrahamson et al., 2014; Boore et al., 2014; Camp-452
bell and Bozorgnia, 2014; Chiou and Youngs, 2014) using a discrete uniform distribution. Lastly,453
the epistemic uncertainty in the median ground motion intensity is considered using a three-point454
discrete approximation of a normal distribution (Atik and Youngs, 2014).455

Direct loss modeling parameters: for damage and loss predictions, epistemic uncertainty in456
HAZUS fragility functions, loss ratios, and repair times is considered, following the approach457
in Markhvida et al. (2020). For building fragility functions (as in equation 3), large variations can458
occur as a result of using different methodologies to derive fragility functions (Silva et al., 2014).459
To account for this influence, we introduce uncertainty in the median of the HAZUS fragility func-460
tions, θ, considering θ to have a lognormal distribution with σln θ = 0.1.461

There is a large amount of uncertainty around the cost of repair given a particular damage462
state of a building. To test its influence on the final loss metrics, we introduce uncertainty in the463
HAZUS loss ratios for the four damage states by assuming normal distributions with coefficients464
of variation CV = [0.430, 0.308, 0.201, 0.134], as reported in Table VI of Martins et al. (2016).465
Any sampled loss ratios that are below 0 or above 1 are assumed to be 0 or 1, respectively. A466
similar approach is applied to the HAZUS repair times given a particular damage state. Given the467
lack of studies on the uncertainty of repair times for different damage states, we assume that the468
coefficients of variation are the same as the loss ratio coefficients.469

Economic recovery modeling parameters: for the ARIO model, we consider the influence of470
all model parameters specified in Hallegatte (2014). Considered parameters are the capacity of471
sectors to overproduce in a post-disaster setting (αmax), the time it takes to ramp up overproduction472
(τα), pre-disaster commodity inventory expressed in days of consumption (nj), the time is takes to473
restock commodity’s inventory (τs), and heterogeneity of economic sectors (ψ). The last parameter474
describes the extent to which businesses in a particular sector produce non-substitutable goods and475
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services. If ψ is low, the sector is assumed to be homogeneous, where other sectors can keep476
consuming the commodity until the entire sector inventory is empty. Conversely, if ψ = 1 it is477
assumed that the sector is fully heterogeneous, where x% decrease in inventory means that x% of478
businesses who consume the commodity are unable to produce. The range for the five parameters is479
summarized in Table 3, where for each sample, parameters were drawn from a uniform distribution.480

Table 3. Input model parameters considered in the sensitivity analysis

Param. Description Baseline Probability distribution
Ground motion parameters

Mw moment-magnitude 7.2 uniform(6.2,7.2)

GMPE ground motion prediction equation Abrahamson et al.
(2014)

discrete uniform
(
(Abrahamson

et al., 2014; Boore et al., 2014;
Campbell and Bozorgnia, 2014;

Chiou and Youngs, 2014)
)

IM median ground motion
modification

0 as per Atik and Youngs (2014)

Direct loss modeling parameters

θ median of fragility function yθ
∗ lognormal

(
ln(yθ), 0.1

)
LR loss ratios for four damage states µLR

∗ N (µLR, CVLR × µLR)
∗∗

RT repair time for four damage states µRT
∗ N (µRT , CVRT × µRT )

∗∗

Economic recovery modeling parameters

αmax overproduction capacity 125% uniform(100,150)

τα characteristic time of
overproduction capacity

12 months uniform(6,18)

nj pre-disaster days of stocked
commodity j∗∗∗

90 days uniform(60,120)

τs characteristic time of stock
restoration

30 days uniform(15,45)

ψ sector heterogeneity 0.8 uniform(0.7,0.9)

* the baseline values for these variables are defined as in HAZUS (FEMA, 2015).
** CVLR = CVRT = [0.430, 0.308, 0.201, 0.134] for damage states slight, moderate, extensive and
complete, respectively.
*** it is assumed that utility and transportation sectors provide nonstockable goods, where the inventory
cannot be larger than 3 days.

As shown in Figure 8, considering epistemic uncertainty in the modeling parameters results481
in longer value added recovery times and higher variation in indirect loss and loss amplification482
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factor. The longer economic recovery times associated with variable model parameters can be483
partly explained by the instances where the modeled economy fully collapses and the production484
reduces to zero without being able to recover. As suggested in Hallegatte (2014), this collapse can485
happen when sectors cease production because they run out of input inventories, in turn making486
it impossible for their client sectors to produce without external support. This is particularly the487
case with lower pre-disaster days of stocked commodity and longer times required for inventory488
restocking.489

Figure 8 highlights the effect of using only one model without any epistemic uncertainty in490
contrast with a model that considers uncertainty in the modeling parameters. While there is a491
larger variability in the results with epistemic uncertainty, the general trend of economic recovery492
and non-linearly in amplification factor is preserved.493

Figure 8. Left: the change in value added over the recovery period (i.e. indirect loss) with and without
(original) considering epistemic uncertainty in the modeling parameters. Right: loss amplification factor
trends as a function of direct economic losses with and without (original) considering epistemic uncertainty
in the modeling parameters.

Figure 9 shows the results of the sensitivity analysis for regional direct and indirect losses.494
Any parameter whose sensitivity index is similar to or less than that of a randomly sampled integer495
used as an additional input variable can be considered of negligible importance. Direct losses are496
sensitive to ground motion parameters and most of the direct loss modeling parameters with the497
exception of repair time, which does not factor into direct loss calculation. In particular, loss ratio,498
fragility function, and GMPE are of importance.499

Indirect loss, which is dependent on inputs from all of the three modeling stages, is the most500
sensitive to inventory parameters such as stock days, time to restock, overproduction capacity, and501
fragility functions. Indirect loss is also moderately sensitive to loss ratios, the choice of GMPE,502
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and less so to sector heterogeneity. Indirect loss is not sensitive to uncertainty in parameters such503
as characteristic time of overproduction capacity, median ground motion, and repair time. Indi-504
rect loss seems to be more sensitive to uncertainty in the economic parameters than seismic risk505
modeling parameters, and is in general less sensitive to input model parameters than direct loss.506

Figure 9. Sensitivity of regional direct loss (left) and regional indirect loss to model parameters (right). The
sensitivity index is normalized by the sensitivity index of using the loss itself as an input, i.e. the perfect
predictor. A variable can be considered unimportant if its sensitivity index is comparable to or less than the
index of a randomly drawn variable (dashed line).

SUMMARY AND CONCLUSIONS507

This research proposes a framework that synthesizes regional direct loss modeling with the ARIO508
economic recovery model to predict direct and indirect economic losses, and employment changes509
following a large earthquake. This is done through a series of simulations of regional ground mo-510
tion maps, physical damage, direct losses, capital repair times, and finally, changes in industries’511
value added and their recovery. As a result, indirect losses in sectors that might not have experi-512
enced earthquake damage are captured. The proposed approach creates a pipeline for performing513
end-to-end simulations to quantify total economic losses and incorporate variations and uncertainty514
arising along different stages of the simulation. The proposed model is applied to estimate the total515
economic impact of a Hayward fault earthquake on the San Francisco Bay Area.516

Important limitations of the proposed model include the tendency of the economy to return517
to pre-disaster condition and the lack of lifeline disruption modeling. Since the changes in value518
added are estimated assuming equilibrium in the pre-disaster economy, the ARIO model tends to519
return to this equilibrium and does not reflect any long-term post-disaster changes. In addition,520
lifeline disruptions such as damages to the transportation network and interruption of the electric-521
ity, gas, data and voice, potable water, and wastewater services are not explicitly modeled due to522
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data limitations. Such disruptions, however, can be significant contributors to indirect losses: trans-523
portation disruption can impede the movement of people and goods causing travel time increase524
and supply chain issues, and utility outages can cause production and service interruptions.525

Despite the limitations, the model achieves several outcomes. First, it captures the uncertainty526
in the predictions of earthquake shaking and damage, which is then reflected in the post-disaster527
economic indicators such as value added and employment. For a single event scenario, propagat-528
ing the uncertainty in the ground motion and building damage results in high variance and long529
right tail distribution of indirect losses. Indirect losses scale non-linearly with direct losses leading530
to a wide range of possible loss amplification factors. The cases with high loss amplification fac-531
tors capture instances where sectors run out of inventory and the economy becomes constrained,532
leading to long output recovery times. These cases are not captured if only mean direct losses533
are considered in economic recovery modeling, thereby underestimating potential economic con-534
sequences. In the case of the Bay Area, the mean regional direct economic loss is $116 billion, the535
mean indirect loss is $36 billion (total economic loss of $152 billion), and the mean loss amplifica-536
tion factor is 1.23. There is also a significant variation in the amplification factor for this scenario,537
which ranges from 1.15 to 1.37 (80% confidence interval) – a range consistent with the scale of538
indirect losses in previous large earthquakes.539

Second, the proposed model quantifies indirect losses across all sectors, whether or not they540
experienced direct damage during the earthquake. For the Bay Area scenario, while the largest541
direct loss is in the housing sector, the professional and business services sector is the most im-542
pacted in terms of indirect loss. In addition, four out of 15 sectors experience a larger indirect loss543
than direct loss (professional and business services; education and health; wholesale; and govern-544
ment). Some sectors that benefit from the reconstruction demand, such as the construction sector,545
experience a net gain in value added. The model also reveals that a large earthquake in the Bay546
Area can cause significant changes in labour income and unemployment. The results of this model547
suggest that 8,800 to 59,900 employee-years (80% confidence interval) would be lost as a result of548
a Mw7.2 earthquake on the Hayward fault.549

Third, the synthesis of direct loss estimation and economic recovery modeling enables one to550
consider variable repair times that depend on the level of damage when predicting sectors’ pro-551
ductive capital recovery. This means that the recovery is constrained by both the time needed to552
repair damaged infrastructure and the construction and manufacturing sectors’ ability to satisfy553
reconstruction demand. These constraints lead to a substantial increase in the overall reconstruc-554
tion time, as compared to an analysis considering only physical repair time or an assumed fixed555
recovery rate in the economic model. In the case of the Bay Area, the median time to 99% capital556
recovery increases from 2.0 years (for both HAZUS and fixed ARIO recovery rates) to 5.6 years557
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(when using variable recovery rates plus HAZUS repair times).558

Lastly, the proposed approach allows one to perform cross-model sensitivity analysis that eval-559
uates the effect of different model components – ground motion simulation, physical damage and560
direct loss, and the ARIO model – on the prediction of economic consequences. A sensitivity anal-561
ysis of indirect losses to uncertain modeling parameters from the three modeling stages reveals562
that indirect losses are more influenced by economic parameters (within the chosen parameter563
ranges), namely the number of days of stocked inventory, the time it takes to restock the inven-564
tory, and overproduction capacity. In addition, indirect losses are comparably sensitive to fragility565
functions, which predict the level of damage in a building. Loss ratios, ground motion prediction566
equations, and sector heterogeneity also have an influence, but to a lesser degree. When it comes to567
direct economic losses, all parameters pertaining to regional ground motion simulation, and phys-568
ical damage and loss modeling are significant (except repair time), with the highest sensitivity to569
loss ratios, fragility functions, and ground motion prediction equations.570

The work presented in this paper aims to help stakeholders, such as municipalities and regional571
authorities, to have a more complete understanding of potential earthquake consequences in their572
region. Explicit incorporation of uncertainty provides more transparency in terms of the range of573
possible economic outcomes and allows stakeholders to use different metric thresholds that are574
in line with their risk tolerance (e.g., 50th, 75th or 90th percentile). The proposed approach can575
be used to evaluate various risk management strategies, ranging from pre-disaster risk reduction576
investments into infrastructure to post-disaster economic stimuli and adaptive resilience measures.577
Furthermore, the modular nature of the end-to-end simulation framework enables researchers and578
modelers to incorporate future advancements in the fields of seismology, earthquake engineering,579
and disaster economics.580

APPENDIX - CONSTRUCTION OF THE LOCAL INPUT-OUTPUT MATRIX581

An appendix that summarizes the data and methods used to derive the local input-output (I-O)582
matrix for the ARIO model is provided in an electronic supplement.583
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