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In this paper, we develop a framework for coupling mode-destination accessibility with quantitative
seismic risk assessment to identify communities at high risk for travel disruptions after an earthquake.
Mode-destination accessibility measures the ability of people to reach destinations they desire. We use a
probabilistic seismic risk assessment procedure, including a stochastic set of earthquake events, ground-
motion intensity maps, damage maps, and realizations of traffic and accessibility impacts. For a case
study of the San Francisco Bay Area, we couple our seismic risk framework with a practical activity-based
traffic model. As a result, we quantify accessibility risk probabilistically by community and household
type. We find that accessibility varies more strongly as a function of travelers' geographic location than as
a function of their income class, and we identify particularly at-risk communities. We also observe that
communities more conducive to local trips by foot or bike are predicted to be less impacted by losses in
accessibility. This work shows the potential to link quantitative risk assessment methodologies with
high-resolution travel models used by transportation planners. Quantitative risk metrics of this type
should have great utility for planners working to reduce risk to a region's infrastructure systems.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Seismic risk assessment in earthquake engineering tends to
focus on buildings, bridges, and the performance of infrastructure
systems. For measuring the performance of transportation sys-
tems, researchers typically use engineering-based metrics such as
the post-earthquake connectivity loss, which quantifies the
decrease in the number of origins or generators connected to a
destination node [e.g., [1]], or the post-earthquake travel distance
between two locations of interest [e.g., [2]]. These frameworks
have provided insight into seismic vulnerability and possible risk
mitigation, but do not directly quantify ramifications for people.

In the field of vulnerability sciences, researchers have long
stressed the importance of the impact on human welfare from
earthquakes. For example, Bolin and Stanford write that, “‘Natural’
disasters have more to do with the social, political, and economic
aspects than they do with the environmental hazards that trigger
them. Disasters occur at the interface of vulnerable people and
hazardous environments” [3]. A recent World Bank and United
or 4, San Francisco, CA 94114,

er),

ker).
Nations report echoed this idea that the effects on human welfare
turn natural hazards into disasters [4]. Historical events demon-
strate the complex social effects of earthquakes. For example, on
one hand the 1994 Northridge earthquake caused major damage
to nine bridges, which, while significant, represented only 0.5% of
the bridges estimated by Caltrans to have experienced significant
shaking [5]. On the other hand, over half of businesses reported
closing after the earthquake, with 56% citing the “inability of
employees to get to work” as a reason [6]. Furthermore, the total
economic cost of transport-related interruptions (“commuting,
inhibited customer access, and shipping and supply disruptions”)
from this earthquake is estimated at 2.16 billion USD (2014) [7],
using the consumer price index to account for inflation.

Some researchers have measured the impact of earthquakes on
transportation infrastructure using the cumulative extra time
needed for travel due to damage, sometimes called travel time
delay [e.g., [8,9]]. This performance measure captures basic re-
routing due to road closures and identifies roads more likely to be
congested. Travel time approximately measures impact on people,
but does not capture the fact that some destinations and trips have
higher value than others. It also focuses on aggregate regional
effects rather than individual communities and demographic
groups. Others have considered the qualitative criteria-based
metric “disruption index” [10], but this does not provide a quan-
titative link between physical damage to infrastructure and
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resulting human ramifications. Other work has looked at resi-
liency, but defined it in pure engineering terms, such as percen-
tage of a road network that is functional [11]. Outside of trans-
portation systems, some researchers have investigated the inter-
play between earthquake damage to the electric power and was-
tewater networks, and the usability of houses and other buildings
[12].

In contrast to the work on transportation-related seismic risk,
urban planning has a long tradition of studying the impact on people
of events and policy [13]. Accessibility is one popular metric to mea-
sure the impact of different transportation network scenarios, and it
measures how easily people can get to desirable destinations, which is
one measure of social impact [14]. Within urban planning, accessibility
has been measured in many ways, including individual accessibility,
economic benefits of accessibility, and mode-destination accessibility
[15]. The mode-destination accessibility is computed by taking the log
value of the sum of a function of the utilities of each destination over
all possible destinations and travel modes, where the utility decreases
if getting to that destination is more costly or time-intensive [16]. This
Fig. 1. Travel analysis zones (TAZs) in the San Francisco Bay Area. Shading indicates the
more detail.
choice of accessibility definition is particularly useful for quantifying
the impacts of disasters such as earthquakes, because certain desti-
nations might be more critical for people in certain locations or from
certain socio-economic groups. However, this accessibility measure
has not previously been linked to risk assessment. In addition, the
majority of work to date assumes that travel demand andmode choice
will remain unchanged after a future earthquake, which historical data
suggests is not the case [7]. A first step towards considering variable
demand is work in the literature that varies demand by applying a
constant multiplicative factor on all pre-earthquake travel demand [8],
but again this approach lacks any resolution at the geographic or
socio-economic level.

In this paper, we develop a framework for coupling mode-
destination accessibility with a quantitative seismic-risk assess-
ment to identify at-risk populations and measure the accom-
panying impacts on human welfare. We illustrate our approach
with a case study of the San Francisco Bay Area transportation
network, including highways, local roads, and public transporta-
tion lines. This study analyzes a set of forty hazard-consistent
Danville, Pacifica and San Francisco Financial District TAZs that are considered in



Fig. 2. Illustration of the risk framework for one earthquake event including (a) earthquake rupture and one-second spectral acceleration (ground motion intensity) map,
(b) bridge (component) damage map, (c) map of travel time increase (network-performance measure) values, and (d) map of average accessibility decrease per travel
analysis zone.
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earthquake scenarios, ground-motion intensity maps, and damage
maps, as introduced in [17,18]. For each of these damage maps, we
model damage with an agent-based transportation model used by
the local transportation authorities that considers the impacts of
damage to bridges, roads, and transit lines, and captures variable
user demand. Then, with this model, we estimate losses in
accessibility for 12 socio-economic groups and for a number of
communities within the study region. The results provide a
foundation for evaluating risk mitigation actions, by utilizing a
complete stochastic description of potential disaster impacts,
rather than a set of impacts that is dependent upon a selected
disaster scenario. Additionally, because the accessibility losses are
associated with occurrence rates of the earthquake scenarios, the
results are amenable to cost–benefit analyses of risk mitigation
actions.
2. Case study: San Francisco Bay Area

We consider the San Francisco Bay Area to illustrate our
approach (Fig. 1). This seismically active area follows a polycentric
metropolitan form, with San Francisco as the primary center and
other jobs concentrated in suburban centers such as San Jose [19].
The region has a wide array of trip patterns for mandatory and
non-mandatory trips. Furthermore, trip times and routes vary
greatly depending on travel preferences and workplace locations
[19]. Thus, there may be noticeable disparities among households
in the risk of travel-related impacts due to earthquakes.

This analysis considers the complex web of roads and transit
networks of the case study area. The roads are modeled by a directed
graph G¼ ðV ; EÞ, where V is a finite set of vertices representing
intersections, and the set E, whose elements are edges representing
road links, is a binary relation on V. In this model, ðjV j ; jEj Þ¼(11,921,
32,858) including centroidal links and ðjV j ; jEj Þ ¼ ð9635;24;404Þ
without. Centroidal links do not correspond to particular physical
roads but instead capture flows of people from outside the study
area or from some minor local roads. Forty-three transit networks
such as bus, light rail and ferry systems are also modeled. We model
potential damage to 1743 highway bridges impacting the road and
some transit networks, and 1409 structures impacting the rapid
transit network, BART. Details of the seismic risk calculations for this
network are provided in the following subsections.

2.1. Ground-motion intensity maps

2.1.1. Theory
We now describe how to produce a set of maps with ground-

motion intensity realizations at each location of interest, and
corresponding occurrence rates that reasonably capture the joint
distribution of the ground-motion intensity at all locations of
interest throughout the region [e.g., [20]]. First, we generate Q
earthquake scenarios from a seismic source model, which specifies
the rates at which earthquakes of various magnitudes, locations,
and faulting types will occur. This set of earthquake scenarios is
comparable to a stochastic event catalogue in the insurance
industry.

Second, for each earthquake scenario in the seismic source model,
we use an empirical ground-motion prediction equation (GMPE) to
predict the log mean and standard deviation of a ground motion
intensity measure at each location of interest. Then, for each of the Q
earthquake scenarios, we sample b realizations of spatially correlated
ground-motion intensity residual terms. The total log ground-motion
intensity (Y) for a given realization is computed as

ln Yij ¼ ln YðMj;Rij;Vs30;i;…Þþσijϵijþτjηj ð1Þ

where ln YðMj;Rij;Vs30;i;…Þ is the predicted mean log ground
motion intensity at location index i, given an earthquake of magni-
tudeMj at a distance of Rij, observed at a site with average shear wave
velocity down to 30m of Vs30;i. Variability in ground motion intensity
about this mean value is represented by σiq and τq, the within- and
between-event standard deviations, respectively, for earthquake
scenarios at the index q¼ 1;…;Q . The index j indicates the ground-
motion intensity map (j¼ 1;…;m where m¼ Q � b), ϵij is a nor-
malized within-event residual representing location-to-location
variability and ηj is the normalized between-event residual. Both ϵij
and ηj are normal random variables with zero mean and unit stan-
dard deviation. The vector of ϵij has a multivariate normal distribu-
tion and ηj is univariate.

The result is a set of m ground-motion intensity maps (e.g.,
Fig. 2(a)). Since we simulate an equal number (b) of ground-
motion intensity maps per earthquake scenario, the annual rate of
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occurrence for the jth ground-motion intensity map is the original
rate of occurrence of the earthquake scenario, divided by b. We
denote the occurrence rate of the jth ground-motion intensity map
as wj.

2.1.2. Implementation
To generate a stochastic catalog of ground-motion intensity

maps, we use the OpenSHA Event Set Calculator [21]. This soft-
ware outputs the mean, ln Yij , and standard deviation values, σij
and τj, for all locations of interest for a specified seismic source
model and ground-motion prediction equation, which are needed
inputs for Eq. (1). The intensity measure is the 5%-damped pseudo
absolute spectral acceleration (Sa) at a period T ¼ 1 s, which is the
required input to the fragility functions below. This spectral
acceleration value represents the maximum acceleration over time
that a linear oscillator with 5% damping and a period of 1 s will
experience from a given ground motion. We calculate these values
at the location of each component (i.e., bridges and other struc-
tures). Using one ground-motion intensity measure per compo-
nent is a common simplification that facilitates the use of fragility
functions to easily predict damage to a given type of structure [e.g.,
[9,22]]. We use the UCERF2 seismic source model to specify
occurrence rates of potential earthquakes in the region [23], the
Wald and Allen topographic slope model to infer Vs30;i at each
location [24], the Boore and Atkinson [25] ground-motion pre-
diction equation and the Jayaram and Baker model [26] for spatial
correlation of ϵij values.

2.2. Damage maps

2.2.1. Theory
The link between ground-motion intensity and damage to

network components is provided by fragility functions. Fragility
functions express the probability PðDSiZdsς jYij ¼ yÞ, where DSi is
a discrete random variable representing the damage state for the
ith component and dsς is a damage state threshold of interest. The
damage state is conditioned on the ground motion intensity Yij
having value y. We assume one component per location, and so
identify both components and locations via the index i.
Researchers have calibrated fragility functions using historical
post-earthquake data [e.g., [27]], experimental and analytical
results [e.g., [28]], hybrid approaches, and expert opinion.

By sampling a damage state for each component, with prob-
abilities obtained from the fragility functions given the ground-
motion intensity, we produce a damage map (e.g., Fig. 2(b)). The
sampling process can be repeated to simulate multiple damage
maps per ground-motion intensity map. For example, if c damage
maps are sampled per ground-motion intensity map, the occur-
rence rates associated with the j0th damage map should be
adjusted accordingly to wj0 , where wj0 ¼wj=c, and j0 ¼ 1;…; J.

Functional percentage relationships link the component damage
to the functionality of network elements. For example, in a road
network, when a bridge collapses, the traffic flow capacity of the
road it carries and it crosses are reduced to zero. These relation-
ships are typically derived from a combination of observation and
expert opinion, often due to data scarcity [29]. Furthermore, the
relationships are typically deterministic for a certain component
damage state and restoration time [29]. Thus, in this paper, each
damage map corresponds to a functionality state for every element
of the network.

2.2.2. Implementation
Component damage: We use fragility functions of the following

form to provide the link between ground-motion shaking and
component damage:

PðDSiZdsς jYij ¼ yÞ ¼Φ
ln y�λς;i

ξς;i

 !
; ð2Þ

where Φ is the standard normal cumulative distribution function,
λς;i and ξς;i are respectively the mean and standard deviation of
the ln Yij value necessary to cause the ςth damage state to occur or
be exceeded for the ith component, and the other variables are
defined above.

The California Department of Transportation (Caltrans) pro-
vided the fragility function values λς;i and ξς;i used for road bridges
in this study [30]. The λς;i values are based on bridge character-
istics including number of spans and age [27], and the ξς;i values
are constant for all bridges. The BART seismic safety group pro-
vided the fragility function values λς;i and ξς;i used in this study for
the BART-related components [31]; data is available for the aerial
structures, primarily in the East Bay, but not tunnels. The BART
fragility function values correspond to the safety performance
goals under the recent retrofit program, and both the λς;i and ξς;i
vary depending upon the structure's characteristics. Both sets of
fragility functions are based on the assumption that damage can
be reasonably accurately estimated by the ground motion intensity
at each site independently, and that the damage state can be
reasonably estimated by an analytical model considering a single
ground-motion intensity measure. In addition, the fragility curves
do not directly consider the effects of degradation. Current work is
ongoing to refine these assumptions [e.g., [28,32,33]]. Per ground-
motion intensity map, we sample one damage map (e.g., Fig. 2(b)),
which has a realization of the component damage state at each
component location according to the fragility function (Eq. (2)).

Transit network damage: Each of the 43 transit systems we
considered will function differently when damaged. Because the
Caltrain rail system consists of a single set of shared tracks,
managers suggested that the system would either be fully opera-
tional, or not at all if even one segment of the system was non-
operational. Similarly, managers suggested modeling the VTA
system as either fully or not at all functional. Depending on where
the BART train cars are when the earthquake strikes, the agency
could accommodate different emergency plans. However, BART
representatives suggested that if any part of a route is damaged,
the entire corresponding route would not be operational (but
other routes on different tracks might be still operational). In other
words, each BART route as well as the Caltrain and VTA routes are
weakest-link systems, so the failure of a single component will
cause the route to be non-operational. We modeled the ferry
systems as fully functioning for all earthquake events. For all
earthquake events including the baseline, trans-bay and cross-
county bus lines were discontinued, but main lines in urban areas
as well as other local bus networks were maintained per recom-
mendations from the MTC (though they face the same delays due
to post-disaster traffic congestion as car travelers).

Road network damage: The damage state of each Caltrans
bridge maps directly to the traffic capacity on associated road
segments. Based on discussions with Caltrans, we consider travel
conditions one week after an earthquake, since it is a critical
period for decision making (for example, bridges would have been
inspected and surface damage repaired, but major reconstruction
would not have yet begun). At this point in time, the components
are assumed to have either zero or full traffic capacity [29]. We can
thus summarize the component damage using two damage states,
dsdamaged (corresponding to HAZUS extensive or complete damage
states) and dsfunctional (none, slight, ormoderate damage states) [29].
Thus, the functional percentage relationship assigns zero traffic
capacity on road segments that have at least one component in the
dsdamaged damage state, and full traffic capacity otherwise.



Fig. 3. Analysis steps to evaluate travel demand and travel times.
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2.3. Network performance

2.3.1. Theory
The final step for the event-based risk analysis is to evaluate

the network performance measure, X. For this application, we
consider mode-destination accessibility change [e.g., [15,34,35]]
(e.g., Fig. 2(d)). Mode-destination accessibility, hereafter referred
to as accessibility, measures the distribution of travel destination
opportunities weighted by the composite utility of all modes of
travel to those destinations (i.e., the ease of someone getting to
different destinations weighted by how desirable those destina-
tions are) [16,14]. The utility function for the mode-destination
choice may be estimated using a multinomial random utility
model where the logsum represents the accessibility value
[36,16,14]. Namely, accessibility for a particular agent a is

Acca ¼ ln
X
8 ACa

expðVaðcÞÞ
" #

ð3Þ

where VaðcÞ is the utility of the cth choice for the ath person, and Ca
is the choice set for the ath person [16]. Choices refer to travel
destinations and the mode of travel (driving, walking, bus, etc.).
The units are a dimensionless quantity, utils, but can be converted
into equivalent time and dollar amounts using compensating var-
iation for cost–benefit studies. For the case study, 1 util equals the
value of 75 min or $20 per person per day [14,37–39]. With nearly
7 million people in the study region, even small changes in aver-
age utils lead to large economic impacts. Since accessibility mea-
sures how easily people can get to the destinations they desire, it
is a measure a of human welfare [e.g., [14]].

Once the accessibility network performance measure is com-
puted for each damage map, we aim to estimate the exceedance
rate of different levels of performance. The annual rate, λ, of
exceeding some threshold of network performance is estimated by
summing the occurrence rates of all damage maps in which the
performance measure exceeds the threshold:

λXZx ¼
XJ
j0 ¼ 1

wj0 IIðXj0 ZxÞ ð4Þ

where x is an accessibility value threshold of interest and Xj0 is the
accessibility value realization for the j0th damage map. The vari-
able wj0 is the occurrence rate of the j0th damage map. The indi-
cator function I evaluates to 1 if the argument, Xj0 Zx, is true, and
0 otherwise. By evaluating λ at different threshold values, we
derive an exceedance curve. We note here that this simulation-
based framework has an additional advantage of facilitating con-
sideration of model uncertainty. Multiple models can be sampled
at any step within the framework, and the weights for the sampled
outcome (and resulting accessibility calculation) can be adjusted
to account for the weight on the particular model used. In the
current results, some steps such as the earthquake source model,
consider model uncertainty extensively, while others do not.

2.3.2. Implementation
We compute accessibility using Travel Model One (version 0.3),

an activity-based model used by the Metropolitan Transportation
Commission (MTC), the local metropolitan planning organization
(MPO) [40]. It represents the full road network as well as the
public transit networks, biking, and walking. The agents in the
travel model simulation are people drawn from the Census Public
Use Micro-Sample, and are differentiated by their age, gender,
worker status, student status, and household factors such as
income, number of workers, number of vehicles, number of chil-
dren, and other demographic data [38,40–42]. The utility, VaðcÞ, of
the cth choice for the ath person is a function of factors including
travel time, travel cost (including tolls), origin and destination
density, automobile ownership, destination topography, distance
to transit, household size, age, and the traveler's value of time,
which is sampled from lognormal distributions based on the
person's income [43]. The mode choice set, C, is: drive alone, drive
with one other passenger, drive with two other passengers, walk,
bicycle, transit via walking, and transit via driving. This data was
collected by the MTC from household travel surveys, on-board
transit passenger surveys, and census information [42,44].

We assume that the distributions of travel preferences do not
change after an earthquake, although the actual destinations and
trips will vary as people choose to forgo trips due to network
disruption. The result is a variable-travel-demand model. This
model uses a combination of Java code called CT-RAMP [45], and
the Citilabs Cube Voyager and Cube Cluster transportation plan-
ning software [40]. The software takes 6þ hours on a high-
performance computing platform to analyze a given network
state, including reaching equilibrium on users trip choices and
preferred travel modes and routes. Fig. 3 illustrates the basic
design of this variable-travel-demand model, where the “Deter-
mine demand” stage uses the utility functions described above
among other factors, as implemented in the CT-RAMP module, and
the “Assign trips” stage uses the Cube software. Readers are
referred to [17] for a more detailed discussion of the model design.

Given the computational cost of analyzing the network, ana-
lyzing thousands of scenarios with a crude Monte Carlo approach
is not feasible. This analysis uses an improved sampling strategy to
select damaged networks for analysis, and considers 40 sets of
ground-motion intensity maps, damage maps, accessibility per-
formance measure realizations, and corresponding annual rates of
occurrence. The 40 realizations were selected (and their occur-
rence rates adjusted appropriately) using optimization to ensure
that the selected scenarios were consistent with the larger original
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set of simulations. Consistency was evaluated in terms of ensuring
that the subset of maps had the same probability distributions of
ground motion intensity at individual sites as the complete set of
simulations, and that the distribution of the number of damaged
bridges in the network is also consistent between the subset and
full set. Because we ensure that these statistics of earthquake
impacts are properly represented, we term the subset “hazard
consistent,” and infer that it will produce comparable probability
distributions of accessibility impacts as the full set of simulations.
Readers are referred to [17] for more details about this set of
events and computing mode-destination accessibility using
this model.
3. Results and discussion

3.1. Region-wide results

In this section, we analyze region-wide trends in accessibility
losses for the case study area. We first analyze each of the 12
socio-economic groups used in practice for the case study region
[38]. These socio-economic groups correspond to all combinations
of four income classes (Table 1), and three classes of automobile
availability in the household (zero automobiles, fewer automobiles
than household members that work, as many or more automobiles
than household members that work). Each data point for analysis
represents a trip by a person of a household from one of these
segments, who is modeled as an agent in the transportation
model. Expected losses are computed by taking an average of the
accessibility losses for people within a given group and region for
each earthquake event, weighted by the events' corresponding
occurrence rates. Expected losses for people from each of the 12
groups and 1454 TAZs are shown in Fig. 4.

In addition to looking at average accessibility loss, we can
compute an accessibility exceedance curve for a given group or
region. By using Eq. (4) to compute exceedance rates for multiple
accessibility loss thresholds, we can produce results like those in
Fig. 5. These curves show, for a given group, the annual rate with
which a given accessibility decrease will be observed (when con-
sidering random future occurrences of earthquakes and damage).
Several observations can be made from these results.

First, a higher ratio of cars to the number of people who work
in a household corresponds to a higher expected decreases in
accessibility (as seen by looking across a column in Fig. 4).
Households with more cars tend to take longer trips, and there is a
relationship between needing to travel longer distances and
needing an extra cars in a household. But there is only a weak
trend between average trip length for a TAZ and the predicted
impact on accessibility (Fig. 6). Instead, we hypothesize that there
are other latent variables correlated with both car ownership and
accessibility risk (such as geographic location). In Section 3.5, we
will further explore the relationship between the percentage of
car-based trips and accessibility risk.

Second, controlling for car ownership, we see a fairly consistent
distribution of risk across income classes. For example, looking at
Table 1
Income class definitions for the case study region, as defined by the local planning
organization, the MTC [38] and also translated to current 2014 USD using the
consumer price index.

Income class Income range, 1989 USD Income range, 2014 USD

Low o$25;000 o$47;334
Medium $25,000–$45,000 $47,334–$85,202
High $45,000–$75,000 $85,202–$142,004
Very high 4$75;000 4$142;004
households with fewer workers than cars (the middle column of
Fig. 4), the variation from TAZ to TAZ is much greater than the
difference across income segments. Similarly, while trip lengths
are slightly longer for higher income households, the differences
are subtle. Thus, for a given TAZ, the differences in impacts across
incomes are not that great. There is, however, an unequal geo-
graphic distribution of wealth in the study region. Because of this,
when we aggregate accessibility risk across TAZs, we see that
accessibility risk rises slightly with increasing household income
(Fig. 5(b)).

Next, we consider TAZs indicated to have elevated risk. The San
Francisco Peninsula is at risk of disruption from large magnitude
San Andreas earthquakes, while the East Bay is at risk from slightly
smaller but more frequent events on the Hayward Fault. Network
simulations indicate that both Hayward and San Andreas earth-
quakes can cause accessibility problems for the East Bay. Fig. 7
shows realizations of a magnitude 6.85 Hayward event and a
magnitude 7.45 San Andreas event—both show high accessibility
losses in the East Bay. In contrast, the main predicted accessibility
losses in San Francisco correspond primarily to San Andreas
events. Fig. 7(c) and (d) provides one such example. Fig. 7(e) and
(f) shows a lower magnitude event farther away from the main
population centers: a magnitude 6.35 event in the Great Valley
Pittsburg–Kirby Hills Fault. This shows how the more minor faults
in the East Bay can contribute to that area's risk. Fig. 7 results are
for one specific socio-economic group, but comparable results for
the other groups show the same patterns.

Finally, we can examine the rates of loss exceedance (Eq. (4)), as
shown in Fig. 5. Recognizing that the impact varies significantly by
TAZ, as indicated by Fig. 4, we also examine the accessibility loss
exceedance curve for three communities: part of the San Francisco
Financial District, Danville, and Pacifica. This part of the San
Francisco Financial District represents an area with relatively low
expected changes in accessibility, whereas Danville and Pacifica
are at an elevated risk in almost all socio-economic groups (Fig. 4).
The general trends are corroborated by the loss exceedance curves
for these three communities (Fig. 5(a) shows results for medium
income households with fewer cars than workers). The average
middle-class person from Danville in a household with fewer cars
than workers is expected to experience travel-related losses up to
1 util (or 75 min of extra travel time per day) after a rare earth-
quake. In contrast, a resident of San Francisco's Financial District
has expected losses of only a tenth as much when considering the
same exceedance rate. At annual rates of less than 0.01 (i.e., return
periods greater than 100 years), Danville and Pacifica follow a
similar general pattern that differs dramatically from that of San
Francisco.

3.2. Analysis for San Francisco financial district

Two factors may explain this San Francisco TAZ's lower acces-
sibility losses relative to most other communities. First, it differs
dramatically frommany other TAZs in having a small percentage of
trips made by car (38% versus an average of 85% across all TAZs).
Households traveling by foot or bike are less influenced by net-
work damage, because foot travel routes and travel times are
assumed to not be affected by bridge damage and road congestion.
Additionally, trips by foot and bike tend to be to destinations that
are shorter distances away than trips made via other modes.
Second, the times for trips to and from work are similar to that of
other TAZs, and the average trip distance is only 7% lower than the
average for all trips region-wide. So the trip times and lengths do
not explain the differences in accessibility losses in this TAZ. The
data thus suggests that a major cause for the low accessibility risk
of this TAZ is the low dependence on cars for mobility.
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3.3. Analysis for Pacifica

Pacifica is wedged between the Pacific Ocean to the west and
the coastal mountains to the east. The main access road is historic
California Highway 1, which has a number of older and seismically
vulnerable bridges. There are no viable alternative routes to
population centers via local roads. Most trips from Pacifica are
taken by car (88%), and the average trip length is 108% longer than
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the region-wide average, so the Highway 1 vulnerability is parti-
cularly serious.

As a comparison, consider Half Moon Bay, a community about
13 miles to the South (Fig. 8). Half Moon Bay has significantly
lower expected accessibility losses compared to Pacifica (0.11 utils
for a middle income household with fewer cars than workers,
versus 0.43 utils in Pacifica). While the seismic hazard for the two
towns is similar, Half Moon Bay's population is about one third of
Pacifica's, so there is less local demand for Highway 1's limited
road capacity [42]. Perhaps more importantly, Half Moon Bay has a
key alternative to California Highway 1: California Highway 92,
which links to the main highways of the peninsula. Since Pacifica
is unusually reliant on one road with key vulnerabilities, it has an
elevated risk for losses in accessibility.

3.4. Analysis for Danville

Danville is a suburban community with many residents com-
muting large distances by car. The average length of a trip from
Danville is 85% longer than the average over all trips in the study
region, with a relatively high proportion of trips taking more than
60 minutes and traveling over 40 miles. These longer trips have
more opportunities to be impacted by road closures, because more
roads and bridges will be used to complete the trip. Moreover,
many Danville trips are via highways, which increases the like-
lihood of crossing (damage prone) highway bridges.

Bridge damage is important for many regions, including Dan-
ville, because the percentage of car-based trips is high (85% of all
trips from Danville, which is approximately average for all TAZs).
For all three simulations shown in Fig. 7, some bridges in the
Oakland area are damaged and thus closed. In addition, in the first
two simulations, there are closures to the north of Danville, which
represents one of the two main travel routes from Danville. There
are also scattered closed bridges to the west of Danville, a top
travel corridor for people of Danville because of the workplace
centers in San Francisco, Oakland, and San Jose (all to the west). As
for transit, in the first two events, all BART lines are closed, so
there are limited alternatives to the popular road routes. The result
is that the residents of Danville have reduced access to their nor-
mal destinations after these events. Looking at the rate of bridge
damage across all of the earthquake simulations in Fig. 7(g), we
see that bridges in the Oakland area and to the north of Danville
are particularly likely to be damaged. This suggests that Danville's
proximity to vulnerable bridges contributes to its accessibility risk.

3.5. Impact of travel mode shifts and regional variations in travel
mode patterns

Over all the simulated events, taking a weighted average by the
annual occurrence rate of each event, we see a 25% reduction in
transit ridership after an earthquake. The heavy rail systems (BART
and Caltrain) are not fully operational in most of the forty simu-
lated events (Table 2), and these have heavy ridership. The light
rail systems (VTA and Muni) also suffer losses in many events
(Table 2). Some of the pre-earthquake transit trips do not take
place at all in the post-earthquake simulations, and some switch to
other modes (car, foot and bike), causing small average increases
in the number of trips taken by other modes. One exception to this
trend is the M6.35 Great Valley earthquake illustrated in Fig. 7
(e) and (f). In this event, there were no line closures on the four
major transit systems listed in Table 2. There were, however, some
bridge closures on the highways, resulting in a slight increase in
transit ridership and in trips by foot.

In general, accessibility impact grows with increasing number
of damaged transit lines, particularly in combination with high
numbers of damaged bridges (Fig. 9). Individual network simula-
tions also suggest that transit is a key contributor to accessibility
risk. For example, the M6.85 Hayward and the M7.45 Northern San
Andreas Fault events from Fig. 7 both have around 11% of bridges
damaged. These events are labeled in Fig. 9, which indicates that
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the Hayward event has significantly higher transit network
damage and accessibility loss. The Northern San Andreas event
had 10 of the 14 BART lines and all Muni lines operational,
whereas the Hayward event had no BART lines and 5 of the 8 Muni
lines operational (Caltrain and VTA were not operational in either
simulation). Moreover, the differences in accessibility results could
not have been predicted from simpler models focusing on bridge
portfolio losses, because the percent of damaged bridges was
about the same, and the San Andreas event actually corresponded
to a greater increase in fixed-demand travel time when modeled
using a much simpler traffic model.

Next, we examine the correlation between a community's
walkability, as measured by the percentage of total trips made by
that travel mode, and its expected decrease in accessibility. Fig. 10
shows that communities with a high percentage of pre-earthquake
trips on foot have a lower average decrease in accessibility. This
result corroborates the specific example of the San Francisco
Financial District discussed in Section 3.2. Furthermore, on aver-
age, the number of by-foot trips increases after the earthquake
events where road congestion worsens. This model result is con-
sistent with the observations after the 1995 Kobe earthquake, in
which many commuters switched to walking and biking in the
weeks after the earthquake [7]. This suggests that communities
with greater walkability are also more resilient to earthquake-
related accessibility risk.



Fig. 8. Roads providing access from Pacifica and Half Moon Bay.

Table 2
Number of the 40 earthquake realizations in which for major transit networks have
a specified level of functionality. Functionality is measured by the percentage of
lines that are operational in a given realization.

Functionality BART Caltrain Muni light rail VTA light rail

Full 3 13 25 9
50–99% 10 0 15 0
1–49% 8 0 0 0
None 19 27 0 31
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4. Conclusions

We have shown how mode-destination accessibility can be
used to link post-earthquake infrastructure damage to the impact
on human welfare and enables identifying at-risk geographic and
demographic groups in a region. Adopting this performance metric
from the urban planning community, we have illustrated its use
for seismic risk assessment and mitigation through a case study of
the San Francisco Bay Area. For the case study, we considered a set
of 40 hazard-consistent earthquake scenarios, ground-motion
intensity maps, damage maps, and corresponding annual rates of
occurrence. For each damage map, we performed a detailed
activity-based travel model calculation that includes the road
network, transit networks, walking and biking options, variable
travel demand, and mode choice. We used this data and model to
compute the mode-destination accessibility, a performance mea-
sure for each community and each socio-economic group (defined
by income class and car ownership). This procedure is more
resource intensive than a more traditional approach of considering
impacts from a single disaster scenario, but it provides additional
insight by providing a complete characterization of the uncertain
future impacts of earthquakes. For example, the case study region
is known to be vulnerable to future San Andreas or Hayward fault
ruptures, which are frequently used for planning purposes in the
area, but this study showed that some regions in the East Bay are
at great risk from other less-widely-considered rupture scenarios.

We saw stark differences in accessibility from location to
location. We found that these geographic trends persisted across
income classes and car ownership groups. Nonetheless, higher
income households with more cars than workers had higher
average accessibility losses than other socio-economic groups. One
reason for this is the geographic clustering of these households in
higher-risk areas. Another factor is that these households tend to
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take longer daily trips, thus crossing more roads and bridges and
possibly increasing the likelihood of disruption. We also con-
sidered three specific communities that were predicted to have
greatly differing experiences after a future earthquake, in order to
understand the geographic and demographic reasons underlying
these differences in risk.

This study considered the possibility that travel modes will
shift after an earthquake, and communities that can more easily
adjust are predicted to experience lower post-earthquake losses in
accessibility. The results suggest that the walkability of a com-
munity, as measured by the percentage of pre-earthquake trips by
foot, is closely linked to reduced accessibility risk. We also found
that in almost all of the simulated earthquake events, the transit
system is predicted by this model to be severely impacted. The
result is a reduced mode share for transit and increased trips by
other modes (car, walking, and bike). Thus, this study suggests that
neglecting to consider transit disruption can lead to a non-
conservative estimate of seismic risk of transportation systems.
The model shows, however, that when transit is not damaged—
which is rare for this case study—ridership increases. As impacts of
these system characteristics are better identified, the proposed
approach can provide a benchmark against which potential sim-
plified decision-making approaches can be evaluated.

In conclusion, mode-destination accessibility offers important
insights into the relationship between damage to physical infra-
structure and impacts on human welfare. Using a detailed trans-
portation network model, computationally efficient analysis stra-
tegies, and this refined measure of impact, we obtain new insights
about users’ risk, and obtain metrics that are usable by urban
planners responsible for long-term management of transportation
systems. This approach provides a foundation for future work in
risk mitigation and policy to reduce the vulnerability of at-risk
communities. It suggests that initiatives making communities
more conducive for cycling and walking to work can increase
resiliency to disasters. It also provides a method to quantify eco-
nomic and societal benefits of upgrading various aspects of a
region's transportation systems.
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