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ABSTRACT: Near-fault earthquake ground motions containing large velocity pulses are known to cause se-
vere demands on structures and geotechnical systems, but the probability of occurrence of these pulses in fu-
ture earthquakes is not well understood. Using a database of past ground motions that have been classified as
containing or not containing velocity pulses, this paper develops calibrated regression models to predict the
occurrence of velocity pulses in future ground motions, as well as the nature of the pulses if they do exist. The
regression model selection procedure indicates that useful predictors of pulse occurrence include source-to-site
geometry variables such as the length of rupture between the epicenter and location of interest, and the closest
distance from the location of interest to the fault rupture. It is observed that the period of any resulting veloc-
ity pulse is related primarily to the earthquake magnitude, but other predictive parameters are also considered
and discussed. Both empirical regression tests and theoretical seismology explanations are given as to why the
chosen predictor variables are important and meaningful. Some comparisons with previous similar models are
also presented. The resulting predictive models can be incorporated into probabilistic seismic hazard analysis
calculations. These results demonstrate the potential importance of quantitatively considering occurrence of
near-fault pulses, and facilitate seismic reliability calculations that explicitly consider near-fault ground motion
pulses.

1 INTRODUCTION

Near fault ground motions may sometime contain a
strong pulse at the beginning of the velocity time his-
tory. This pulse-like feature is primarily caused by
forward directivity effects and are observed when the
fault ruptures towards the site at a speed close to the
propagation velocity of the shear waves (Somerville
et al. 1997, Somerville 2003, Spudich and Chiou
2008). These ground motions referred as “pulse-like”
in this paper place extreme demands on structures and
are known to be the cause of extensive damage in pre-
vious earthquakes (e.g., Bertero et al. 1978, Anderson
and Bertero 1987, Hall et al. 1995, Iwan 1997, Alavi
and Krawinkler 2001, Menun and Fu 2002, Makris
and Black 2004, Mavroeidis et al. 2004, Akkar et al.
2005, Luco and Cornell 2007). Pulse-like ground mo-
tions have higher elastic spectral acceleration (Sa)
compared to ground motions without the pulse-like
feature. The current ground motion models which are
used to perform probabilistic seismic hazard analy-
sis (PSHA) do not account for the amplification in Sa
caused by these ground motions. Thus the PSHA re-
sults computed using the current ground motion mod-
els results in under-prediction of hazard at near fault

sites, where pulse-like ground motion are expected.
Along with amplifying Sa, pulses also cause larger
inelastic multi degree of freedom (MDOF) response.
Traditional intensity measures like Sa at the funda-
mental period of the structure are inadequate in cap-
turing the larger nonlinear response of MDOF sys-
tems excited by pulse-like ground motions (Baker and
Cornell 2008), which makes characterizing the risk
from pulse-like ground motion difficult. The impor-
tance of accounting for the effect of pulse-like ground
motion in design code has long been recognized, but
the methods to account for pulses used currently are
relatively ad-hoc. We need deeper understanding of
how these pulse-like ground motions affect both the
hazard and the risk before we can properly account
for their effect in future design codes.

Predicting the probability of observing pulse-like
ground motion at a site is an important step towards
accounting for the effects of these ground motion
in hazard computation. Modifications for the ground
motion models to predict the ground motion intensity
measure at sites when pulses are observed have been
proposed in the past (e.g., Somerville et al. 1997, Spu-
dich and Chiou 2008, Shahi and Baker 2010). With
the knowledge of probability of occurance of pulse



at the site one can combine the prediction from tradi-
tional ground motion models and the modified ground
motion model to come up with an estimate of haz-
ard at the site. Equation 1 shows one possible way of
combining the modified and traditional ground mo-
tion model results using the total probability theorem
(e.g., Benjamin and Cornell 1970). The term P (Sa >
x|pulse) in equation 1 is computed using the results
from modified ground motion models for pulse-like
ground motions and the term P (Sa > x|no pulse) is
computed using the results from a traditional ground
motion models which does not account for the ef-
fects of pulses. Note that Sa depends on the period
being considered and P (Sa > x) depends on parame-
ters like magnitude, distance etc., those dependences
along with the period under consideration are not ex-
plicitly included in equation 1 for brevity.

P (Sa > x) = P (Sa > x|pulse) · P (pulse at site)

+P (Sa > x|no pulse) · (1− P (pulse at site)) (1)

As discussed above, along with amplifying Sa at
moderate to large periods, pulse-like ground mo-
tions also cause amplification in response of nonlinear
MDOF systems and this amplified response cannot be
completely characterized by using traditional inten-
sity measures. It is believed that the response depends
on the period of the pulse (Tp), and vector valued in-
tensity measures including Tp can be used to charac-
terize the nonlinear response of MDOF systems. It is
also known that pulse in the ground motion amplifies
the Sa in a narrow band of period (Somerville 2003,
Shahi and Baker 2010) and this narrow band amplifi-
cation is centered about the period of the pulse Tp. So
along with helping in characterizing the response of
nonlinear MDOF systems, estimation of Tp can help
in characterizing the amplification of Sa.

In this paper we study and develop predictive
equations for the probability of observing pulse-like
ground motion at a site and the period of the pulse
expected at a site. The predictive relationships devel-
oped in this paper can be used to improve the under-
standing of pulse-like ground motions and help the
practitioners dealing with problems related to hazard
and risk at near fault sites.

2 DATASET USED TO BUILD THE MODELS

The earthquake ground motion recordings in the NGA
database (Chiou et al. 2008) were used as the base
ground motion library for this study. Each ground mo-
tion in the database was classified as pulse-like or
non-pulse-like using the classification algorithm pro-
posed in Shahi and Baker (2010). The classification
algorithm rotates the ground motion in all orienta-
tion and classifies the ground motion in each orien-
tation using the wavelet based classification scheme

proposed by Baker (2007). A site is classified as hav-
ing observed pulse-like ground motion if ground mo-
tion in any orientation is classified as pulse-like. The
database consists of 3551 ground motions, of which
169 were classified as pulse-like.

3 PROBABILITY OF PULSE

Pulse-like ground motions caused by forward direc-
tivity effects are observed at near fault sites, but not all
near fault sites experience pulse-like ground motion.
This makes it important to estimate the probability of
observing a pulse in order to correctly do PSHA cal-
culations for near fault sites. Forward directivity is a
physical phenomenon with well known causes, but it
is hard to predict the occurance of pulse-like ground
motion at a site because of incomplete information
about the source, site and the path of wave propaga-
tion that cause this phenomenon. Due to this lack of
knowledge it is useful to develop a statistical model
which agrees with the observations. We follow the ap-
proach of Iervolino and Cornell (2008) and model the
occurance of pulse by a random variable (I) which
takes the value 1 if pulse is observed at the site and 0
if pulse is not observed at the site (these type of vari-
ables are also called indicator variables).

3.1 Logistic Regression

Generalized linear models (GLMs) are generalization
of the ordinary least squares regression and allows
modeling variables following any distribution belong-
ing to the exponential family of distribution (e.g., Mc-
Cullagh and Nelder 1989). A distribution belongs to
exponential family if it can be written in the form :

f(y) = exp(ηy− ψ(η)) · c(y) (2)

where f(y) is the probability density, η is called the
natural parameter, y is the sufficient statistics, ψ(η)
is called the normalizing or the cumulant generat-
ing function, c(y) is called the carrier density. Many
common probability distributions like normal distri-
bution, poisson distribution, binomial distribution and
gamma distribution belong to the exponential family.
GLMs uses linear model to predict the natural param-
eter (η) as shown in equation 3.

η = X · β = β0 + β1 · x1 + . . .+ βp · xp (3)

In our case we are interested in modeling the prob-
ability of pulse occurance, modeled by a random vari-
able capable of taking the values 0 or 1 as explained
above. This random variable can also be thought of
as a binomial random variable which represents the
number of successes (pulses) in 1 trial. Now the prob-
ability density of a binomial random variable is given



by equation 4, which can be re-written in the expo-
nential family form as shown in equation 5.

f(n) =

(
N

n

)
pn(1− p)N−n (4)

f(n) = exp[(log
p

1− p
) · n+Nlog(1− p)] ·

(
N

n

)
(5)

By comparing equations 2 and 5 one can see that
the natural parameter (η) for the binomial distribution
is log( p

1−p), the sufficient statistic is n, the cumulant
generating function isNlog(1− p) and the carrier de-
sity is

(
N
n

)
. As shown in equation 3, we model the

natural parameter as a linear function of predictors as
shown in equation 6. Equation 7 shows the function
we will use to predict the probability of pulses as a
function of various parameters (X in the equation).

η = log
p

1− p
= X · β (6)

=⇒ p =
eX·β

1 + eX·β =
1

1 + e−X·β (7)

where X · β = β0 + β1 · x1 + . . .+ βp · xp

3.2 Fitting of the model

Iervolino and Cornell (2008) developed a model to
predict probability of pulse occurance at a site using
a dataset of pulse-like ground motion classified us-
ing the pulse classification technique of Baker (2007).
Since the Baker (2007) technique classifies pulses
only in the fault normal orientation, the Iervolino and
Cornell (2008) model predicts the probability of ob-
serving a pulse only in the fault normal orientation.
The Shahi and Baker (2010) classification technique
used here classifies pulses in any arbitrary orientation
and thus necessitates building a new model to predict
probability of observing a pulse in any orientation at
the site.

It is known that the observation of forward directiv-
ity effects depends on source-to-site geometry, so we
can use this knowledge to narrow our search for pre-
dictor variables to different source-to-site geometry
parameters. Several source-to-site geometry parame-
ters have been used in past to predict directivity ef-
fects at a site. Iervolino and Cornell (2008) used many
combination of these parameters to fit logistic regres-
sion and compared the Akaike’s information criterion
(AIC) of different models to select the one with low-
est AIC. The AIC is defined by equation 8, where k
is the number of parameters in the model and lnL is
the log likelihood of the model; the function repre-
sents the trade off between model fit and parsimony
(Akaike 1974). By increasing the number of param-
eters in the model one can always improve the fit to

Figure 1: A diagram explaining the source-to-site parameters
used to predict probability of pulse for a) Strike-slip fault and
b) Non strike-slip fault. (from Shahi and Baker 2010)

data, and thus increase log-likelihood. This improve-
ment in fit may be due to fitting the noise in the data,
and is known as over-fitting the data. Models which
over-fit the data are good at reproducing the data used
for fitting but are bad for prediction. Minimizing the
AIC tends to select parsimonious models with suffi-
ciently high log-likelihood and thus avoid the prob-
lem of over-fitting.

AIC = 2k− 2lnL (8)

Iervolino and Cornell (2008) found that closest dis-
tance from the fault (r), amount of rupture between
the fault and the site (s) and the angle between the
strike of the fault and line joining epicenter and the
site (θ) are the best predictors for predicting probabil-
ity of observing a pulse from a strike slip fault. Anal-
ogous predictors r, d and φ were found best for non
strike slip fault. Figure 1 shows a diagram explaining
these parameters. We consider the same parameters
identified by Iervolino and Cornell (2008) even for
this larger dataset as they seem to define the source-
to-site geometry sufficiently well.

The logistic regression models were fitted by max-
imum likelihood method using the glm function in R
(R Development Core Team 2010).

3.2.1 Model for strike-slip faults
The dataset contained 680 ground-motions from
strike-slip earthquakes for which all the source-to-
site geometry parameters were known, out of these
41 were classified as pulse-like. This dataset of 680
ground motions was used to fit the model for strike-
slip earthquakes. While fitting the model, θ turned out
to be an insignificant predictor when we used r,s and
θ as predictors for the logistic regression. Generally
insignificance of a predictor in a statistical model is
interpreted to mean that the predictor does not have
any predictive value. One can see that in some cases
when the site lies in the unshaded region shown in fig-
ure 2, r and s can define the geometry completely and
θ (which is tan−1( r

s
) in this case) is a redundant pa-

rameter not providing any new information. But theta



Figure 2: A diagram showing regions where r and s completely
defines the source-to-site geometry and θ is redundant and the
region where θ is needed along with r and s to completely define
the source-to-site geometry. The figure shows two sites (A and
B) which has same r and s but different θ to show the importance
of θ in the shaded region.

does provide some new information when the site lies
in the shaded region of figure 2, in this case two sites
with same r and s can have different θ (as shown in
the figure). One needs to know the complete source
and site geometry information to determine the region
in which a site is located but a quick heuristic check is
sufficient to estimate the fraction of sites in the shaded
area. If one takes the ratio ofRepi · cos(θ) and s, where
Repi is the epicentral distance and s and θ are defined
above, the ratio will be close to 1 when the site is lo-
cated within the area where θ is redundant (unshaded
region) and will be larger than 1 when the site is lo-
cated in the area where θ is important (shaded region).
Note that this calculation will not give us exact re-
sults because real fault geometries are more complex
than the simple straight line shown in figure 1. Fig-
ure 3 shows the histogram of Repi·cos(θ)

s
for sites where

pulses were observed, one can see that few pulse-like
ground motions lie in the region where θ is important.
So we may not have enough data to constrain the re-
lationship with respect to θ and thus θ ended up as an
insignificant parameter in the regression.

As explained above, θ is insignificant because r
and s alone can explain the geometry for most of the
pulse-like sites. Actually any two parameters from r,
s and θ can describe the geometry completely when
the site is in the unshaded region shown in figure 2.
So we fit logistic regression models using all possible
pairs of predictors (r and s, r and θ, s and θ) and se-

Figure 3: Histogram of Repi·cos(θ)
s

Table 1: AIC for strike-slip models with different predictors.
Parameters used AIC
R, s 140.77
R, θ 155.95
s, θ 250.61
R, s, θ 141.34

lect the one with lowest AIC. The result from fitting
is shown in table 1, note that the result from using all
three parameters is also shown for comparison.

The model with lowest AIC was selected and is
shown in equation 9. Here the units of r and s are km.
The dataset contained r ranging from 0.07 km to 472
km and s from 0.3 km to 143 km. Since the model
only depends on two parameters we can look at the
contours of probability in r, s space as shown in figure
4. We have superimposed the data used for regression
on figure 4 to visually verify the prediction. One can
interpret the ratio of pulses to non pulses in a region
as an estimate of probability of observing a pulse at a
site with some r and s. Figure 4 shows that the prob-
ability contours generally follow the trend shown by
the data. One can also test the model by comparing
actual pulse observation from a particular earthquake
with the prediction from the model, this comparison
for Imperial valley fault is shown in figure 5.

P (pulse) =
1

1 + e(0.642+0.167·r−0.075·s) (9)

3.2.2 Model for non-strike-slip faults
The dataset contained 2169 non-strike-slip ground
motions for which all the required parameters were
known, out of these 124 were classified as pulse-like.
We used the same variables selected by Iervolino and
Cornell (2008) to fit the non-strike-slip model. In this
case all three parameters are statistically significant.
The model can be summarized by equation 10. The
unit for r,d is km and φ is degrees. The range of r
values was 0.3 km to 255 km, d ranged from 0 to 70
km and φ ranged from 0 to 90 degrees.

P (pulse) =
1

1 + e(0.128+0.055·r−0.061·d+0.036·φ)
(10)



Figure 5: Map of Imperial Valley earthquake showing (a) contours of probability of pulse occurance for the given rupture, (b) sites
where pulse-like ground motion was observed (from Shahi and Baker 2010).

Figure 4: Contours of predicted probability of pulse due to an
earthquake from a strike-slip fault at different r and s values.

Since the non-strike-slip model depends on three pa-
rameters, a simple visual verification as shown in fig-
ure 4 for strike-slip fault is difficult. But we can still
check the model by comparing the actual observation
of pulse-like and non-pulse-like ground motion with
the model prediction. Figure 6 shows such a compar-
ison for the Northridge earthquake. The model pre-
dicts high probabilities in regions where pulses were
actually observed during the Northridge earthquake.

4 PULSE PERIOD

The period of the pulse-like feature is an impor-
tant parameter, as the ratio of pulse period and the
structural period can be used to determine the struc-
ture’s response (Anderson and Bertero 1987, Alavi
and Krawinkler 2001, Mavroeidis et al. 2004). The
amplification of Sa due to presence of pulse also oc-
curs in a small band of period close to the period of the
pulse, this makes predicting pulse period an important
part of hazard and risk computations. Several mod-
els have been proposed in the past for predicting the
period of pulse-like ground motion (e.g., Mavroeidis
and Papageorgiou 2003, Bray and Rodriguez-Marek
2004, Akkar et al. 2005). We decided to model this
relationship again as the classification algorithm of
Shahi and Baker (2010) used for this study identifies
pulses in different orientation. With the new dataset
we have information from many pulses in different
orientation at the same site, something which was not
available for previous studies.

4.1 Mixed effects regression

The dataset used for this study included many pulses
from the same site which were identified in differ-
ent orientations. Pulses at the same site but in differ-
ent orientations share common source and site effects,



Figure 6: Map of Northridge earthquake showing (a) contours
of probability of pulse occurance for the given rupture, (b) sites
where pulse-like ground motion was observed (from Shahi and
Baker 2010).

and this commonality introduces some correlation be-
tween periods of these pulses which must be properly
accounted for while fitting the model. Mixed effect
model is a popular statistical technique to capture this
type of within group correlation. Equation 11 sum-
marizes the mixed effects model used here, the term
yij represents the parameter of interest in jth orien-
tation of ith site, f(·) is the functional form used for
regression, ηi is the random effect term, it represents
the error common to the ith site, εij represent the error
at ith site in jth orientation. We follow the convention
used by Abrahamson and Youngs (1992) and call ηi
the inter-event residual and εij the intra-event resid-
ual.

yij = f(·) + ηi + εij (11)

In order to model the predictive relationship for Tp
we find a suitable functional form for the regression (
f(·) in equation 11) and fit the regression. The search
for predictors is discussed below and the fitting was
done by maximum likelihood method using the lme4
package (Bates and Maechler 2010) in R (R Develop-
ment Core Team 2010).

4.2 Search for predictors

Most existing predictive equations for Tp model lnTp
as a linear function of magnitude (magnitude refers to
the moment magnitude of the earthquake). Seismol-
ogy theory indicates that the pulse period is related

to the rise time of slip on the fault and the logarithm
of rise time is proportional to magnitude, this justifies
using a linear relationship to predict lnTp as a linear
function of magnitude (Somerville 1998, Somerville
et al. 1999). Since the dataset used in our study was
much bigger than those in previous studies we were in
a position to systematically search for additional pre-
dictors. As the space of all possible functional forms
is vast and it is impossible to exhaustively search for
the best functional form, we reduced the search space
by only considering linear combination of the predic-
tors described below.

Magnitude of earthquakeM , parameters describing
the source to site geometry, (r,s for strike-slip faults
and r, d for non-strike-slip faults) along with Vs30 and
their log, square and square root were taken as candi-
dates to be included in the linear mixed effect model
(total of 4× 4 = 16 possible predictors each, for both
strike-slip and non-strike slip faults). The dataset was
divided into two part depending on if the source was
strike-slip or not. All the pulse-like ground motions
classified by the Shahi and Baker (2010) algorithm
except those with Vs30 > 2000 m/s were used for this
study.

A stepwise regression scheme was used to select
the parameters for the final model. First all mixed
effect models with just a single predictor were fit-
ted to predict lnTp and the predictor with highest
log-likelihood was selected. After selecting the first
parameter, all possible two parameter models were
constructed by combining the first selected parameter
with each of the other parameters one by one. The pa-
rameter which increased the log likelihood the most
was selected as the second parameter. This process
was repeated until no parameter made a significant
contribution in the model (a 95% level of significance
was used as the cutoff). Note that the model with best
log-likelihood has the best AIC too.

This scheme identified M , lnVs30 and
√
r as pre-

dictors for strike-slip fault and M and r2 as predictors
for non-strike-slip faults.

4.3 Fitting of the model

After selecting the parameters using the forward step-
wise procedure the following model was fitted to the
data.

lnTpij = α+ β1 ·M + β2 · lnVs30 (12)

+ β3 ·
√
r+ ηi + εij

lnTpij = α+ β1 ·M + β2 · r2 + ηi + εij (13)

equation 12 shows the model for strike-slip faults
and equation 13 shows the model for non-strike-slip
faults. In both models ηi is assumed to follow a nor-
mal distribution with mean 0 and standard deviation
τ , while εij are assumed to be normally distributed



Table 2: Result of mixed effects regression, for both strike-slip
(SS) and non-strike-slip (NSS) faults.

SS. (eq.12) NSS (eq.13) NSS (eq.14)
α −0.41 −7.84 −7.60
β1 0.50 1.29 1.25
β2 −0.37 −5× 10−5 -
β3 0.12 - -
τ 0.55 0.49 0.50
σ 0.19 0.18 0.18

σtotal 0.58 0.52 0.53

with mean 0 and standard deviation σ. so the total
standard deviation of predictions from this model is√
τ 2 + σ2. The coefficients and the standard devia-

tions for both the models are given in table 2.
The inter-event standard deviation τ is greater than

the intra-event standard deviation σ for both strike-
slip and non-strike-slip models. This trend is opposite
to the typical results of mixed-effect models used for
ground motion modeling where σ is greater than τ .
This difference is due to the different ways in which
the data is grouped. In case of ground motion mod-
els all the recordings from a single earthquake form
a group (i.e., share a common ηi), while in the model
developed here all the pulses from the same site form
a group. The grouping scheme used here ensures that
members of the same group share the same source,
site and path and thus the within-group/intra-event
standard deviation (σ) makes a lower contribution to
the total standard deviation (σtotal) compared to the
ground motion models where the groups only share
the source.

4.4 Statistical versus practical significance

Statistical significance of a parameter in the model
suggests that the parameter has some predictive power
and including it in the model is generally recom-
mended. But with large datasets, even very small dif-
ferences that may be practically insignificant become
statistically significant. For example consider a group
of numbers which are independently and identically
sampled from a normal distribution with an unknown
mean µ and standard deviation of five. With this in-
formation one may want to test the hypothesis that
µ = 0. If the dataset consist of 10 samples the abso-
lute value of sample average (X) needs to be greater
than 3.1 (i.e., |X| ≥ 3.1) to conclude that µ is signif-
icantly different than 0 at 95% confidence level, but
with a larger sample size of say 1000 samples the
significance level threshold comes down to 0.31 (i.e.,
|X| ≥ 0.31), a difference which is statistically signifi-
cant but may be practically insignificant depending on
the problem. The models we developed to predict Tp
(equations 12 and 13) consists of parameters whose
coefficients are all statistically significant, but in this
section we determine whether they have any practical
significance.

The models for both strike-slip and non-strike-slip
earthquakes use magnitude (M ) as a predictor. As dis-

cussed above, it is known that lnTp scales linearly
with M and M is the most important predictor for Tp,
a fact affirmed by all of the previous predictive mod-
els proposed for Tp. The non-strike-slip model uses r2

along with M as a predictor. Pulse-like ground mo-
tions are generally expected only when r ≤ 30km,
over this distance range the term−5× 10−5 · r2 varies
from 0 to −0.045 (−5 × 10−5 × 302). Considering
that the σtotal for the non-strike slip model is 0.52,
the contribution r2 term has in the model is an or-
der of magnitude less than the inherent uncertainty in
the model, a fact which suggests practical insignif-
icance. Figure 7 shows prediction of Tp at different
distances (r) made using the model using both M and
r2 (equation 13) and prediction from a model for non-
strike-slip faults fitted using only M as a predictor.
The difference between the predictions shown in fig-
ure 7 is small, so the term r2 can be safely dropped
from the model without loosing predictive power. The
new model for non-strike slip fault is shown in equa-
tion 14. Again the inter-event and intra-event resid-
uals are assumed to follow normal distribution with
mean 0 and standard deviation τ and σ respectively.
The values of the fitted parameters and standard devi-
ations are shown in table 2.

lnTpij = α+ β1 ·M + ηi + εij (14)

The strike-slip model uses
√
r and lnVs30 along

with M as predictors. One expects pulses with higher
period on soil sites when compared with pulses at
rock sites due to local site effects. This effect has been
discussed by Bray and Rodriguez-Marek (2004) and
is also evident from the regression model for strike-
slip fault which predicts that Tp decreases with in-
crease in Vs30. The effect of Vs30 term on Tp has some
physical explanation and its contribution is non-trivial
which justifies it being practically significant. Ignor-
ing the

√
r term from strike-slip model changes the

prediction on the order of the standard deviation of
the model (0.12 ·

√
r ranges from 0 to 0.71 when r

ranges from 0 to 10 km), this change is large and can-
not be ignored so we decided to keep

√
r in the final

model for strike-slip faults. The exact cause of depen-
dence of Tp on r is not clear but Tp may increase with
distance due to attenuation of high frequency waves
or loss of pulse coherence at larger distances.

The final model for strike-slip faults is given by
equation 12 while the model for non strike-slip if
given by equation 14.

5 CONCLUSION

Pulse-like ground motions classified by Shahi and
Baker (2010) were used to fit predictive relationships
for probability of observing pulse-like ground motion
at a site and the period of the pulse expected at a site.
Statistical techniques were used to find appropriate
functional forms for the models and effort was made



Figure 7: Comparison of predictions from models for non-strike-
slip faults using M and r2 as predictors and only M as predictor
at different r values.

to develop parsimonious models which are easy to in-
terpret and thus can lead to better understanding of
the overall phenomenon.

Separate relationships were developed for strike-
slip and non-strike-slip faults and these relationships
were very different from each other. In case of proba-
bility of pulse model, the difference was primarily due
to the difference in the geometry of the fault ruptures
and the different parameters used to define the source-
to-site geometry. In case of the pulse period model,
different parameters appear to influence the pulse pe-
riod from strike-slip and non-strike-slip faults. The
period of the pulse primarily depend on the magni-
tude of the earthquake in both cases, but the closest
distance to the fault and the Vs30 also had an influence
on the pulse period in case of strike-slip earthquakes.
Along with having immediate practical use for haz-
ard and risk estimation, the trends and differences be-
tween the predictive equations developed here can be
useful in further understanding properties of pulse-
like ground motions.
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