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Abstract

This study integrates welfare, a measure of the impact of road network disruption on individual commuters’
well-being, with a probabilistic seismic risk assessment framework in a computationally tractable way. Wel-
fare is a network performance measure that reflects the differential impacts of changes in commute time on
various groups. For a case study of the San Francisco Bay Area, welfare loss is computed by augmenting
an origin-destination matrix with publicly available information about commuters’ income levels, residences,
and workplaces. While commuters from all income groups have similar risk of drivers’ delay due to road net-
work disruption, commuters with low incomes have a substantially higher risk of welfare loss than those with
high incomes. A comparison of bridge retrofit policies shows that disaggregation of welfare loss by income
group is necessary to examine whether such policies reduce risk equitably. While a retrofit policy determined
using drivers’ delay reduces the expected drivers’ delay, it increases the disparity in the per-capita welfare
loss of commuters with low and high incomes relative to the network’s baseline state. In contrast, a retrofit
policy that prioritizes low-income commuters reduces the difference in welfare loss of commuters with low
and high incomes compared to the baseline network state.

1 Introduction

Methods for seismic risk assessment and reliability analysis of road networks are diverse in terms of the
measures of road network disruption they use as well as their geographical scale, time frame considered (e.g.,
emergency response or long-term recovery), and the needs they aim to address (e.g., emergency planning,
network expansion, risk mitigation) (e.g., Argyroudis et al., 2015; Faturechi & Miller-Hooks, 2015; Werner
et al., 2000). Approaches to quantifying the impacts of road network disruption fall into four broad cat-
egories of increasing computational complexity: (1) topological approaches characterize the road network
using graph theoretic metrics like connectivity, which indicates how well origins and destinations in the
network are connected; (2) functional approaches characterize the level of service provided to users of the
road network using measures like travel time, travel distance, mode-destination accessibility, and flow; (3)
economic approaches estimate the economic losses incurred by post-earthquake road network damage; (4)
and well-being-based approaches account for how individuals’ quality of life changes as a result of changes to
the road network (Chang et al., 2012; Chang, 2016; Faturechi & Miller-Hooks, 2015; Miller, 2014; Murphy
& Gardoni, 2006; Werner et al., 2000).

Seismic risk assessments can use measures of road network disruption directly – for example, travel time is
the most commonly used decision variable in the literature on transport infrastructure system performance
in disasters (Faturechi & Miller-Hooks, 2015). Measures of disruption can also serve as inputs to a cost
model (Argyroudis et al., 2015; Kilanitis & Sextos, 2019b; Werner et al., 2000). Cost models typically sum
the cost of restoring the functionality of damaged components (i.e., direct costs) and the costs associated
with ongoing network disruption while damaged components undergo repair (i.e., indirect costs) (Dong et al.,
2014; Hackl et al., 2018; Kilanitis & Sextos, 2019b; Kiremidjian et al., 2007). Classical sources of indirect
costs include travel time delay (the increase in time required to make all trips demanded on the damaged
road network compared to normal conditions) and unmet demand (e.g., Decò & Frangopol, 2013; Hackl

1

https://doi.org/10.1016/j.ress.2022.108730


Silva-Lopez, R., Bhattacharjee, G., Poulos, A., and Baker, J. W. (2022). “Commuter welfare-based
probabilistic seismic risk assessment of regional road networks.” Reliability Engineering & System Safety,
108730. https://doi.org/10.1016/j.ress.2022.108730

et al., 2018). Proposed additions to the category of indirect costs typically focus on societal impacts of road
network disruption and the lost economic value of activities (e.g., working or shopping) not performed when
trips are not made (Zhou et al., 2010), accidents that result in casualties (Decò & Frangopol, 2013), road
network operations (Decò & Frangopol, 2013), carbon dioxide emissions, fatalities following an earthquake
(Dong et al., 2014), and energy waste due to repair of damaged components (Dong et al., 2014).

While travel time delay and the cost of road network performance can be useful measures of disruption and
relatively practical to implement in terms of computational expense, they may not improve our understand-
ing of how network disruptions impact individuals or different groups of network users. If used as a decision
variable, travel time delay implicitly assumes that all travelers have an equal value of time (VoT). VoT
quantifies the willingness of a traveler to pay to reduce the time they spend in transit by one unit and is also
referred to as the subjective (or behavioral) value of travel time (SVTT), and the subjective (or behavioral)
value of travel time savings (e.g., Jara-Dı́az & Guevara, 2003; Small, 2012). A traveler may be willing to
pay to reduce the time they spend in transit because transit itself has low utility (i.e., they derive little
satisfaction or pleasure from transiting) or because they could spend the time saved in more pleasurable or
more useful ways (Mackie et al., 2001). VoT can depend on qualities of the trip, such as its purpose (for
work or for recreation), mode (e.g., car or bicycle), duration, or the time at which it is made (Mackie et al.,
2001; Small & Verhoef, 2007). VoT can also vary depending on the characteristics of travelers themselves,
including their individual preferences, demographic characteristics (e.g., age, sex, level of education, employ-
ment), and hourly income (Belenky, 2011; Small & Verhoef, 2007). Models of indirect cost in which travel
time delay is multiplied by a single VoT to arrive at a monetary loss (e.g., Hackl et al., 2018; Kilanitis &
Sextos, 2019a, 2019b; Werner et al., 2000) do not account for variations in VoT associated with travelers’
characteristics. Nor can such models account for how an individual’s marginal utility of income decreases
as their income increases – that is, the greater an individual’s income, the less utility they experience as
a result of each additional unit of income (e.g., Layard et al., 2008). Variability in the marginal utility of
income further complicates efforts to assess in aggregate the value of time spent in transit to commuters.

If the characteristics of travelers that affect their VoT are not accounted for when traffic on the road net-
work is simulated, subsequent disaggregation of travel time delay (or other summary measure of network
performance) by those characteristics is not possible. Disaggregation of network performance measures is
necessary to conduct equity analysis, the goal of which is to understand how fairly and/or justly the costs and
benefits of a particular policy are distributed among members of society, including both users and non-users
of the road network (Bills & Walker, 2017; Litman, 2002). Equity analysis is particularly important in light
of historically inequitable transport planning processes and outcomes that have resulted in less-advantaged
members of society having experienced disproportionately high shares of the costs and disproportionately
low shares of the benefits of transport projects (e.g., Bills & Walker, 2017). Furthermore, disasters are widely
acknowledged to exacerbate existing societal inequities (e.g., Lindell & Prater, 2003). Assessing and limiting
inequities in transport systems in particular has been the subject of state and federal legislation in the US
(Bills & Walker, 2017).

How risk assessment methods for road networks account for impacts on different groups of people is there-
fore of growing concern to researchers. In transport systems, equity has two primary dimensions: horizontal
equity considers how impacts are distributed among groups deemed equal in ability and need, while vertical
equity considers how impacts are distributed among groups that differ in ability and need, e.g., people of dif-
ferent income levels (Bills & Walker, 2017). For example, Miller and Baker (2016) conduct a vertical equity
analysis by examining how an individual’s income class (low, medium, high, or very high) and their house-
hold’s ratio of cars to workers affect their expected post-earthquake mode-destination accessibility decrease
in the San Francisco Bay Area. Boakye et al. (2022) propose a method for assessing spatial inequalities
in the impacts of a hazard on individuals’ abilities to engage in activities that improve their well-being,
e.g., “Earning Income”, “Being Educated”, and “Being Mobile”, following the Capabilities-Based Approach
(Murphy & Gardoni, 2006).

In this work, we aim to better characterize the impacts of post-earthquake road network disruption on in-
dividual network users within a probabilistic seismic risk assessment framework. We use welfare loss (as
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formulated by Galvez & Jara-Diaz, 1998) to characterize road network performance. Welfare loss (in units
of utils) describes the value to society of individual travelers’ increased travel times and is a function of
increased travel times as well as travelers’ personal SVTT, their marginal utilities of income, and the value
placed by society on the utility of individual travellers (Mackie et al., 2001). As a summary statistic of net-
work performance, welfare takes into account that the same change in commute time can impact commuters
with different characteristics in different ways. Because welfare loss takes into account the satisfaction (or
utility) of the individual traveler, it falls into category (4) of measures of road network disruption outlined
above. Setting up the seismic risk assessment of a road network such that welfare losses can be computed
also enables the disaggregation of summary statistics such that the impacts of disruptions on different groups
can be articulated – a prerequisite for devising more equitable network management policies. Importantly,
welfare loss is computationally tractable within a probabilistic framework and can be computed using pub-
licly available data, as we show in this study.

The remainder of this work is organized as follows. In Section 2, we detail the probabilistic seismic risk
assessment procedure as well as the computation of welfare loss. In Section 3, we carry out a probabilistic
seismic risk assessment of the San Francisco Bay Area using welfare loss as a measure of the road network
disruption caused by damage to highway bridges. We compare the insights possible using welfare loss to those
possible using travel time delay and demonstrate how these measures can inform risk mitigation policies.
Section 4 provides discussion and conclusions.

2 Methods

By integrating welfare loss, previously described by Galvez and Jara-Diaz (1998) and Mackie et al. (2001),
with an established probabilistic seismic risk assessment framework, we investigate how earthquake-induced
highway bridge damage impacts commuters in different income groups and compare the results of a welfare
loss-based risk assessment with those of a delay-based risk assessment. Figure 1 summarizes the process by
which welfare loss can be computed, as well as the input data and models required, for a single earthquake
rupture scenario. In the following subsections, we detail each step of Figure 1 in the context of a probabilistic
seismic risk assessment procedure.
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Figure 1: Diagram summarizing the evaluation of the impact of an earthquake scenario on the users of a
road network.

2.1 Ground-motion intensity maps

We first use a seismic source model to generate nS earthquakes scenarios that are consistent with the seismic
hazard of the region in which the road network is located. A seismic source model provides the rates,
locations, faulting types, and magnitudes of earthquakes that can occur in the area. For each earthquake
scenario, a ground-motion model (GMM) is used to model the ground-motion intensity IM at each bridge b.
A GMM predicts the mean of the log ground-motion intensity (lnY ) as well as the ground-motion intensity
within- (σ) and between-event (τ) residual standard deviations. GMMs are typically the function of many
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inputs, including the moment magnitude of the earthquake scenario, a metric of distance from a given
location to the fault plane, and the average shear wave velocity down to 30 meters. For each of the nS
earthquake scenarios, m ground-motion intensity maps can be sampled by sampling m realisations of the
spatially-correlated ground-motion intensity residual terms (see, e.g., Han and Davidson, 2012 for a survey
of sampling methods). The set of N = nS × m ground-motion intensity maps is indexed using j (i.e.,
j = 1, . . . , N). Given the residuals, the total log ground-motion intensity at a bridge b in a particular map
j can be computed per Equation (1),

lnYbj = lnY (Mj , Rbj , Vs30,b, . . . ) + σbjεbj + τjηj (1)

where σbj is the within-event residual standard deviation, εbj is the normalised within-event residual in lnY ,
τj is the between-event residual standard deviation, ηj is the normalised between-event residual in lnY ,
Mj is the moment magnitude of the earthquake scenario associated to ground-motion intensity map j, Rbj
is the distance between location b and the fault plane of ground-motion intensity map j, and Vs30,b is the
average shear wave velocity down to 30 meters at the bth location. Both εbj and ηj are standard normal
random variables. εbj represents location-to-location variability, and its vector can be modelled using a
spatially-correlated multivariate normal distribution. ηj represents between-event variability, and its vector
can be modelled using a standard univariate normal distribution. The result of this procedure is a set of N
ground-motion intensity maps. The annual rate of occurrence for the jth ground-motion intensity map, ωj ,
is the original rate of occurrence of the associated earthquake scenario divided by m, since m ground-motion
intensity maps are simulated per earthquake scenario.

2.2 Damage maps

For each ground-motion intensity map n, we sample a damage map, i.e., a vector of nB binary variables,
each of which indicate the functionality of a particular bridge. The probability that a bridge experiences
a damage state that reduces its normal functionality, given a particular ground-motion intensity, can be
quantified using a fragility function, as given in Equation (2),

P (DSbj ≥ ds|Ybj = y) = Φ

(
ln y

fb

βb

)
(2)

where Ybj denotes the ground-motion intensity at bridge b in ground-motion intensity map j, Φ is the
standard normal cumulative distribution function, and ln fb and βb are the mean and standard deviation,
respectively, of the lnYb value required to cause the damage state of interest ds to occur or be exceeded for
the bth bridge. Bridge damage results in the partial or total closure of the roads carried by the damaged
bridge.

2.3 Model of road network performance

Traffic models typically comprise four sequential sub-models for trip generation, trip distribution, modal split,
and traffic assignment (Patriksson, 2015). In the case study of Section 3, we use a simplified traffic model
in which the trip generation, distribution, and modal split sub-models are replaced by publicly available
empirical data on commuters’ residences and places of work at the census block level. In this section, we
briefly describe the simplified traffic assignment procedure used in the case study. This simplified model is
not a prerequisite for integrating welfare loss with a probabilistic seismic risk assessment procedure: other,
more sophisticated traffic models (such as activity-based models) may be appropriate, depending on the
analysis objectives and resources.

2.3.1 Traffic assignment model

A traffic assignment model takes a graph of the road network, G, and the demand between a set of origins
and destinations as inputs and returns one or more measures of road network performance, such as aggregate
travel time, aggregate vehicle-miles travelled, and the number of trips made. The graph of the road network
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is directed and comprises a set of vertices, V , and a set of edges, E, connecting them: G = (V,E). Each
edge e ∈ E has associated properties – e.g., length, capacity in vehicles per unit of time, free-flow traversal
time, and flow (i.e., number of vehicles assigned to it) – that determine the rate at which traffic can pass
over it. The flow on an edge can be determined using a traffic assignment algorithm, which allocates trips
to edges according to some rule. A common rule is to assign trips to the shortest-time path between an
origin and destination. Assigning trips to the edges that comprise a path will modify the properties of those
edges, e.g., increasing their traversal times. The minimum definition of the demand on the road network is
an origin-destination matrix, typically a two-dimensional array in which each element is the number of trips
demanded between a particular origin and destination in a certain time period.

2.3.2 Road network performance

Once all trips have been assigned to the road network, we can compute the aggregate travel time, T , using
Equation (3),

T =
∑
e∈E

qete (3)

where e is an edge in the network, E is the set including all edges, qe is the flow over edge e, and te is its
traversal time. The change in aggregate travel time on a version of the road network that includes damaged
bridges compared to the undamaged road network, ∆T , can be computed by subtracting T when the network
is undamaged from T as computed given a damage map. ∆T is also called drivers’ delay.
The travel time between a particular origin and destination along the shortest-time path POD in the un-
damaged road network is given by Equation (4),

tOD =
∑

e∈POD

te (4)

where POD is the shortest-time path linking the origin O and destination D. The change in travel time
between an origin and a destination, ∆tOD, is given by Equation (5),

∆tOD =
∑

e∈P ′OD

t′e −
∑

e∈POD

te (5)

where P ′OD denotes the shortest-time path in the new (damaged) graph of the road network. Equation (5)
is needed to compute welfare loss.

2.4 Welfare model

Equation (6) gives the welfare model of Mackie et al. (2001),

∆Wi = Ωiλu,iSV TTi∆Ti (6)

where ∆Wi denotes the change in welfare among commuters in income group i, Ωi is a weight assigned
to group i, λu,i is the marginal utility of income for members of group i, SV TTi is the subjective value of
travel time for members of group i, and ∆Ti is the change in the aggregate travel time of members of group i.

In this model, the change in a network user’s travel time is weighted by factors that account for how valuable
the time saved or additional time spent commuting is to the particular user, as determined using information
about their individual earnings. This welfare model can be used with traffic models of varying sophistication,
from the simplified traffic assignment model used in the example of Section 3 to more sophisticated activity-
based travel demand models that planners may wish to use. To assess welfare loss, we use an augmented
origin-destination matrix in which each trip is associated with information about the individual earnings of
the person making the trip, namely, to which income group q they belong.

With the exception of ∆Ti, which is an output of the traffic assignment algorithm, all of the parameters
in Equation (6) must be defined by the analyst. The definition of income groups depends on the available
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data. In the example of Section 3, commuters belong to one of three income groups as determined using a
publicly available data set. Ω reflects how a society values equity. Per Mackie et al. (2001), Ωi = 1 for all i
is typically used to evaluate projects in the United States of America. The marginal utility of income, λu,
is a key parameter in developing policies through cost-benefit analysis (Layard et al., 2008). λu allows an
analyst to weight any change in a person’s income that result from a policy by the resulting change in their
utility (e.g., Layard et al., 2008). To derive λu, we first need a model for the utility u of income y. Layard
et al. (2008) give one such model in Equation (7),

u =

{
log(y) if ρ = 1
y1−ρ−1

1−ρ if ρ 6= 1
(7)

where ρ is the elasticity of λu. We can then derive λu as shown in Equation (8).

λu =
∂u

∂y
=

1

yρ
(8)

Equation (9) gives a common estimate of SVTT, where y is the commuter’s wage rate in monetary units per
hour (Small, 2012).

SV TT =
1

2
y (9)

Note that SVTT is dependent on a person’s earnings, which comprise only the wages a person earns by work-
ing and are a subset of an individual’s income, which may also include interest, dividends, and benefits (e.g.,
Hallegatte et al., 2016). However, in this work, we treat individual earnings and income as interchangeable
given the data available for the example of Section 3. We therefore use the term “income” for simplicity
throughout this paper.

In general, changes in welfare can be computed for the spatial unit of interest using Equation (10), which
yields the change in welfare for all trips from an origin, and Equation (11), which yields the change in
welfare for all trips to a destination. In both Equations (10) and (11), O denotes an origin, D denotes a
destination, dOD,i denotes the demand from O to D among members of income group i, and ∆tOD is given
by Equation (5).

∆WO• =
∑
D

∑
i

Ωiλu,iSV TTidOD,i∆tOD (10)

∆W•D =
∑
O

∑
i

Ωiλu,iSV TTidOD,i∆tOD (11)

In Section 3, we compute welfare losses for each census block in the region of interest using Equations (10)
and (11). The total change in welfare, ∆W , for an area of interest can be computed by summing the welfare
change experienced by each income group: ∆W =

∑
i ∆Wi.

Finally, the results of all ground-motion intensity maps are aggregated using Equation (12) to compute the
expected annual welfare loss,

E[∆W ] =

N∑
j=1

ωj∆Wj (12)

and using Equation (13) to compute the mean annual rate of exceedance of the welfare loss,

λ∆W (x) =

N∑
j=1

ωj1(∆Wj ≥ x) (13)

where N is the number of ground-motion intensity maps considered, ωj is the annual rate of occurrence
of ground-motion intensity map j, ∆Wj is the welfare loss associated with ground-motion intensity map j,
and 1(∆Wj ≥ x) is an indicator function that evaluates to 1 if ∆Wj exceeds x, a welfare loss threshold of
interest, and to 0 otherwise.
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3 Case study: San Francisco Bay Area

We conduct a probabilistic seismic risk assessment of the nine-county San Francisco Bay Area road network
in which disruption is measured using drivers’ delay (∆T ), welfare loss (∆W ), and welfare loss per commuter
(∆w). The San Francisco Bay Area is a region of high seismic hazard (Petersen et al., 2020) that contains
1743 highway bridges owned and managed by the California Department of Transportation (Caltrans) and
which are modeled as the vulnerable elements of the road network. We first detail the implementation of the
methods described in Section 2 to simulate ground motions, damage maps, traffic, and changes in commuter
welfare in Section 3.1. In Section 3.2 we present and discuss results for the expected welfare loss (E[∆W ])
and expected welfare loss per commuter (E[∆w]) and compare the resulting insights with those available
from an analysis using drivers’ delay (∆T ). Through an example application to the problem of bridge
retrofit prioritization, we show how using welfare (rather than time) as a measure of network performance
can indicate differing impacts of network disruption on groups of commuters. The particular models used
and assumptions made in this example are not necessary to apply the proposed methods.

3.1 Implementation

3.1.1 Ground-motion intensity maps

We use OpenSHA (Field et al., 2003) with the UCERF2 seismic source model (Field et al., 2009), Wald
and Allen’s topographic slope model for the shear wave velocity (Vs30) value (Wald & Allen, 2007), and the
ground motion model developed by Chiou and Youngs (2014) to generate an earthquake rupture forecast
comprising 6577 scenarios (i.e., median ground-motion intensity measure fields). For each scenario, we then
simulate spatially correlated ground motions at all 1743 bridges using the model proposed by Jayaram
and Baker (2009). (With respect to Section 2.1. The ground-motion intensity measure for the maps used
to simulate bridge damage is the 5%-damped pseudo absolute spectral acceleration (Sa) at a period of 1
second, the required input to the bridge fragility functions provided by Caltrans (Miller, 2014). To reduce the
computational burden of simulating network performance, we select a hazard-consistent subset of nS = 1980
ground-motion intensity maps from the original set of scenarios using an optimization procedure developed
by Han and Davidson (2012) and by Miller (2014).

3.1.2 Damage maps

We create one damage map per scenario by sampling bridges’ damage states using their associated fragility
functions, of the form given in Equation (2), with parameters from Miller (2014). We model both exten-
sive and complete bridge damage as necessitating complete closure of the carried road and any associated
underpasses. Closures are modelled as modifications of edge properties in the graph of the road network
as detailed in Section 3.1.3. Minor and moderate damage states are not modeled as affecting traffic, which
is consistent with the functional characterization described by Werner et al. (2006) after the emergency
response phase. The spatially correlated ground motions will lead to spatial correlations in bridge damage.
No further modeling of damage correlations, conditional on Sa, are included.

3.1.3 Road network performance

The San Francisco Bay Area road network is modeled as a directed graph G = (V,E) and shown in Figure
2 (Miller, 2014). Each of the 1743 state-owned highway bridges in the region is associated with one or more
edges in the graph. Each edge in E has a traversal time given a traffic volume according to the commonly
used Bureau of Public Roads (1964) travel time function,

ta = tf

(
1 + 0.15

(
qa
cf

)4
)

(14)

where tf is the free-flow travel time, ta is the capacity-dependent travel time, cf is the hourly capacity, and
qa is the hourly flow on the edge. To model a complete road closure due to a damaged bridge, the associated
edges are modified to have an hourly capacity cf = 0 and free-flow and capacity-dependent travel times
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Figure 2: Map of the San Francisco Bay Area road network used in this study.

tf , ta =∞, which ensures no trips use those edges.
We obtain the demand on the road network from the Longitudinal Employer-Household Dynamics Origin-
Destination Employment Statistics (LODES) data set, Version 7.5 (U.S. Census Bureau, 2010). The LODES
data set tabulates the census block in which a commuter lives, the census block in which they work, and
their membership in one of three income groups (low, medium, or high) based on their annual individual
earnings (U.S. Census Bureau, 2010). We can therefore define an origin-destination matrix for the region of
interest in which each trip is associated with the income group of the commuter demanding it. We discuss
our characterization of commuters in Section 3.1.4. Since the edge capacities of the links in G are hourly,
we scale the daily demand by a factor of 0.21 to get the hourly demand during the 6 am - 10 am window,
a peak commuting time (Wang et al., 2012). We assume that commuters’ travel preferences are invariant
before and after an earthquake, a common assumption (e.g., Hackl et al., 2018). However, a commuter whose
trip exceeds the maximum acceptable one-way commute time, tmax, will forgo said trip. In this example,
tmax = 4 hours. This is consistent with the assumption that in a 24 hour period, commuters work 8 hours
and rest 8 hours (Belenky, 2011). The welfare loss that results from a trip’s duration exceeding tmax on the
damaged road network is computed based on a travel time increase equal to the difference of tmax and the
trip’s duration on the undamaged road network.
We implement an iterative traffic assignment (ITA) algorithm that divides the demand into parts comprising
40%, 30%, 20%, and 10% of the total trips demanded (Beckmann et al., 1956). It assigns the first 40% of
the trips to the shortest path, in terms of the sum of the traversed edges’ free-flow travel times tf , between
the origin and destination. The shortest path is found using Djikstra’s algorithm. The link flows qa are
updated to reflect the assigned trips, and the capacity-dependent travel times ta are updated according to
Equation (14). The ITA algorithm then assigns each remaining portion of the demand in a similar fashion;
at each iteration, the edge weights considered by Djikstra’s shortest path algorithm are ta rather than tf ,
reflecting congestion already on the road network.
For a given damage map, we compute the travel time between origins and destinations after assigning all trips
demanded to the road network. For each origin-destination pair, we store the shortest-time path identified
at each of the four iterations of the ITA algorithm. We then compute the travel time along each of those
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four paths after the network has had 100% of trips assigned. To get the final travel time between the origin-
destination pair, tOD, we take the sum of the four paths’ travel times, each weighted by the percentage of
the total trips assigned during that iteration, as shown in Equation (15).

tOD = 0.4× tOD,1 + 0.3× tOD,2 + 0.2× tOD,3 + 0.1× tOD,4 (15)

For a given damage map, the outputs of the traffic model include the travel time between each origin and
destination and the number of trips made between each origin and destination. From these outputs, we can
compute ∆T and the number of trips that were not made due either to infeasibility (because the origin and
destination became disconnected as a result of bridge damage) or unacceptability (because the time required
to make a trip exceeded tmax).

3.1.4 Welfare model

To estimate the welfare loss, ∆W , associated with a damage map, we specify the parameters of the welfare
model in Equation (6). The income groups are determined by the structure of the LODES data set, which
in the San Francisco Bay Area classifies 16% of commuters as having low incomes, 23% as having medium
incomes, and 60% as having high incomes (U.S. Census Bureau, 2010). Although these classifications are
associated with annual individual earnings ranges in LODES, those ranges are not San Francisco Bay Area-
specific. Because Bay Area earnings are significantly different than nationwide averages, we estimate the
bounds of each income group’s annual individual earnings range by averaging data on the San Francisco-
Oakland-Fremont and San Jose-Sunnyvale-Santa Clara metropolitan areas from the U.S. Bureau of Labor
Statistics. The resulting SVTT of Bay Area commuters is greater than that suggested by LODES earnings
data by factors of 1.33, 1.35, and 1.1 for the low-, middle-, and high-income groups, respectively. We treat
the SVTT of all members of an income group as a constant, in keeping with the resolution of the publicly
available LODES data that we use, which includes only a commuter’s income group and not their actual
annual individual earnings. For each income group, we use the midpoint of the associated earnings range to
estimate SVTT and assume (per Belenky, 2011) that each commuter works 40 hours per week and 52 weeks
per year to obtain their hourly wage, y, yielding the fifth column of Table 1. We use Ω = 1 per Mackie
et al. (2001). Layard et al. (2008) estimate the elasticity of the marginal utility of income ρ = 1.26. Per
Equation (8), λ = 1

yρ . Substituting our parameter values into Equation (6) yields Equation (16).

∆W =
∑
i

1

2y0.26
i

∆Ti (16)

If a trip is not made on a given damage map, the resulting welfare loss is calculated as the welfare loss that
would result if the trip had taken tmax on the damage map.

3.1.5 Computational tractability

The primary determinants of the computational burden of this study are (1) the type of traffic model used; (2)
the number of origins and destinations considered, which increases the complexity of the traffic assignment;
and (3) the number of damage maps sampled, which determines the number of times traffic assignment must
be performed. For each damage map, traffic assignment was performed on a node within a high-performance
computing cluster (HPCC) with 16 CPUs and 64 GB of RAM per CPU and took 137 minutes on average.
The change in welfare for members of each income group living in a census block and working in a census
block was then computed for each damage map, taking 3 minutes on average on the same HPCC. If greater
detail about individual network users is available, more sophisticated traffic models, such as activity-based
travel demand models, may be worth their greater computational cost.

3.2 Regional welfare impacts of road network disruption

Because welfare losses are partly a function of increases in travel time, as Equation (6) specifies, we expect
large ∆T will coincide with large ∆W in general, as Figure 3 shows. The principal advantage of setting up an
analysis in which ∆W can be computed, however, is that the overall impact of road network disruption can
be disaggregated into impacts on different groups of road network users, which can then be compared. For

9

https://doi.org/10.1016/j.ress.2022.108730


Silva-Lopez, R., Bhattacharjee, G., Poulos, A., and Baker, J. W. (2022). “Commuter welfare-based
probabilistic seismic risk assessment of regional road networks.” Reliability Engineering & System Safety,
108730. https://doi.org/10.1016/j.ress.2022.108730

Table 1: Comparison of SVTT for three income groups based on Bay-Area-specific Bureau of Labor Statistics
individual earnings data.

Income group Percentiles Individual earnings [USD/year] y [USD/h] SVTT [USD/h]

Low [0, 16) 0 - 23,251 4.8 2.4
Medium [16, 39) 23,251 - 53,148 17.8 8.9
High [39, 99] 53,148 - 552,455 52.8 26.4

example, Figure 3 also shows that for a given mean increase in travel time, commuters with low incomes will
experience greater per-capita welfare losses than commuters with medium or high incomes. The disparity in
∆w among the three groups of commuters is explained only in part by the difference in their SVTT values
(shown in Table 1), as we will discuss further.
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Figure 3: Comparison for each of nS = 1980 earthquake scenarios of the mean increase in a commuter’s
travel time [minutes], with the per-capita welfare loss for commuters in each income group, wq [utils/hour].

Figure 4 shows the welfare loss exceedance curves for commuters in low-, medium-, and high-income groups
assuming tmax = 4 hours. For each income group, the annual rate of exceedance of the welfare loss, λ∆W ,
is computed using Equation (13). Figure 4a shows that members of the three income groups do not have
significant differences in their risk of increased travel time per commuter. Figure 4b reveals that members
of the low-income group have the greatest risk of welfare loss, while members of the high-income group
have the least risk. While Figure 4 assumes tmax = 4 hours, our observation that commuters with low
incomes are at greater risk of welfare loss than commuters with medium or high incomes also holds true
when tmax = 1, 2, or 3 hours.
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Figure 4: Comparison by income group of annual rate of exceedance curves for (a) increase in aggregate
travel time per commuter on the road network and (b) per-commuter welfare loss. Both (a) and (b) assume
a maximum acceptable one-way commute time of 4 hours.

Comparison of Figures 4a and 4b suggests that differences in the welfare loss exceedance curves of different
income groups in Figure 4b stem in part from groups’ differing SVTT and λu. However, the ratio of the
welfare loss per commuter (∆wq) between income groups for each scenario is not equal to the ratio of the
coefficient that multiplies ∆T in Equation (16). Figure 5 plots E[∆wlow] versus E[∆whigh] for each census
block in the region of interest. The majority of the data points in Figure 5 differ significantly from the
line that indicates the ratio of welfare coefficients that multiply ∆Tq in Equation (16). This indicates that
the ratio between E[∆wlow] and E[∆whigh] is different than would be expected based on the ratio of the
coefficients alone. Figure 5 also suggests that there is not a simple linear transformation between expected
increase in travel time and expected welfare loss.
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Figure 5: Scatter plot showing relation between low-income and high-income welfare per commuter loss per
census blocks. Census blocks corresponding to San Jose and Walnut Creek are highlighted to show examples
of areas of low and high disruption, respectively.
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While loss exceedance curves aggregate information for the entire region of interest, Figures 6 and 7 map
expected welfare loss per commuter living in and working in a census block, respectively. Expected welfare
losses (E[∆W ]) were assessed on a census block level using Equation (10) (for Figure 6) and Equation (11)
(for Figure 7) then normalized by the number of commuters living in or working in each census block to
yield E[∆w], the expected welfare loss per commuter. Figure 6 shows that commuters living in the San
Jose area experience the smallest expected welfare losses of all commuters in the region, while commuters
living north of San Francisco and in the East Bay experience the highest E[∆w], across all income groups.
Figure 2 suggests that the lower overall welfare losses in the San Jose area may result from greater network
robustness there than in the North and East Bay regions.

Figure 7 shows that commuters working in the Peninsula and north of San Francisco experience the greatest
E[∆w]), while those working in the East Bay have lower E[∆w] across income groups. As in Figure 6,
commuters with low incomes experience higher expected welfare losses than commuters in the mid- and
high-income groups throughout the region of interest.

Figure 6: The expected welfare loss [utils/hour] per commuter living in a census block considering (a)
only commuters with low incomes (b) only commuters with medium incomes (c) only commuters with high
incomes.
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Figure 7: The expected welfare loss [utils/hour] per commuter driving to a census block considering (a)
only commuters with low incomes (b) only commuters with medium incomes (c) only commuters with high
incomes.

Figure 8 maps the difference between the expected welfare loss per commuter in a particular income group
q living in a census block and the expected welfare loss per commuter considering all income groups in that
census block, as summarized in Equation (17) (e.g., Keppel et al., 2005).

E[∆wq]− E[∆w]

E[∆w]
× 100% (17)

Census blocks shaded blue in Figure 8 are those in which the overall welfare loss per commuter (E[∆w])
over-estimates the welfare loss per commuter of a particular income group, while census blocks shaded red
are those in which E[∆w] under-estimates the welfare loss per commuter of a particular income group. Fig-
ures 8a and 8d show that E[∆w] consistently underestimates the expected welfare loss of commuters with low
incomes, E[∆wlow]. Conversely, Figures 8c and 8f show that E[∆w] overestimates the expected welfare loss
of commuters with high incomes, E[∆whigh]. This finding suggests that even when using measures of network
performance that take into account how disruption may impact different network users to different degrees
– such as welfare loss – aggregate statistics should be disaggregated by group-defining characteristics (e.g.,
income) so that between-group differences can be articulated and explored, as suggested by Bills and Walker
(e.g., 2017). Figure 8 shows that, for this example, developing a network management policy using only
E[∆w] would give more priority to the experience of commuters with high incomes than to the experience
of commuters with low incomes.

Figure 8 also shows that the degree to which E[w] under- or overestimates the welfare loss of members of
a particular income group varies spatially throughout the area of interest, in particular for commuters with
low or medium incomes. Figure 8a indicates that E[∆w] underestimates E[∆wlow] more severely – i.e., by
as much as 200% – for commuters living in the South Bay than for commuters living elsewhere in the Bay
Area. Figure 8b indicates that E[∆w] underestimates E[∆wmid] for commuters living in the South Bay but
overestimates E[∆wmid] for commuters living in most other locations. Disaggregation of welfare loss by the
spatial unit of interest is therefore also important when assessing the impacts of road network disruption on
groups of commuters.
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Figure 8: The percent by which the expected welfare loss per commuter among (a) commuters with low
incomes (E[∆wlow]) (b) commuters with medium incomes (E[∆wmid]) and (c) commuters with high incomes
(E[∆whigh]) exceeds the expected welfare loss per commuter when all commuters are considered together
(E[∆w]), as summarized in Equation (17). Figures (a), (b), and (c) show results for commuters living in
particular census blocks, while Figures (d), (e), and (f) show results for commuters working in particular
census blocks.

3.3 Effect of bridge retrofits

To illustrate how the use of welfare as a measure of road network performance may lead to more equitable
decisions than using aggregate travel time, we compare the results of two simple bridge retrofit policies: a
time-focused retrofitting (TFR) strategy and a welfare-focused retrofitting (WFR) strategy. The TFR strat-
egy is determined by assessing the increase in aggregate travel time when each bridge in the road network
is individually collapsed, a local sensitivity analysis method referred to as one-at-a-time analysis. Bridges
are then prioritized for retrofit in decreasing order of their associated increase in aggregate travel time. To
define the WFR strategy, we analyze the flow of commuters on the road network under normal conditions.
We then rank bridges based on the proportion of commuters who use the bridge that have low incomes. The
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higher the proportion of commuters with low-incomes who use a bridge, the higher the bridge is ranked.

Using each strategy, the 100 most important of the 1743 total bridges in the road network are retrofitted.
The effect of retrofitting a bridge is modeled by multiplying the median value of its associated fragility
function, fb, by 1.2 (e.g., Padgett & DesRoches, 2009). This modeling choice is a simplification: as Padgett
and DesRoches (2009) show, different seismic retrofit measures will have varying impacts on the fragility of
a bridge. To evaluate the consequences of each retrofit strategy, the fragilities of the retrofitted bridges are
updated and the probabilistic seismic risk assessment of the road network is repeated using the same 1980
scenarios. The effects of each retrofit prioritization strategy are assessed in terms of the welfare loss per
capita (∆w) and the increase in aggregate travel time for the same hazard-consistent set of 1980 earthquake
scenarios used earlier in this example, allowing us to obtain loss curves for each of these network performance
measures.

Figure 9 shows that the WFR strategy decreases the impacts of road network disruption for commuters
with low incomes more so than the TFR strategy. The WFR strategy does not decrease welfare losses for
commuters with high incomes as much as the TFR. Based on this observation, we define the welfare loss ratio,
φw, shown in Equation (18) as the ratio between the expected change in per-capita welfare for commuters
with low incomes E[∆wlow] and the expected change in per-capita welfare for commuters with high incomes
E[∆whigh]. These expected values correspond to the areas under the associated loss exceedance curves in
Figure 9.
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Figure 9: The effect of the time-focused retrofitting (TFR) strategy and the welfare-focused retrofitting
(WFR) strategy on the per-capita welfare loss [utils/hour] of commuters in each income group.

φw =
E[∆wlow]

E[∆whigh]
(18)

While minimizing φw is not a desirable objective, examining its value for different strategies can be in-
structive. The use of φw allows us to compare the impacts of different policies on commuters in different
income groups. Table 2 shows values of φw for different retrofitting strategies. For our testbed in the San
Francisco Bay Area, using a TFR strategy increases the difference between the experiences of commuters
with high incomes and commuters with low incomes compared to not retrofitting any bridges. In contrast,
the WFR strategy decreases the difference between the two groups compared to a no-retrofit strategy. While
the retrofit strategies and welfare loss ratio used in this example application are simple, they illustrate that
different network management policies can have varying impacts on different groups of network users. More
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sophisticated risk mitigation strategies could be designed on the basis of welfare losses among commuters in
different income groups to ensure that all commuters share similarly in the benefits of those risk-reducing
efforts. For example, minimizing ∆w would be more desirable than minimizing ∆T .

Table 2: The effects of three bridge retrofit prioritization strategies on the welfare loss ratio in Equation (18).

Retrofit strategy Welfare loss ratio, φw

No retrofits 1.6
Time-focused (TFR) 1.7

Welfare-focused (WFR) 1.5

4 Conclusions

In this study, we use welfare loss (as previously formulated by Mackie et al. (2001)) as a measure of post-
earthquake road network disruption. Welfare is a metric that accounts for the impact of commute time
on the well-being of commuters with varying incomes. We show how welfare loss can be integrated with a
probabilistic seismic risk assessment framework in a computationally tractable way using publicly available
data.

A probabilistic case study of commuters with low, medium, and high incomes in the San Francisco Bay
Area shows that commuters with low incomes have disproportionately high expected welfare losses, while
commuters with high incomes have disproportionately low expected welfare losses. Though welfare losses
are correlated with drivers’ delay, the latter measure (and functions thereof) provides no insight into how
commuters with different characteristics experience disruptions differently. Moreover, the case study shows
that aggregate welfare losses underestimate the welfare losses of commuters with low incomes while overes-
timating the welfare losses of commuters with high incomes. This finding highlights the importance of using
network performance metrics that (1) take into account differences in network users’ characteristics and (2)
allow for disaggregation by those characteristics in order to understand the varying impacts of road network
disruption on network users with different profiles.

Such disaggregation is also a prerequisite for equity analysis of network management policies. As shown in
the case study, a bridge retrofit prioritization policy developed on the basis of drivers’ delay reduces the
expected drivers’ delay but increases the disparity in the per-capita welfare loss of commuters with low and
high incomes compared to the baseline network state, in which no bridges are retrofitted. In contrast, a
bridge retrofit policy developed on the basis of the proportion of commuters that use a bridge and have
low incomes reduces the disparity in the per-capita welfare loss of commuters with low and high incomes
compared to the baseline network state.
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