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Abstract

This project evaluates the existing statistical models to describe post-shut-in seismicity for
hydraulic-fracturing-induced earthquakes and studies the importance of post-shut-in seismicity
on decision-making. We focus on the short-term hazard based on the seismicity during and after
the injection. We consider the Omori model by Langenbruch and Shapiro (2010), the exponential
model, and the stretched exponential model fromMignan et al. (2017). In particular, we evaluate
their performance on nine earthquake clusters that occurred in 2010 near the Guy-Greenbrier
fault in Arkansas (using data from Yoon et al., 2017). While many of the post-shut-in sequences
could be described by a single decay process, there is an increase in the post-shut-in seismicity in
some clusters. Results show that the Omori model performs the best for the former case, while
the stretched exponential model could capture the latter situations. We then use the Omori
model to explore the effect of shut-in timing on the short-term hazard. Results show that the
post-shut-in seismicity could affect the decision significantly for a slower decay in seismicity
and longer injection duration. We perform a sensitivity analysis considering the uncertainties
in the Omori model and the Gutenberg-Richter distribution. Results show that their relative
importance depends on the injection duration and intensity thresholds of interest. Finally, we
propose a logic tree model to incorporate the uncertainty in model selection and parameter
estimation. The logic tree assembles the Omori model and the stretched exponential model
to consider the possibility of increasing post-shut-in seismic hazard. We also show that each
branch’s weight could be updated in a Bayesian manner with new data.

1 Introduction

Past studies of hydraulic-fracturing-induced earthquakes have observed that the seismicity does
not always stop instantly after injection ceases (Langenbruch and Shapiro, 2010; Kao et al., 2018;
Kim, 2013; Häring et al., 2008; Yoon et al., 2017). Some studies have observed that the frequency
of seismic events can even increase after the shut-in (Majer et al., 2007; Deichmann and Giardini,
2009). As a result, it is important to consider and quantify the post-shut-in seismic hazard during
decision-making.

There have been various statistical (e.g., Langenbruch and Shapiro, 2010; Broccardo et al.,
2017; Mignan et al., 2017; Bachmann et al., 2011; Mena et al., 2013) and physics-based models
(e.g., Chang et al., 2018; Segall and Lu, 2015; Gischig and Wiemer, 2013) developed to quantify
the continuing seismicity after the termination of the injection. Langenbruch and Shapiro (2010)
modified Omori’s Law to describe the decay in the seismicity after the shut-in. Mignan et al.
(2017) and Broccardo et al. (2017) used exponential functions to describe post-shut-in seismicity.
Mignan et al. (2017) developed a traffic light system considering both pre-shut-in and post-shut-in
seismicity. Broccardo et al. (2017) also used Bayesian inference and updating rules to develop a
probabilistic model that forecasts the induced seismicity. Bachmann et al. (2011) found that the
aftershock sequence model (i.e., OmoriUtsu law) can provide an acceptable fit to the post-shut-in
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seismicity for geothermal reservoir enhancement. They also modified the Epidemic Type Aftershock
Sequence (ETAS) model to account for the flow rate in the seismic forecast. Mena et al. (2013)
introduced a method by combining models from Reasenberg and Jones (1989), Hainzl and Ogata
(2005) and Shapiro et al. (2010) to forecast the hazard for geothermal reservoir enhancement in
Basel, Switzerland.

Physics-based models have also been developed based on the underlying physical process. Chang
et al. (2018) and Dieterich et al. (2015) developed models to simulate the stress change after the
shut-in and used them to predict the post-shut-in seismicity. Segall and Lu (2015) considered
poroelastic and earthquake nucleation effects in the simulation and observed that a sudden shut-in
could increase the seismicity locally. Gischig and Wiemer (2013) modeled seismicity based on the
pressure diffusion and irreversible permeability enhancement.

Most of the above case studies are for geothermal reservoir enhancement in Europe, and there
have been limited studies on the post-shut-in seismicity for hydraulic-fracturing-induced earth-
quakes in the U.S. Moreover, limited research has been done to quantify the impact of the post-
shut-in hazard on decision-making. As a result, this study aims to evaluate the existing statistical
models for post-shut-in seismicity for hydraulic-fracturing-induced earthquakes and explore its im-
pact on decision-making during the operation. We also develop a logic tree model combining
different statistical models to have a more robust and conservative hazard forecast.

To study the importance of post-shut-in seismicity on decision-making, we compute the short-
term hazard based on seismicity during and after the injection. In particular, we define the short-
term hazard as the expected number of times exceeding a modified Mercalli intensity (MMI ≥ x)
at the injection site over the next TE days given the current injection duration of TS days. Figure
1 visualizes the scenario. The green shaded area between TS and TS +TE contributes to the short-
term hazard. TSI is the actual shut-in time. We compare the hazard levels between cases with
and without post-shut-in seismicity (i.e., the area highlighted in red in Figure 1) and explore the
change in the decision on the shut-in timing.

Figure 1: The setup for hazard analysis. TS is the current injection time and TSI is the shut-in time
to be decided. TE is the time range of interest. The area highlighted by the red line corresponds
to the post-shut-in seismicity that contributes to the hazard. We assume a constant seismic rate
during the injection (i.e., λ0).
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2 Data and processing

We consider earthquake and injection data from Yoon et al. (2017), who detected 14,604 earthquakes
with −1.5 ≤ ML ≤ 2.9 near the Guy-Greenbrier fault in Arkansas from July 2010 to September
2010 (referred to hereafter as the ‘Guy-Greenbriar sequence’). The magnitude of completeness
(Mc) is 0.1 according to the Goodness of Fit test at the 95% level (Wiemer and Wyss, 2000).
Yoon et al. (2017) detected and located microearthquakes in the Guy-Greenbrier sequence with
two waveform similarity-based event detection methods. They grouped the earthquakes into 16
clusters and interpreted each as either hydraulic-fracturing-induced, wastewater-injection-induced,
or natural seismicity. Moreover, Yoon et al. (2017) also associated each cluster with nearby injection
wells.

To study the post-shut-in hazard for hydraulic-fracturing-induced earthquakes, we considered
nine clusters that were well associated with hydraulic fracturing and had recorded post-shut-in
seismicity. Of the omitted clusters, six were not associated with hydraulic fracturing, and one
had has associated with hydraulic fracturing but had no post-injection seismicity. We collected all
earthquakes with magnitudes above 0.2. Figure 2 summarizes the earthquake occurrence of the nine
clusters, where the x-axis represents the time normalized by the shut-in time (TSI), and the y-axis
is the cumulative number of earthquakes normalized by the number of earthquakes induced during
the injection. Some of the clusters (i.e., Clusters 7 and 9) have many more post-shut-in earthquakes
than pre-shut-in earthquakes, while for others (i.e., Clusters 1, 2, and 4), most of the earthquakes
occur during the injection. Detailed earthquake sequences and injection information are included
in the appendix. For many clusters, the earthquake occurrence rates drop after shut-in, while for
other clusters, there is a surge in the seismicity after the shut-in.

Figure 2: Earthquake occurrence for the nine clusters. The x-axis is the time normalized by
the shut-in time (TSI), and y-axis is the cumulative number of earthquakes normalized by the
earthquakes induced during the injection.

We considered three statistical models introduced in Langenbruch and Shapiro (2010) and
Mignan et al. (2017). We did not consider physics-based models or more complex statistical models
such as the ETAS model because of the limited earthquake data available and the complexity
involved in calibrating the models for these situations. Langenbruch and Shapiro (2010) modified
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Omori’s Law to describe the decay of seismicity after the shut-in (hereafter the Omori model):

λ(t) = λ0

!
TSI

t

"p

(1)

where λ(t) is the seismicity rate at time t, λ0 is the initial seismic rate, p describes the decay
rate, TSI is the duration of fluid injection, and t ≥ TSI is the time of interest. All the times are
measured with respect to the start of the injection. Mignan et al. (2017) used exponential functions
to describe the decay in seismicity after the shut-in (hereafter the exponential model):

λ(t) = λ0 exp

!
− t− TSI

τ

"
(2)

where τ is the parameter describing the decay in seismic rate after shut-in.
Both of the above models describe the post-shut-in seismicity as a single decay sequence, with

the rate capped at λ0. However, some past observations indicate that the seismicity is higher after
shut-in (Segall and Lu, 2015; Majer et al., 2007; Deichmann and Giardini, 2009). Mignan et al.
(2017) also described a stretched exponential model that could handle situations where post-shut-in
seismicity is higher than λ0 (hereafter the stretched exponential model):

λ(t) = λ0(t− TSI)
β−1 exp
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(3)

where τ and β are the parameters to be estimated.

3 Model evaluation

We evaluated the performances of the three models on the nine clusters in the Guy-Greenbrier se-
quence. For every cluster, we fitted the model using maximum likelihood estimation. In particular,
for a non-homogeneous Poisson process with rate λ(t), the likelihood can be computed using (Utsu
et al., 1995):

L =

% N&
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λ(ti)
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exp
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−

( Te

Ts

λ(t)dt

'
(4)

where N is the number of post-shut-in earthquakes in each cluster, and ti is the occurrence time
of ith earthquake with respect to the injection start time. For cases with overlapped injections,
we considered the start of the earliest injection as the injection start time and the end of the last
injection as the shut-in time. λ(ti) is the seismicity rate at time ti using one of the three models.
We estimated the daily rate at the shut-in time (λ0) as the number of earthquakes the day before
the shut-in (i.e., TSI − 1 ≤ ti ≤ TSI)). This worked well for the considered clusters, but other
time-windows for rate estimation could be considered. If the estimated λ0 is zero, we set it to
a small constant (i.e., 0.01) for ease of computation. Ts and Te define the time window of the
post-shut-in seismicity. We set Ts as the injection shut-in time (i.e., Ts = TSI). For the interest
of short-term hazard analysis, we set Te as 30 days after shut-in, or the start of the next injection
activity, or the end of the catalog according to Yoon et al. (2017), whichever is earlier. This time
window included the majority of post-shut-in earthquakes for the clusters considered.

After fitting the cluster using maximum likelihood estimation, we evaluated the performance of
the three models based on their Bayesian information criterion (BIC):

BIC = k log(N)− 2 log(L̂) (5)
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where k is the number of parameters estimated by the model, L̂ is the estimated likelihood for
every cluster, and N is the number of post-shut-in earthquakes. BIC is a popular model selection
metric that balances the data fit to a model with the number of model parameters. A model with
a lower BIC value is preferred (Schwarz, 1978).

Table 1 and Figure 3 summarize the BIC values normalized by the number of post-shut-in
earthquakes (so that comparisons across clusters with differing numbers of earthquakes are easier).
Figures 4 to 7 show the fitted rates for a few selected clusters. The fitted models for all clusters are
included in the appendix. Results show that the Omori model or the stretched exponential model
has the lowest BIC. In particular, for clusters where the seismicity decays monotonically after the
shut-in (i.e., Clusters 1 to 4), the Omori model outperforms the other two. For clusters with an
increase in post-shut-in seismicity (e.g., Clusters 7 to 9), the stretched exponential model performs
the best.

Table 1: BIC values computed from Equation 5 normalized by the number of post-shut-in earth-
quakes, for the nine considered clusters. Black text indicates the most efficient model for the given
cluster.

Cluster index Omori Exponential Stretched exponential

1 0.42 1.56 0.42
2 2.96 3.42 3.38
3 -3.10 -2.09 -2.69
4 3.26 3.44 3.73
5 1.44 1.0 0.98
6 2.21 2.03 1.0
7 9.25 9.25 0.26
8 -1.73 -1.73 -3.58
9 -5.19 -5.31 -5.40

Figure 3: BIC of every cluster normalized by their corresponding number of post-shut-in earth-
quakes. Results for a given cluster are slightly offset horizontally, to avoid overlap.

5

https://doi.org/10.1007/s10950-021-10068-3


Teng, G., and Baker, J. W. (2022). “Post shut-in hazard for hydraulic-fracturing-induced
earthquakes: Analysis using data from the Guy-Greenbrier earthquake sequence.” Journal of
Seismology. https://doi.org/10.1007/s10950-021-10068-3

Both the Omori and the exponential models are single decay models (i.e., the seismicity decays
monotonically). Compared to the stretched exponential model, the single decay model parameter
is easier to estimate and interpret. They work well when the seismicity decays monotonically after
the shut-in, which is valid for many clusters (e.g., Clusters 1 to 4). However, the seismic rate for
a single decay model is capped at λ0. Thus it fails to capture the case when there are delayed
earthquake clusters after shut-in or when the seismicity increases after shut-in. As a result, a single
decay model could underestimate the post-shut-in hazard. This situation could be better described
by the stretched exponential model, especially if there is a delayed earthquake cluster after shut-
in (e.g., Cluster 8 in Figure 7). The time delay between the stimulation and the rapid increase
in seismicity has been observed for hydraulic-fracturing-induced earthquakes (Yoon et al., 2017;
Schultz et al., 2015), possibly due to the propagation time of the fluid pressure. As shown in Table
1, the stretched exponential model performs best for clusters with post-shut-in seismicity higher
than λ0 (i.e., Clusters 5 to 9). Moreover, it also works for the single decay process (Figures 4 and
5). However, compared to single decay models, it is hard to interpret the two parameters of the
stretched exponential model, especially for a limited number of clusters available. We noticed that
large values of β and τ lead to unphysical extrapolations to extreme seismicity rates. Thus, with
limited clusters available, we set β and τ below 20 during estimations. The stretched exponential
model (like the other two models) also does not work well for more complex patterns, such as
Cluster 7 in Figure 6 where there are multiple earthquake clusters after the shut-in. This could
be improved by using a more complex model such as the ETAS model. Moreover, the stretched
exponential model often results in a discontinuous rate right after shut-in. For example, Figure 5
shows a dramatic increase in the seismicity right after shut-in.

Since the single decay model is robust for parameter estimation and model interpretation, we
utilize the Omori model below for demonstrations of hazard analysis calculations.

Figure 4: Earthquake occurrence of Cluster 1. The dots are earthquakes, with heights indicating
their magnitudes. The shaded area corresponds to the injection. The dashed line is the recorded
seismic rate, and the solid lines are the seismic rates using the three fitted models.
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Figure 5: Earthquake occurrence of Cluster 3. The dots are earthquakes, with heights indicating
their magnitudes. The shaded area corresponds to the injection. The dashed line is the recorded
seismic rate, and the solid lines are the seismic rates using the three fitted models.

Figure 6: Earthquake occurrence of Cluster 7. The dots are earthquakes, with heights indicating
their magnitudes. The shaded area corresponds to the injection. The dashed line is the recorded
seismic rate, and the solid lines are the seismic rates using the three fitted models.

4 Post-shut-in hazard analysis and sensitivity study

4.1 The Omori model

We first studied the effect of the Omori model parameter p across all clusters. Figure 8 summarizes
the p value for every cluster, with a median value of 2.2. This is consistent with Langenbruch
and Shapiro (2010) where p of 2.0 is used as a reference value. Cluster 1 has a much higher
p, indicating a dramatic decay in the post-shut-in seismicity. We then explored the relationship
between the pre-shut-in information (e.g., injection volume, injection duration, and the number of
earthquakes during the injection) and the p values. We conducted a linear regression between pairs
of those pre-shut-in variables and p. Though Barth et al. (2013) suggested that p would be higher
if the reactivated fracture system is in a stable state of stress (i.e., a large increase in pore pressure
is required for fracture failure), we did not observe a statistically significant relationship between
any pair. This is probably because of the limited data available and because not all clusters could
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Figure 7: Earthquake occurrence of Cluster 8. The dots are earthquakes, with heights indicating
their magnitudes. The shaded area corresponds to the injection. The dashed line is the recorded
seismic rate, and the solid lines are the seismic rates using the three fitted models.

be well described as a single decay process. For illustration purposes, we assumed p = 2 for the
hazard analysis in the following section.

Figure 8: Estimated p for every cluster. The dash line indicates a value of 2.

4.2 Hazard analysis and parametric study

To study the effect of shut-in timing on the short-term hazard, we quantified the short-term hazard
as the expected number of times experiencing MMI ≥ 3 at the injection site over the next TE

days given the current injection duration of TS days. Figure 1 visualizes the scenario. We focused
on the difference between the hazard levels with and without post-shut-in seismicity (i.e., the area
highlighted in red in Figure 1).

For simplicity and transparency of results, we assumed a constant seismicity rate during injec-
tion, and the Omori model to describe decay of seismicity after the shut-in:
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λ(t) =

)
λ0 t ≤ TSI

λ0

*
TSI
t

+p
t > TSI

(6)

where TSI is the actual shut-in time, λ0 is the constant rate before the shut-in, and p is the
parameter describing the post-shut-in decay in seismicity. The actual clusters show time-varying
seismicity during injection, as would be expected if hydraulic stimulation is periodically interacting
with pre-existing faults and triggering larger earthquakes. However, the constant rate simplifies
the model and presentation of results, and if the assumed rate matches the average seismicity rate
over the injection period of interest, the numerical results are a reasonable approximation of the
more complex case.

The hazard, defined as the expected number of times MMI ≥ x occurs at the injection site
over the next TE days, can then be computed using:

µ(MMI ≥ x, TE , TS) =

( TS+TE

TS

( Mmax

Mmin

P (MMI ≥ x|m)λ(t)fM (m)dmdt (7)

where P (MMI ≥ x|m) is the probability of exceeding an MMI given a magnitude m earthquake,
calculated from the intensity prediction equation by Atkinson et al. (2014). We assumed a constant
epicenter distance of 2 km and a hypocentral distance of 4 km, estimated based on the information
from Yoon et al. (2017). λ(t) is the seismic rate from Equation 6. fM (m) is the probability density
function for magnitude, assumed here to be a Gutenberg-Richter distribution truncated between
magnitudes of 0.2 and 5.0, with b = 1.0 estimated from the nine clusters using the method by
Utsu (1965). The lower-bound magnitude corresponds to the magnitude of completeness (though
M < 1 events contribute negligibly due to their small resulting ground motion amplitudes). The
upper-bound magnitude is much larger than the largest observed event (ML = 2.9), to account for
the potential large magnitude due to hydraulic fracturing (e.g., the maximum magnitude of 4.4 in
Alberta, Rubinstein and Mahani 2015). Moreover, we observed that adjusting it from 4.0 to 6.0
only results in 5% change in the hazard level in the following results. A site-specific hazard analysis
would need to examine the magnitude distribution parameters more closely.

We first conducted a parametric study to see how the hazard varies in this case for a range of
values. We considered injection durations (TS) of 2 and 15 days, a time range of interest (TE) of 7
and 30 days, and p value of 0.7, 2.0, and 4.0. For comparison, we also estimated the hazard if all
seismicity stopped after shut-in. We consider an initial post-injection seismicity rate of λ0 = 5 per
day, which is the median rate at the time of shut-in for the nine clusters.

Figure 9 summarizes the hazard levels for the considered cases. The x-axis shows the the amount
of additional time for which injection is continued, with continued injection assumed to produce
earthquakes with a mean rate of λ0 = 5 per day, and stopped injection resulting in Omori-decaying
seismicity. That is x = 0 on the plot corresponds to immediate shut-in, and x = 7 corresponds
to shut-in one week in the future. The y-axis shows the expected number of felt (i.e. MMI > 3)
events in the next TE days. Each solid and dashed line in the figure corresponds to one combination
of parameter values, and the black dotted line shows results without post-shut-in seismicity.

All cases with post-shut-in seismicity exceed the case with no post-shut-in seismicity, but the
difference between the two depends on the values of parameters. The longer the injection is con-
tinued, the higher the hazard, because of the longer interval with higher seismicity. The maximum
hazard occurs when the injection duration exceeds the time range of interest (i.e., TSI ≥ TS + TE)
as shown in Figure 9a. The lower the p (i.e., the slower the decay of post-shut-in seismicity),
the higher the hazard. Finally, the larger the TS (i.e., the longer the current injection time), the
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higher the hazard level. This suggests that the effect of post-shut-in hazard is more significant for
long-time injection.

Figure 9 shows that the post-shut-in seismicity could be important for decision-making. For
example, for a TS = 15-day injection interval, a typical value of p = 2, and a planned shutdown in
6 days, the 30-day hazard level is forecast to be more than double when considering post-shut-in
seismicity than when neglecting it. Post-shut-in seismicity clearly plays a large role in short-term
hazard analysis, especially for cases with low p values and longer injection durations.

(a) (b)

Figure 9: Hazard over the next (a) 7 days and (b) 30 days for different shut-in times. The hazard
is defined as the expected number of times experiencing MMI ≥ 3 at the injection site. The dotted
line corresponds to the case without post-shut-in seismicity.

4.3 Sensitivity analysis

We conducted a sensitivity analysis on the p in the Omori model and b in the Gutenberg-Richter
distribution to consider the uncertainty in the parameter estimation. In particular, both parameters
could be estimated using maximum likelihood estimation based on the observed cluster, and we
use bootstrapping to quantify the parameters’ uncertainty. We randomly sampled post-shut-in
earthquakes with replacement for every cluster and estimated the p and b using maximum likelihood
estimation. We repeated the process 2,000 times and plotted the distribution of estimated p and b.
Figure 10 summarizes the estimated values for every cluster. Clusters 1 and 3 have larger numbers
of post-shut-in earthquakes than Clusters 2 and 4, but Clusters 2 and 3 have the least p-value
uncertainty due to their more stable decay of seismicity. Moreover, for clusters that are not as
well described by a single decay model (i.e., Clusters 5 to 9), their p values are nearly constant
and many are close to 0. The low parameter variability in those cases is due to model mismatch
with data rather than true lack of parameter uncertainty, so this sensitivity analysis alone is not
sufficient to evaluate model performance. For b values, the clusters are more comparable in their
uncertainty, and the uncertainty decreases relative to the number of post-shut-in earthquakes.

We conducted the sensitivity analysis focusing on clusters that follow a single decay process (i.e.,
Clusters 1 to 4). However, the results of all clusters are provided in the appendix. In particular,
we compared the post-shut-in hazard levels using three sets of p and b values: 1) the median values

for both p and b as a reference hazard level, 2) decreasing one parameter to its 25th percentile, 3)

decreasing the other parameter to its 25th percentile. The parameters are varied asymmetrically
in this way in order to understand the potential for adverse outcomes: a lower b indicates a higher
probability of a large-magnitude earthquake, and a lower p indicates higher post-shut-in seismicity.
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(a) (b)

Figure 10: The distribution of the estimated (a) b and (b) p for every cluster using bootstrapping.
The shaded area corresponds to rotated kernel density plots on both sides. The horizontal line is
the mean value.

The p and b values could take higher values as well, but those outcomes are of less concern because
they are less likely to produce felt shaking.

We computed the hazard levels in the next 7 days for various MMI thresholds using Equations 6
and 7, an injection duration of TS = 2 or 15 days, and TSI = TS (i.e., shutting down immediately).
Figure 11 reports the hazard associated with exceeding a range of MMI levels, plotted as the ratio
of hazard for a given case relative to the reference case. The reference case uses the median values
of p and b from Figure 10. The considered comparison cases are the one with a 25th percentile p
value or a 25th percentile b value (with b estimated either from the entire cluster, or from only the
post-shut-in events). The solid lines correspond to TS = 2 days and the dashed lines correspond
to TS = 15 days. In Figure 11, the effect of p is constant over various MMI thresholds, because
the change in p only affects the seismic rate (i.e., λ(mmin ≤ M ≤ mmax)). However, it varies with
the injection duration (TS) - it is more significant with a shorter injection duration. The effect of
b changes with MMI - the hazard for larger MMIs increases more significantly than smaller MMIs.
This is because a smaller b suggests higher probabilities of large-magnitude earthquakes, which
contribute to hazard at large MMIs.

We also estimated b using the entire cluster and included the results in Figure 11. This often
results in a smaller standard error than the b estimated from post-shut-in earthquakes only, thus
a smaller increase in the seismic hazard (Figure 11). Most of the time, the uncertainty in b has a
higher impact on the resulting hazard level than p if both are estimated from the same number of
earthquakes. However, the relative importance of b and p also depends on the injection duration
and MMI thresholds of interest. The resulting hazard level could be more sensitive to p for small
MMI thresholds (e.g., MMI < 3) and short injection duration (e.g., TS < 3 days). On the other
hand, the effect of b dominates the hazard at larger MMI thresholds (e.g., MMI > 3).

5 Hazard analysis with logic trees and Bayesian updating

Though the Omori model is simple for parameter estimation and model interpretation, it fails
to describe cases when there are delayed earthquake clusters after shut-in or when the seismicity
increases after shut-in (e.g., Clusters 7 and 8). The earthquake rate is capped at λ0 for the Omori
model, and this could result in an underestimation of the post-shut-in hazard. On the other hand,
the stretched exponential model could describe the delayed earthquake cluster, thus capture the
increase in the post-shut-in hazard. We developed a logic tree by assembling the two models to take
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(a) (b)

Figure 11: Sensitivity analysis for (a) Cluster 1 and (b) Cluster 4. Hazard results for a 25th

percentile parameter value are shown, relative to hazard results with median parameter values
from Figure 10. The solid lines correspond to TS = 2 days and the dashed lines correspond to
TS = 15 days.

into account the possibility of increasing post-shut-in seismicity. The logic tree has been used in
probabilistic seismic hazard analysis to capture the epistemic uncertainty (Kulkarni et al., 1984).
Each branch of the logic tree is a set of possible models with an assigned weight, and the final
output is their weighted average:

µaverage =

N,

i

wiµi (8)

where wi is the weight for each branch, µi is the corresponding outcome, and N is the total number
of branches. We developed a logic tree to quantify the post-shut-in hazard. Figure 12 shows a
sample logic tree model, with some assumed parameter values and branches. It consists of the
stretched exponential model and the Omori model. For each model, the logic tree also considers
the uncertainty in the parameters (i.e., p, τ , and β). In Figure 12, w1 and w2 represent the weight
for the two models, and wij is the weight for the corresponding parameters. For illustration, we
set all weights according to the nine clusters. According to BIC values of the nine clusters, five
of them could be better described by the stretched exponential model, thus we assumed w1 =
0.45 and w2 = 0.55. Assuming p, β and τ are positive, we defined that p follows a lognormal
distribution and log(τ) and log(β) follow a multivariate Gaussian distribution. Their parameters
were estimated based on the nine clusters. In particular, we excluded Clusters 7 and 8 when
constructing the distribution for p, because the estimated p for the clusters is zero. In order to
quantify the uncertainty, we implemented the Monte Carlo simulation to generate 2,000 sets of
parameters according to predefined distributions, and computed the hazard using w1 = 0.45 and
w2 = 0.55. The hazard was defined as the expected number of times experiencing MMI ≥ 3 in the
next 7 days, given a two-day injection. In particular, we set λ0 = 5 per day, TS = 2 days and TE = 7
days. Figure 13 shows short-term hazard levels computed using Equations 6 and 7. The solid line is
the median hazard level, and the dashed lines correspond to the 10th and 90th percentiles. We also
included the cases for w1 = 1.0 (i.e., the Omori model) and w1 = 0 (i.e., the stretched exponential
model) for reference. Figure 13 shows that the Omori model has lower median hazard levels than
the other two. This is expected because the seismic rate is capped at λ0 for the Omori model, but
it could be much higher for the stretched exponential model. As a result, the post-shut-in hazard
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from the stretched exponential model could exceed the hazard during the injection (i.e., hazard

due to the constant seismic rate λ0). As shown in Figure 13, the 90th percentiles of the stretched
exponential model at t < 7 days is higher than the Omori model and the hazard at t > 7 days.
The hazard level with w1 = 0.45 and w2 = 0.55 is between the other two cases. It also reflects
the possibility of increasing post-shut-in seismicity. Thus, the logic tree model could be used to
consider the uncertainty in the model selection and parameter estimation.

Figure 12: The sample logic tree model, with some assumed parameter values and branches. w
corresponds to the weight for each branch.

All the weights were previously estimated based on the nine clusters, but they could be updated
when new injection and earthquake data are available. In particular, we used the Bayes rule to
update the weights:

wnew
i =

Liwi-N
i Liwi

(9)

where wi is the current weight for a branch and wnew
i is the updated weight. Li is the likelihood of

observing the new data given the parameters of the branch. The higher the likelihood, the larger
the assigned weight.

If we assume that post-shut-in seismicity of nearby wells has similar patterns (e.g., a single
decay model), we could update the weights when new injections and clusters are available nearby
so that the post-shut-in hazard in the region could be better predicted using the updated weights.
For illustration, we assumed that the next five clusters associated with some new injections near
Cluster 1 are all similar to Cluster 1 and updated the weights after every cluster. In particular, we
generated a new cluster by randomly sampling earthquakes in Cluster 1 with replacement. Figure
14 shows the update in weights for the two models (i.e., w1 and w2). They begin with the assumed
values (i.e., w1 = 0.45 and w2 = 0.55), and after the first cluster, the weight for the Omori model
is higher than that of the stretched exponential model, suggesting that the former fits better to the
new cluster. The weight for the Omori model decreases slightly after the third cluster, meaning
that the stretched exponential model outperforms for this cluster.

We could also update the weights within a cluster when new earthquakes are observed so that
the short-term hazard could be updated in real-time. Before shut-in, we estimate the post-shut-in
hazard using weights based on some prior knowledge (e.g., the nine clusters). After the shut-in, we
update the weights along the time when new earthquakes are observed. We illustrated this process
using Cluster 3, where we updated the weights every day based on the earthquakes up to that date,
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(a) (b)

(c)

Figure 13: The expected number of times experiencing MMI ≥ 3 over the next 7 days for different
shut-in times. The weight for the Omori model is (a) 0.0, (b) 0.45, and (c) 1.0. The solid line shows
the median values, and dashed lines indicate the 80% confidence interval (C.I.).

Figure 14: Updated weights for the Omori model and the stretched exponential model after five
clusters re-sampled from Cluster 1.

and computed the hazard in the next 7 days. The short-term hazard was defined as the expected
number of MMI > 3.0 events over the next 7 days. Figure 15a shows the update in weights for
the two models (i.e., w1 and w2) along the time. The weight for the Omori model increases when
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earthquakes are being observed after the shut-in. Figure 15b shows the expected number of times
experiencing MMI ≥ 3 in the next 7 days based on the updated weights. The hazard decreases
along the time because, according to Figures 5 and 15a, the post-shut-in seismicity could be better
described as a single decay process (i.e., the Omori model). Moreover, as more earthquakes are
collected, the parameters are better constrained, and thus we are more confident on the predicted
hazard. Though after the injection, limited actions could be done to control the short-term hazard
further, we could better prepare for the coming hazard based on the real-time prediction.

(a) (b)

Figure 15: (a) Updated weights for the Omori model and the stretched exponential model after
shut-in. (b) The expected number of times experiencingMMI ≥ 3 over the next 7 days for different
times after the shut-in. The solid line shows the median values, and dashed lines indicate the 80%
confidence interval.

The above results consider clusters that are reasonably represented by the Omori model. The
same exercise could be repeated for the clusters represented by the stretched exponential model,
but the updating exercise is less valuable in those cases. First, because the Omori model works
poorly for those clusters, the model weights quickly shift entirely to the stretched exponential
model. This is a good verification of the updating algorithm, but less useful for decision-making;
when the Omori model is inappropriate, this can be seen visually and the updating procedure is
not needed. Second, the forecast hazard can be quite large in these cases, due to the potential for
seismicity to continue increasing, and the significant uncertainty on model parameters when activity
is increasing. While it is true that the hazard is potentially high in such situations, a manual review
of the increasing seismicity may be as informative for decision-making as a quantitative assessment
that has significant uncertainty. The updating approach thus has some robustness in providing
reasonable results for all clusters, but is most informative in forecasting hazard for situations where
seismicity is decaying in time.

6 Conclusion

This project evaluated three statistical models to describe the post-shut-in seismicity. We also
studied the effect of post-shut-in seismic hazard on decision-making and proposed a logic tree
model to incorporate the uncertainty in model selection and parameter estimation.

We considered three statistical models - the Omori model from Langenbruch and Shapiro (2010),
the exponential model, and the stretched exponential model from Mignan et al. (2017). They
were evaluated based on nine clusters of hydraulic-fracturing-induced earthquakes near the Guy-
Greenbrier fault in Arkansas (Yoon et al., 2017). Results suggested that half of the clusters could be
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well described by a single decay process. The Omori model performed best for those clusters, with
the lowest BIC values (indicating consistency between the data and model), though the stretched
exponential model performed almost as well in many cases. There were also clusters where the
seismicity increased after the shut-in and could not be described as a single decay process. In these
cases, the stretched exponential model worked best. The Omori model had the advantages of 1)
performing best for the single decay process, and 2) being easy to estimate and interpret due to the
functional form and the number of parameters involved. However, it failed to describe the situation
of the increasing post-shut-in seismicity. The stretched exponential model could handle such cases
- it could describe both the single decay process and the delayed earthquake cluster. However,
compared to the Omori model, it could result in unrealistic estimated rates: a discontinuous and
extreme rate right after shut-in. Given its stability and ease of use, we used the Omori model to
study the effect of post-shut-in hazards on decision-making. We also considered a logic tree model
to incorporate the possibility of other post-shut-in patterns.

We defined the short-term hazard as the expected number of times exceeding an MMI of 3.0
at the injection site in the next TE days given the current injection duration of TS days. We first
conducted a parametric study on the seismicity decay parameter p and the injection duration TS .
Higher p implies more rapid decay in the seismicity and thus lower post-shut-in hazard. Keeping
other parameters unchanged, the longer the current injection time (TS), the higher the hazard level.
This suggests that the post-shut-in hazard is more important for a long-time injection. Comparing
the hazard computed with and without post-shut-in seismicity, we observed that the post-shut-in
hazard could be important to decision-making in some cases. For example, assuming TS = 15 days
and p = 2 and a target 30-day hazard of 0.1 (i.e., µ(MMI ≥ 3) < 0.1), an analysis ignoring post-
shut-in seismicity would imply that continued injection for 6 days is acceptable. However, analysis
considering post-shut-in seismicity would suggest that injection should shut down immediately. If
we continue the injection for 6 days, the hazard could increase by more than 100%.

We also studied the effect of parametric estimation uncertainty (i.e., p for the Omori model
and b for the Gutenberg-Richter distribution) on the estimated hazard. Results showed that the
uncertainty in b has a higher impact on the resulting hazard level than p if both were estimated
from the same number of earthquakes. However, the relative importance of b and p also depends
on the injection duration and MMI thresholds of interest. The hazard is more sensitive to p for
small MMI thresholds (e.g., MMI < 3) and short injection duration (e.g., TS < 3 days). On the
other hand, the effect of b dominates the hazard at larger MMI thresholds (e.g., MMI > 3).

We proposed a logic tree model to incorporate the uncertainty in model selection and parameter
estimation. As an example, we developed a logic tree that considered the possibility of seismicity
following either the Omori model or the stretched exponential model. This model captured the
possibility of increasing post-shut-in seismicity and hazard. The weights of each branch could be
updated in a Bayesian manner as new post-shut-in data is observed. We illustrated the process
of tree construction and weight updates using the nine earthquake clusters in Buy-Greenbrier,
Arkansas (Yoon et al., 2017).
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8 Appendix

(a) (b)

(c) (d)

Figure 16: Earthquake occurrence of the nine clusters. The dots are earthquakes, with heights
indicating their magnitudes. The shaded area corresponds to the injection. The dashed line is the
recorded seismic rate, and the solid lines are the seismic rates using the three fitted models.
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(g) (h)

(i)

Figure 16: Earthquake occurrence of the nine clusters. The dots are earthquakes, with heights
indicating their magnitudes. The shaded area corresponds to the injection. The dashed line is the
recorded seismic rate, and the solid lines are the seismic rates using the three fitted models. (cont.)
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(a) (b)

(c) (d)

Figure 17: Sensitivity analysis for the nine clusters. The solid lines correspond to TS = 2 days and
the dashed lines correspond to TS = 15 days.
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(e) (f)

(g) (h)

Figure 17: Sensitivity analysis for the nine clusters. The solid lines correspond to TS = 2 days and
the dashed lines correspond to TS = 15 days. (cont.)

(i)

Figure 17: Sensitivity analysis for the nine clusters. The solid lines correspond to TS = 2 days and
the dashed lines correspond to TS = 15 days. (cont.)
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