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Abstract

For performance-based design, nonlinear dynamic structural analysis for various types of
input ground motions is required. Stochastic (simulated) ground motions are sometimes
useful as input motions, because unlike recorded motions they are not limited in number
and because their properties can be varied systematically to study the impact of ground
motion properties on structural response. This dissertation describes an approach by which
the wavelet packet transform can be used to characterize complex time-varying earthquake
ground motions, and it illustrates the potential benefits of such an approach in a variety
of earthquake engineering applications. The proposed model is based on Thráinsson and
Kiremidjian (2002), which use Fourier amplitudes and phase differences to simulate ground
motions and attenuation models to their model parameters. We extend their model using
wavelet packet transform since it can control the time and frequency characteristic of time
series. The time- and frequency-varying properties of real ground motions can be cap-
tured using wavelet packets, so a model is developed that requires only 13 parameters to
describe a given ground motion. These 13 parameters are then related to seismological
variables such as earthquake magnitude, distance, and site condition, through regression
analysis that captures trends in mean values, standard deviations and correlations of these
parameters observed in a large database of recorded strong ground motions. The result-
ing regression equations then form a model that can be used to predict ground motions
for a future earthquake scenario; this model is analogous to widely used empirical ground
motion prediction models (formerly called “attenuation models”) except that this model
predicts entire time series rather than only response spectra. The ground motions produced
using this predictive model are explored in detail, and are shown to have elastic response
spectra, inelastic response spectra, durations, mean periods, etc., that are consistent in both

iv



mean and variability to existing published predictive models for those properties. That
consistency allows the proposed model to be used in place of existing models for prob-
abilistic seismic hazard analysis (PSHA) calculations. This new way to calculate PSHA
is termed “simulation-based probabilistic seismic hazard analysis” and it allows a deeper
understanding of ground motion hazard and hazard deaggregation than is possible with tra-
ditional PSHA because it produces a suite of potential ground motion time histories rather
than simply a distribution of response spectra. The potential benefits of this approach are
demonstrated and explored in detail. Taking this analysis even further, this suite of time
histories can be used as input for nonlinear dynamic analysis of structures, to perform a
risk analysis (i.e., “probabilistic seismic demand analysis”) that allows computation of the
probability of the structure exceeding some level of response in a future earthquake. These
risk calculations are often performed today using small sets of scaled recorded ground mo-
tions, but that approach requires a variety of assumptions regarding important properties
of ground motions, the impacts of ground motion scaling, etc. The approach proposed
here facilitates examination of those assumptions, and provides a variety of other relevant
information not obtainable by that traditional approach.
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Chapter 1

Introduction

1.1 Motivation

Nonlinear dynamic structural analysis generally requires the use of large numbers of in-
put ground motions in order to determine performance of structures in terms of probability
distributions of engineering demand parameters, which is used for performance-based de-
sign. However, the number of available recorded ground motions is limited and may not be
sufficient for characterizing a particular analysis condition.

In order to obtain additional ground motions for a particular analysis condition, ground
motion scaling and spectral matching are widely used to adjust recorded ground motions
and make them more representative of the target analysis condition. Ground motion scaling
modifies the amplitude of a “seed” recorded ground motion by multiplying a constant, in
order to to match a target spectral acceleration at a particular target period, or approximately
match a spectrum (e.g. a uniform hazard spectrum) over a range of periods. Spectral match-
ing modifies recorded ground motions by adjusting Fourier amplitudes (e.g. Silva and Lee
1987), adding small wavelets (e.g.Hancock et al. 2006, Al Atik and Abrahamson 2010), or
adjusting wavelet coefficients (e.g. Mukherjee and Gupta 2002, Suarez and Montejo 2005,
Nakamura et al. 2008, Yazdani and Takada 2009, Giaralis and Spanos 2009) to make their
spectra reasonably match the target response spectra over a range of periods.

However, these approaches change the relationship between characteristics of recorded
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ground motions and their associated seismological conditions, so the results of these op-
erations could have characteristics different from those of actual recorded ground motions
(Bazzurro and Luco 2006, Luco and Bazzurro 2007). An alternative approach is, therefore,
to generate artificial earthquake ground motions whose characteristics are consistent with
both the physical condition of interest and the characteristics of the actual recorded ground
motions.

1.2 Simulation approaches

Douglas and Aochi (2008) provides a comprehensive review of the many ground mo-
tion simulation techniques proposed in the past, including methods to generate time se-
ries ground motions as well as ground motion prediction models (GMPMs) for intensity
measures. This dissertation focuses on generating ground motion time series for input to
nonlinear dynamic structural analysis, thus we will briefly review similar related work.

The three general types of strong ground motion simulation techniques are physics-
based simulations, stochastic simulations, and hybrid simulations (which combines the
first two). Physics-based simulations generate ground motions by modeling fault rupture
and resulting wave propagation using analytical models (e.g. Zerva 1988, Mavroeidis and
Papageorgiou 2003), finite element methods (FEM, e.g. Moczo et al. 2007) or finite dif-
ference methods (FDM, e.g. Boore 1973, Pitarka et al. 1998, Moczo et al. 2007). Most
analytical models are limited to a layered homogeneous medium; however, the results of
physics-based simulations naturally include effects of coherency, directivity, site amplifi-
cation, surface wave, and other physical effects caused by geometric conditions (assuming
that those effects are included in the given model’s formulation).

Since physics-based simulations require a large number of seismological information
about fault rupture (e.g. rise time, stress drop, cut-off frequency, position of asperities,
etc.), and the resulting simulated ground motions are sensitive to these parameters, it is dif-
ficult to predict appropriate seismological parameters of future earthquake scenarios. Also,
since the FEM and FDM simulate wave propagation with precise physical information (e.g.
shear wave velocity, Q value, and three-dimensional crustal structure), it is computation-
ally expensive to produce a large number of simulations that cover the range of possible



CHAPTER 1. INTRODUCTION 3

future earthquakes. In addition, the frequencies of ground shaking that can be generated
using FEM and FEM are constrained by the spatial resolution of the fault rupture model
and crustal structure model. Limitations on measurement of these properties and limita-
tions on computational time required to process high-resolution simulations indicate that
current simulations are limited to frequencies below 2Hz, even when petascale computing
facilities are used (Cui et al. 2010). Higher-frequency components are important for some
structures, however, such as low- and mid-rise buildings, nuclear power plants, and some
geotechnical structures.

Other simulations can improve the computational cost and input data requirements de-
scribed above, for example by using a point-source model but coupling it with a physics-
based wave propagation algorithm, or by using only 2D crustal velocity models rather than
3D (e.g. Haase et al. 1996). Those simplifications greatly reduce the computational cost
and input data requirements of the simulations, and can produce reasonable results in some
cases, but their generality and ability to incorporate the complete physical rupture and wave
propagation process is limited.

The above descriptions are also focused on simulation approaches that perform forward
simulations of future earthquakes, and which are capable of producing an infinite set of
simulations by including randomness in model parameters for future earthquakes (Cui et al.
2010). Many simulations are performed using, for example, a source model obtained from
inversion of a past earthquake (e.g. Wald et al. 1991, Pitarka et al. 1998). These simulations
overcome some limitations of physics-based models discussed above, because a realistic
source description is readily available, but they are not directly applicable for computing
reliability of structures subjected to future earthquake ground motions.

Stochastic simulations, in contrast, are empirically calibrated approaches that directly
simulate the recorded ground motions using fewer parameters than physics-based simula-
tions. With this approach, it is difficult to consider physical phenomena such as surface
waves, directivity, etc., exclusively since there are likely no parameters in the model to
control these effects. In addition, it is difficult to consider the effect of three-dimensional
crustal structure because in general each stochastic simulation uses only the near surface
soil conditions under the station.

Hybrid simulations (e.g., Hartzell et al. 1999, Martin Mai and Beroza 2003, Graves
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and Pitarka 2010) combine physics-based simulations for low-frequency components and
empirical simulations or stochastic simulation for high-frequency components using fre-
quency filters. This overcomes practical limitations of the individual approaches, and is
based on the idea that the effects of fault rupture and wave propagation can be considered as
stochastic at higher frequencies. Even though hybrid simulations combine the advantages
of both physics-based and stochastic simulations, combining the ground motions from the
two simulations possess challenges related to tapering one approach’s ground motion in
and the other’s out at the transition frequency. Maintaining appropriate phasing across the
two sources can also be problematic. Also the simulation currently used at high frequencies
in hybrid simulations is a method of superposing ground motion recordings of small earth-
quakes (empirical Green’s functions, e.g. Hartzell 1978, Irikura 1983) or stochastic simula-
tions from statistical models of source, path, and site amplification (e.g. Papageorgiou and
Aki 1983a, 1983b, Boore 1983, 2003), or theoretical Green’s functions (e.g. Zeng et al.
1994). These simulations require the same detailed information as physics-based simula-
tions. Therefore, computational cost depends on the type of physics-based simulations.

For performance-based design, where we often need a large number of input ground
motions, stochastic simulations may be more practical than physics-based simulations and
hybrid simulations. This dissertation focuses on the stochastic simulation approach, so
similar previous research will be discussed in more detail.

Research on stochastic simulations has been conducted for more than 50 years by many
researchers. There are comprehensive reviews almost every 10 years by authors such as Liu
(1970a), Ahmadi (1979), Shinozuka and Deodatis (1988), Kozin (1988), Conte and Peng
(1997), and Rezaeian (2010). One important issue raised in these reviews is that of time and
frequency nonstationarity, which describes the changing amplitudes of time series (tem-
poral nonstationarity) and changing frequency characteristics (spectral nonstationarity) in
time. This nonstationarity is an important factor for affecting nonlinear dynamic response
of structures. It can affect the results of nonlinear dynamic structural analysis (Chakravorty
and Vanmarck 1973, Yeh and Wen 1990, Conte 1992b, Wang et al. 2002, Spanos et al.
2007), in part because the structure’s behavior is also nonstationary as it is driven to non-
linear response and its resulting natural period increases (Papadimitrios 1990) .

Rezaeian (2010) places existing stochastic ground motion models into four categories:
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(1) Processes obtained by passing a white noise through a filter, e.g., Bolotin (1960),
Shinozuka and Sato (1967), Amin and Ang (1968), Iyengar and Iyengar (1969), Ruiz and
Penzien (1971), Alamilla et al. (2001) with subsequent modulation in time for temporal
nonstationarity. These processes have constant frequency characteristics along the entire
time axis. Rezaeian (2010) developed a fully nonstationary stochastic model that uses
a modulated filtered white-noise process in the time domain. Her model has the advan-
tage that the temporal and spectral nonstationarities are separately computed by modulat-
ing the response of a linear filter having time-varying characteristics that are applied to
a white-noise excitation. However, since these models control frequency nonstationarity
from the time domain, it can be difficult to describe the joint time and frequency char-
acteristics of multimodal functions. (2) Processes obtained by passing a train of Poisson
pulses through a linear filter, e.g., Cornell (1964), Lin (1965). These processes can gener-
ate ground motions with time and frequency nonstationarity Lin (1986) using modulation
in time; however, it is difficult to simulate realistic ground motion recordings. (3) Auto-
regressive moving average (ARMA) models, e.g., Jurkevics and Ulrych (1978), Hoshiya
and Hasgur (1978), Polhemus and Cakmak (1981), Kozin (1988), Chang et al. (1982),
Conte (1992a), Mobarakeh et al. (2002). These models can simulate ground motions with
time and frequency nonstationarity using time-dependent parameters for frequency charac-
teristics, but it is often difficult to link the model parameters to seismological information.
This limitation makes it difficult to simulate future ground motions using these models. (4)
Various forms of spectral representation, e.g., Saragoni and Hart (1974), Der Kiureghian
and Crempien (1989), Conte and Peng (1997), Wen and Gu (2004), Pousse et al. (2006).
These models use a short-time Fourier transform or wavelet transform to develop a time-
frequency modulating function that matches a particular recorded ground motion. Also,
Thráinsson and Kiremidjian (2002) and Montaldo et al. (2003) use phase differences in the
ground motion components of various frequencies to generate motions with time-frequency
nonstationarity.

The common assumption for all these models is that the simulated motion is a zero-
mean Gaussian process. The model proposed in this dissertation characterizes the signal in
the time and frequency domain using wavelet transforms, so it fits into the fourth category.

Given that the proposed model uses time and frequency modulation, the followsing
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paragraphs describe previous research to develop models similar to our proposed stochastic
ground motion model.

Page (1952) proposed the instantaneous power spectrum and Priestley (1965) proposed
the evolutionary (time-varying) power spectral density (EPSD) to control time and fre-
quency characteristics of nonstationary time series. Liu (1970b) proposed a model based
on the instantaneous power spectrum, and Saragoni and Hart (1974) defined the power
spectral density for finite time regions. Kameda (1975) and Scherer et al. (1982) both
estimated EPSD functions from recorded ground motions using a multifilter technique.
Conte and Peng (1997) proposed an extension of Thomson’s spectrum estimation method
(Thomson 1982) to analyze EPSD functions. More recently, Pousse et al. (2006) used a
modified time-dependent ω-square model and two types of modulating functions, which
correspond to the P-wave and the S-wave respectively.

Various researchers have used the wavelet transform to characterize ground motions.
Among them, Iyama and Kuwamura (1999) demonstrated that the square of an individ-
ual wavelet coefficient from the discrete wavelet transform (DWT) is equivalent to the
corresponding energy (squared acceleration) in a given time and frequency domain, using
energy conservation between wavelets and accelerations in each frequency band. Masuda
and Sone (2002) generated artificial ground motions given time and frequency character-
istics and response spectra that were comparable to recorded ground motions, using the
continuous wavelet transform (CWT) with the time-reversed impulse response function as
a wavelet function. These proposed models can characterize time and frequency charac-
teristics of a ground motion, but they only simulate motions based on a target seed ground
motion. Sasaki et al. (2003) proposed a model using the DWT to generate artificial ground
motions with time and frequency nonstationarity and attenuation models to their model
parameters. However, it is difficult to maintain time-frequency characteristics using this
approach, because the time resolution of the DWT is very low at low frequencies.

Spanos and Failla (2004) proposed a wavelet-based method to estimate the EPSD of the
target ground acceleration record. Spanos and Failla (2004) and Spanos et al. (2007) used
CWT instead of the short-time Fourier transform (STFT) in order to achieve an enhanced
time resolution for high frequency components. Their implementation was limited, how-
ever, to producing simulations that reproduced properties of a “seed” ground motion that
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was used for calibration, rather than producing simulations for an arbitrary future earth-
quake scenario.

Nakamura et al. (2008) proposed the model to generate artificial ground motions having
a target response spectra by linear combination of wavelet coefficients from large number
of recorded ground motions using DWT. The time and frequency characteristics of the
simulated motions are taken to match those of a reference recorded ground motion. Amiri
et al. (2009, 2011) used the wavelet packet transform (WPT) to generate artificial ground
motions compatible with a target pseudo velocity response spectrum and having time and
frequency nonstationarity. Their model used a neural network to predict the wavelet packets
amplitudes. The simulations from this model are conditional on a target spectrum rather
than seismological parameters, however, so it is difficult to generate ground motions that
represent the full variability of potential future ground motions.

Several software packages are available to generate artificial ground motions using
stochastic models: PSEQGN (Ruiz and Penzien 1969), SIMQKE-I (Vanmarcke et al. 1976)
and SIMQKE-II (Vanmarcke et al. 1997). PSEQGN generates ground motions using white
noise process with a time-varying modulating function. SIMQKE-I generates ground mo-
tions using pseudo-random phasing with a time-varying modulating function. The resulting
ground motions have a target spectral shape, which is obtained due to the relationship be-
tween the response spectrum values for a given level of damping and the expected Fourier
amplitudes of the ground motion (Vanmarcke and Gasparini 1976). The software package
SIMQKE-II extends SIMQKE-I to generate ground motions with a specified EPSD and
also simulated multiple ground motions at adjacent locations that have appropriate spatial
correlation spatial correlation.

The model proposed in this dissertation is based on Thráinsson and Kiremidjian (2002)
and we extend their model using WPT since it can fully control the time and frequency
characteristic of time series. Here the WPT is employed in order to approximate the EPSD
of acceleration time series for stochastic ground motion modeling. The wavelet transform
was chosen because it has been noted as an effective tool for producing nonstationary time
histories. Among options for wavelet analysis, the CWT is problematic because it is diffi-
cult to use to reconstruct time series due to the non-orthogonality of the wavelets at adjacent
times and frequencies. At the other extreme, the DWT decomposes time series into wavelet
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packets in the time and frequency domain without any subjective judgment about window
size, however, it has low time-domain resolution at long periods, making it difficult to con-
trol long-period properties of the simulations. The WPT is the extended version of DWT.
It can have a constant resolution in the time and frequency domain, and its basis functions
are orthogonal which allows reconstruction of time series from wavelet packets. Using the
WPT, one can maintain temporal and spectral nonstationarities in the time and frequency
domain. The stochastic ground motion model proposed here requires 13 model parameters
and each parameter has a different role to control the time and frequency characteristics of
simulated ground motions. Therefore, one can simulate ground motion with the target time
and frequency characteristics.

Another important feature of the proposed stochastic ground motion model is the vari-
ability of simulated ground motions, as this affects the variability of structural responses.
This is done in the proposed model by calibrating the variability of the predicted model
parameters for a given earthquake scenario (e.g. Alamilla et al. 2001, Thráinsson and
Kiremidjian 2002, Pousse et al. 2006, and Rezaeian 2010). The model parameters of the
proposed stochastic model are predicted through two-stage regression analysis and random
generation of these parameters makes simulated ground motions variable. The simulated
ground motions from the proposed stochastic model are observed to have similar charac-
teristics to existing ground motion prediction models in terms of the median and variability
of spectral acceleration, inelastic response spectra (Bozorgnia and Campbell 2004), Arias
intensity (Arias 1970), significant duration (Trifunac and Brady 1975), and mean period
(Rathje et al. 2004). Therefore, one can use our simulations for structural design or hazard
analysis.

As applications of the proposed model, simulation-based probabilistic seismic hazard
analysis (PSHA) and simulation-based probabilistic seismic demand analysis (PSDA) are
proposed. These models use simulated ground motions and Monte Carlo simulation to
compute the probability that spectral acceleration (Sa) or engineering demand parameter
(EDP) is greater than a particular threshold. Simulation-based PSDA in general requires
more structural response analyses than current procedures to compute the hazard curves
for EDP (Bazzurro 1998, Shome et al. 1998). However, the simulation-based PSDA does
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not require the use of a ground motion intensity measure, scaling of ground motions, or as-
sumptions regarding functional forms and probability distributions of EDP values. Also, we
can perform a deaggregation-like computation to determine the characteristics of the simu-
lated ground motions that produce a given level of EDP, giving insights into ground motion
properties that influence structural behavior and thus potentially informing procedures for
selecting and scaling recorded ground motions. Thus, despite the procedure’s computa-
tional expense, it serves as a potentially useful alternate method of evaluating structural
reliability.

Further, simulation-based PSDA can be extended to drift hazard analysis that computes
the rate of jointly exceeding specified thresholds for two or more EDP parameters–a calcu-
lation which is difficult to perform using recorded ground motions. To demonstrate, joint
hazard contours (as opposed to hazard curves for a single parameter) of maximum inter-
story drift ratio (MIDR) and peak floor acceleration (PFA) are produced. Various points on
these contours are deaggregated to identify response spectra associated with each, and the
relationship between spectral shape, MIDR and PFA are discussed.

1.3 Contributions of this dissertation

1.3.1 Input ground motion of structural analysis

In order to obtain the seismic behavior of structures in terms of the probability distribution
of engineering demand parameters, we need to use input ground motions that have appro-
priate characteristics for possible scenarios for the site of interest. Currently, the shape
of spectral acceleration is considered representative of the characteristics of input ground
motions; however, other parameters (e.g. duration, dominant period, bandwidth, Arias in-
tensity, etc.) could also be important for structural response. Since the simulated ground
motions have characteristics similar to the those observed in recorded ground motions,
which are equivalent to the past research regarding median and variability (e.g. Alamilla
et al. 2001, Thráinsson and Kiremidjian 2002, Pousse et al. 2006, and Rezaeian 2010),
the relationship between the characteristics of ground motion and seismic structural be-
havior can be determined by using our simulated ground motions. This dissertation also
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discusses differences in structural responses obtained using our simulated ground motions
and selected ground motions scaled to match conditional mean spectra.

1.3.2 Simulation-based Probabilistic Seismic Hazard Analysis and Prob-
abilistic Seismic Demand Analysis

Since stochastic simulation using our stochastic model is computationally inexpensive,
Monte Carlo simulations can be run using simulated ground motions to compute a haz-
ard curve for any intensity measure such as Sa or EDPs such as maximum inter-story drift
ratio (MIDR), which is difficult to compute from recorded ground motions because of the
shortage in number of recorded ground motions for Monte Carlo simulations or the lack
of the relationship between scaled ground motions and seismological parameters. Our
hazard curves are directly computed from simulated ground motions, and thus don’t re-
quire assumptions about features such as probability distributions of Sa or EDPs. Also
deaggregations are computed for these hazard curves for spectral shapes and several other
ground motion parameters. This dissertation discusses the relationship between engineer-
ing demand parameters and the characteristics of the simulated ground motions, and also
presents studies of the spectral shape associated with ground motions producing a given
level of EDPs.

1.4 Organization

This dissertation discusses the proposed stochastic ground motion model and its appli-
cations. Chapters 2 and 3 describe the stochastic ground motion model with time and fre-
quency nonstationarity. Chapter 4 discusses the comparisons between the simulated ground
motions and Ground Motion Prediction Models (GMPMs). Chapter 5 describes simulation
based probabilistic seismic hazard analysis. Chapter 6 examines simulations in terms of the
structural responses that they produce and Chapter 7 presents probabilistic seismic demand
analysis as an application of simulated ground motions.

Chapter 2 describes the proposed stochastic ground motion model based on wavelet
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packets. This chapter describes the parameters that determine the time-frequency charac-
teristics of the time series, and describes the structure of our model. It also presents the
statistical tests carried out to show the validity of our model structure. Recordings from
the 1994 Northridge California earthquake is employed for validation of ground motion
simulation by considering the following aspects: spectral acceleration, inelastic spectral
displacement, mean time, significant duration, mean frequency, bandwidth, and energy.

Chapter 3 presents the development of a two-stage regression analysis to determine the
relationship between our model parameters and seismological information (moment mag-
nitude, source-site distance, and site condition). This chapter explores the characteristics
of our database, which is a subset of the NGA database. Then functional forms are fixed
and the characteristics of residuals are checked. The relative importance of the model pa-
rameters is also discussed in terms of the effect of their uncertainty on the logarithmic
standard deviation of the elastic spectral acceleration. Based on these results, we describe
the limitations of our model.

Chapter 4 discusses comparisons between our simulations and GMPMs in terms of
spectral acceleration, inelastic response spectra, Arias intensity, significant duration, mean
period, and the normality and inter-period correlation structure of the prediction errors of
spectral acceleration (ε). Based on this comparison, our simulations are judged to be equiv-
alent to GMPMs in terms of the parameters compared in this chapter. These results suggest
that the spectral accelerations from the proposed model are compatible with conditional
mean spectra.

Chapter 5 computes the hazard curve of spectral acceleration using simulated ground
motions and compares it with the comparable hazard curve computed using a GMPM.
Since our simulation model is seen to be compatible with GMPMs in Chapter 4, the hazard
curves are comparable. This chapter then explores the deaggregation of spectral shape,
magnitude, Arias intensity, significant duration, and mean period. The spectral shape is
similar to that of conditional mean spectra calculations, and this suggests the validity of
conditional mean spectra (at least in cases where the hazard is dominated by a single sce-
nario).
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Chapter 6 explores nonlinear dynamic structural analysis using our simulations. Condi-
tional mean spectra are compared with spectral shapes of simulated ground motions condi-
tioned by spectral acceleration at the natural period. The empirical cumulative density func-
tion of ductility, maximum inter-story drift ratio, and peak floor acceleration are computed
and compared with those from structural analysis using selected ground motion recordings.

Chapter 7 computes the hazard curves of the maximum inter-story drift ratio and peak
floor acceleration using simulated ground motions. These hazard curves are currently dif-
ficult to compute using actual ground motion recordings because of the limited number of
recordings. In addition, this chapter explores the deaggregation of spectral shape, magni-
tude, Arias intensity, significant duration, and mean period, and discusses the characteris-
tics of this deaggregation.

Finally, Chapter 8 summarizes important findings presented in this dissertation.



Chapter 2

Stochastic ground motion model

2.1 Introduction

A stochastic ground motion model with time and frequency nonstationarity is developed us-
ing wavelet packets. The proposed model is based on Thráinsson and Kiremidjian (2002),
which use Fourier amplitudes and phase differences to simulate ground motions and atten-
uation models to their model parameters. We extend their model using the wavelet packet
transform, which is an extended version of the discrete wavelet transform. The wavelet
packet transform is an operation that decomposes time series data into wavelet packets in
the time and frequency domain, and its inverse transform reconstructs a time series from
wavelet packets. The characteristics of a nonstationary ground motion can therefore be
modeled intuitively by specifying the amplitudes of wavelet packets at each range of time
and frequency. In the proposed model, 13 parameters are sufficient to describe the time and
frequency characteristics of a ground motion. These parameters can be computed from a
specific target ground motion recording, or a ground motion simulation can be produced
given the target values of those 13 parameters. In this chapter a background on signal
processing using Fourier analysis, wavelet analysis and wavelet packets is provided, in or-
der to illustrate why the wavelet packet transform is an preferred method for analyzing or
simulating ground motions. Additionally, a brief background on the physics of wave propa-
gation is provided to motivate some of the parameterization choices used here. The wavelet
packets resulting from a ground motion are then summarized using a model requiring 13

13
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parameters, and the estimation of these parameters is discussed.

2.2 Techniques for characterizing time and frequency non-
stationarity

Time and frequency nonstationarity describes the changing amplitudes of time series (tem-
poral nonstationarity) and changing frequency characteristics (spectral nonstationarity) in
time. Time and frequency nonstationarity can be expressed using the following parameters:
1) group delay time (Cohen 1995), 2) instantaneous frequency (Cohen 1995), 3) spectro-
gram (running Fourier spectra), and 4) wavelet analysis. These concepts are defined below.
The group delay time (tg) is computed as follows:

tg = −
dφ(ω)

dω
(2.1)

X(ω) =
∫ ∞

−∞
x(t)e−iωtdt = A(ω)eiφ(ω) (2.2)

where A(ω) and φ(ω) are the amplitude and phase angle of X(ω), respectively, and X(ω)

is a Fourier transform of x(t). The group delay time can express a mean time of each
frequency component.

The instantaneous frequency (ωi) is the same concept as the group delay time, but ωi
is computed using a analytic function z(t) (Cohen 1995) in the time domain instead of
X(ω) in the frequency domain. The analytic function z(t) is a complex function, which is
computed by the inverse Fourier transform of 2X(ω) in ω ≥ 0.

z(t) =
1
2π

∫ ∞

0
2X(ω)eiωtdω (2.3)

By definition, the real part of z(t) is x(t). Using the analytic function z(t), ωi is computed
as follows:

ωi =
dψ(t)
dt

(2.4)

z(t) = a(t)eiψ(t) (2.5)
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where a(t) and ψ(t) are the amplitude and phase angle of the analytic function z(t), respec-
tively. The instantaneous frequency can express a mean frequency at each time step. The
group delay time can describe the changing frequency characteristics in terms of mean time
in each frequency component and the instantaneous frequency can describe the changing
frequency characteristics in terms of mean frequency in each time step. However, it is dif-
ficult to fully describe the joint time and frequency characteristics by the group delay time
or instantaneous frequency (e.g. multimodal functions).

The spectrogram (PSP(t,ω)) is computed by short-time Fourier transform or short-
frequency inverse Fourier transform:

PSP(t,ω) =

∣

∣

∣

∣

∫ ∞

−∞
e−iωτx(τ)h(τ− t)dτ

∣

∣

∣

∣

2
(2.6)

=

∣

∣

∣

∣

1
2π

∫ ∞

−∞
eiω

′tX(ω ′)H(ω−ω ′)dω ′
∣

∣

∣

∣

2
(2.7)

where h(t) is a window function, andH(ω) is a Fourier transform of h(t). The spectrogram
describes the distribution of energy in the time and frequency domain for any time series
data, and it can be computed very quickly using the Fast Fourier Transform (FFT). Choos-
ing an effective window function is challenging, however, because a short window requires
a wide bandwidth and cannot handle low frequency components. On the other hand, a long
window produces poor resolution in the time domain. It is also difficult to reconstruct a
time series data from the spectrogram.

In contrast, the continuous wavelet transform is defined as (Mallat 1999):

Cs,l =
∫ ∞

−∞
x(t)Φs,l(t)dt =

∫ ∞

−∞
x(t)

1√
s
Φ

(

t− l
s

)

(2.8)

where Cs,l are wavelet coefficients, l is an index associated with time, s is an index associ-
ated with frequency, and Φ

( t−l
s
)

is the mother wavelet function and its time and frequency
coverages are determined automatically. The wavelet packet transform is an modified ver-
sion of the wavelet transform defined as follows:

cij,k =
∫ ∞

−∞
x(t)ψ i

j,k(t)dt (2.9)
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where x(t) is the time series, cij,k denotes the ith set of wavelet packets at the jth scale
parameter and k is the translation parameter, and ψ i

j,k(t) is the wavelet packet function.
Since ψ i

j,k(t) is localized on the time and frequency axes, the wavelet packets can control
energy distribution in the time and frequency domain. Also it is possible to reconstruct
a time series data from the wavelet packets using the inverse wavelet packet transform as
follows:

x(t) =
2 j

∑
i=1

2N− j

∑
k=1

cij,kψ
i
j,k(t) (2.10)

where 2N is the number of data in the time series. The wavelet packets can describe the time
and frequency characteristics with time and frequency resolutions determined by a selected
wavelet function. Ideally the wavelet packet function is preferred with a time resolution as
short as possible and with a frequency resolution as narrow as possible; however, because
of the uncertainty principle (Mallat 1999), we cannot obtain wavelet packet function in
which time and frequency resolutions are both arbitrarily small.

In this dissertation, we employ the wavelet packet transform for stochastic ground mo-
tion modeling because it can decompose a time series into wavelet packets in the time and
frequency domain and can reconstruct a time series from wavelet packets.

2.3 Wavelet packet transform

The wavelet packet transform and the inverse wavelet packet transform are defined in equa-
tions 2.9 and 2.10, respectively. The characteristics of the wavelet packets depend on the
characteristics of the wavelet packet function, which has to be orthogonal for the wavelet
packet transform. For example, the Haar wavelet (Haar 1910) is a suitable wavelet to ana-
lyze the characteristics of time series on the time axis since it has complete compact time
support; however, it has long tails on the frequency axis. The Sinc wavelet (Sugihara 1997)
is a suitable wavelet to analyze the characteristics of time series on the frequency axis since
it has complete compact frequency support; however, it has long tails on the time axis. In
this dissertation, the wavelet packet function is computed from the finite-impulse-response-
based approximation of the Meyer wavelet (Meyer 1986) because it is orthogonal and it has
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good localization property on the time axis as well as on the frequency axis. The parameter
tk and fi are the central time and frequency of each wavelet packet coefficient cij,k. Since
ψ i
j,k(t) is localized around time tk and frequency fi, the wavelet packets can control the

time and frequency characteristics of x(t). The relationship between the time, frequency,
and the wavelet domain of time series data is shown in Figure 2.1.

Time(s)0 7
0

5

F
re

q
(H

z
)

(a)

(b) (c)

dfW

dtW

00.01
Amplitude

-0.2

0.2

A
m

p
lit

u
d

e

Figure 2.1: The relationship between the time, frequency, and wavelet domain. (a) time
series, (b) Fourier spectrum, and (c) wavelet packets.

Figure 2.2 shows acceleration time series data of the 1994 Northridge California earth-
quake recorded at LABSN Station 00003 Northridge–17645 Saticoy Street (Saticoy St.,
Rhyp = 18km, VS30 = 281m/s) and at CGS–CSMIP Station 25091 Santa Barbara–UCSB
Goleta (UCSB Goleta, Rhyp = 123km, VS30 = 339m/s) and their wavelet packets. The du-
ration of the Saticoy St. recording is shorter than that of the UCSB Goleta recording, so the
wavelet packets are located only at the beginning part of the waveform. The wavelet pack-
ets in the UCSB Goleta recording are located over a longer duration of time than those in
the Saticoy St. recording. In the UCSB Goleta recording, the wavelet packets with high fre-
quencies have very low amplitudes late in the recording. The reason for this phenomenon
is that the high frequency components attenuate more rapidly with distance than the low
frequency components and the later waves also include indirect waves that travel longer
distances than the direct waves, and thus have lower frequency. This reasonably explains
the observation in Figure 2.2 that spectral nonstationarity in the UCSB Goleta recording is
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stronger than that in the Saticoy St. recording. To describe this time and frequency non-
stationarity, we compute the correlation coefficient between the time and frequency of the
wavelet packets ρ(t, f ) because the mean frequency is changing almost monotonically. For
example, ρ(t, f ) in the Saticoy St. recording is −0.07, and in the UCSB Goleta recording
is −0.34. These both ρ(t, f ) are small, however, ρ(t, f ) has a relationship with the seis-
mological parameters. Figure 2.3 shows the relationship between ρ(t, f ) and hypocentral
distance of 153 recorded ground motions of the 1994 Northridge California earthquake.
According to the figure, the correlations decrease with larger hypocentral distance, and this
trend matches the observations in Figure 2.2. So one can describe the time and frequency
nonstationarity by using ρ(t, f ).
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Figure 2.2: Wavelet packets for two example time series from the 1994 Northridge Califor-
nia earthquake. (a) acceleration time series, (c) squared wavelet packet from the Saticoy St.
recording, (b) acceleration time series, and (d) squared wavelet packets from the UCSBGo-
leta recording. The color bars in (c) and (d) indicate the amplitude of the squared wavelet
packets.
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Figure 2.3: The relationship between the correlation and hypocentral distance of the accel-
eration time series data of the 1994 Northridge California earthquake.

2.4 Wavelet packet transform and EPSD

The evolutionary power spectral density (EPSD) can be estimated using continuous wavelet
transform (Spanos and Failla 2004). The continuous wavelet transform provides a more de-
tailed picture of time and frequency characteristics, but unlike the wavelet packet transform,
it is difficult to obtain a time series. Here we approximate the EPSD using the wavelet pack-
ets. An arbitrary nonstationary process described by the following general form (Priestley
1996)

x(t) =
∫ ∞

−∞
A(ω, t)eiωtdZ̄(ω) (2.11)

where A(ω, t) is the time- and frequency-dependent modulating function, and Z̄(ω) is a
complex random process with orthogonal increments such that

E[dZ̄(ω)dZ̄∗(ω)′] =

{

S f f (ω)dω ω = ω ′

0 otherwise
(2.12)

In equations 2.12, E[·] indicates an expectation; and S f f (ω) indicates the two-sided power
spectral density (PSD) for the zero mean stationary process as follows:

x̄(t) =
∫ ∞

−∞
eiωtdZ̄(ω) (2.13)
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Then, the two-sided EPSD of x(t) is then defined as

S f f (ω, t) = |A(ω, t)|2S f f (ω) (2.14)

The wavelet packets of the process x(t) at a scale i can then be computed as

cij,k =
∫ ∞

−∞
x(t)ψ i

j,k(t)dt (2.15)

=
∫ ∞

−∞

{

∫ ∞

−∞
A(ω, t)eiωtdZ̄(ω)

}

ψ i
j,k(t)dt (2.16)

=
∫ ∞

−∞

{

∫ ∞

−∞
A(ω, t)eiωtψ i

j,k(t)dt
}

dZ̄(ω) (2.17)

Due to the time localization properties of the wavelet ψ i
j,k(t) around the time tk, it can be

assumed that

cij,k ≈
∫ ∞

−∞
A(ω, tk)

{

∫ ∞

−∞
eiωtψ i

j(t− tk)dt
}

dZ̄(ω) (2.18)

Then set t− tk = τ in the right-hand side of equation 2.18 to derive

cij,k ≈
∫ ∞

−∞
A(ω, tk)

{

∫ ∞

−∞
eiωτψ i

j(τ)dτ
}

eiωtkdZ̄(ω) (2.19)

=
∫ ∞

−∞
A(ω, tk)Ψi

j(ω)eiωtkdZ̄(ω) (2.20)

=
∫ ∞

−∞
A(ω, tk)eiωtkdZ̄′(ω) (2.21)

where

dZ̄′(ω) =Ψi
j(ω)dZ̄(ω) (2.22)

Now Z̄′(ω) in equation 2.22 is a complex random process, that has the orthogonality prop-
erty of Z̄(ω). Therefore, it supports the statement that the wavelet packets at scale i, cij,k can
be considered a nonstationary oscillatory process with respect to the time tk. Specifically,
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the two-sided EPSD of x(t) is given by

S
cij,k
WW = |A(ω, t)|2|Ψi

j(ω)|2S f f (ω) (2.23)

Further, an expectation of squared cij,k can be defined by the equation

E[|cij,k|
2] =

∫ ∞

∞
S
cij,k
WWdω (2.24)

=
∫ ∞

0
|A(ω, t)|2|Ψi

j(ω)|2S f f (ω)dω (2.25)

Since Ψi
j(ω) is localized around ωi,

E[|cij,k|
2] ≈

∫ ∞

−∞
|A(ω, t)|2|Ψi

j(ω)|2S f f (ω)dω (2.26)

Therefore E[|cij,k|
2] can be considered to be an approximation of the EPSD, and we can

generate the time series data with particular time and frequency characteristics using the
wavelet packets.

2.5 Parameters for time and frequency characteristics of
time series

To control the time and frequency characteristics of the acceleration time series, we define
the following five parameters:

Eacc =
∫ ∞

−∞
|x(t)|2 dt (2.27)

Eth(t) =
∫ ∞

−∞
t |x(t)|2 dt/Eacc (2.28)
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∫ t5+t95−5
t5 |x(t)|2 dt

Eacc
= 0.9,

∫ t5
0 |x(t)|2 dt
Eacc

= 0.05 (2.29)

Eth( f ) =
∫ ∞

−∞
f |x̂( f )|2 d f/Eacc (2.30)

∫ f5+ f95−5
f5 |x̂( f )|2 d f

Eacc
= 0.9,

∫ f5
0 |x̂( f )|2 d f

Eacc
= 0.05 (2.31)

where Eacc is the total energy of the acceleration time series, Eth(t) is the temporal centroid,
which is associated with the arrival time of the main part of the ground motion, t95−5 is the
5− 95% significant duration that contains 90% of the total energy, Eth( f ) is the spectral
centroid, which is associated with the dominant frequency of the time series, and f95−5 is
the 5−95% significant bandwidth that contains 90% of the total energy. The total energy of
the time series is approximately conserved in wavelet packets because of the orthogonality
and the localization property of the wavelet packet function. To capture these parameters
using wavelet packets, we employ the following equations:

Eacc =∑
i
∑
k
|cij,k|

2 (2.32)

E(t) =∑
i
∑
k
tk
∣

∣

∣
cij,k

∣

∣

∣

2
/Eacc (2.33)

S2(t) =∑
i
∑
k
{tk−E(t)}2

∣

∣

∣
cij,k

∣

∣

∣

2
/Eacc (2.34)

E( f ) =∑
i
∑
k
fi
∣

∣

∣
cij,k

∣

∣

∣

2
/Eacc (2.35)
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S2( f ) =∑
i
∑
k
{ fi−E( f )}2

∣

∣

∣
cij,k

∣

∣

∣

2
/Eacc (2.36)

where E(t) is the temporal centroid, S2(t) is the temporal variance, E( f ) is the spectral
centroid, and S2( f ) is the spectral variance. These parameters are related to Eth(t), t95−5,
Eth( f ), and f95−5 respectively, and the correlation of time and frequency of wavelet packets
ρ(t, f ) as defined by Equation 2.37 is used to control the time and frequency nonstationar-
ity. Figure 2.4 shows the relationship between wavelet packets and these parameters except
Eacc because Eacc is independent of time and frequency.

ρ(t, f ) =
∑i∑k [tk−E(t)][ fi−E( f )]

∣

∣

∣
cij,k

∣

∣

∣

2

S(t)S( f )Eacc
. (2.37)

0 20 40
0.3

1

10

20

Time(s)

Δ

Δ

Δ

Δ

E(t)

E(f)

2S(t)

2S(f)

F
re

q
u

e
n

cy
(H

z)

Figure 2.4: Relationship between the parameters(E(t), S(t), E( f ), and S( f )) and the
wavelet packets.

Figure 2.5 shows that the target characteristics are estimated well by the parameters of
the wavelet packets. By controlling wavelet packets, we therefore can control the time and
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frequency characteristics of the time series.
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Figure 2.5: Comparison of parameters computed from time series and wavelet packets esti-
mated for a large number of ground motions. (a) temporal centroid, (b) 5−95% significant
duration, (c) spectral centroid, and (d) significant bandwidth.

2.6 Stochastic model of groundmotion using wavelet packet
transform

In order to use the relationships above between time series properties and wavelet packets,
our stochastic ground motion model employs two groups of wavelet packets (a major and
minor group) because the wavelet packet transform is compressive which results in only a
few wavelet packets having large amplitude and the rest having small or zero amplitude.
The total wavelet packets are a combination of these two groups as follows:

|cij,k|
2 = |cij,k,ma j|

2+ |cij,k,min|
2 (2.38)

where cij,k,ma j and c
i
j,k,min are the wavelet packets in the major and minor group, respec-

tively.
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The major group of wavelet packets are the largest amplitude packets, which together
contain 70% of the total energy in the ground motion (typically this is less than 1% of
the total number of wavelet packets, which is a number of time step times a number of
frequency points). Hence,

∑i,k |cij,k,ma j|
2

∑i,k |cij,k|2
= 0.7 (2.39)

The remaining smaller packets are in the minor group. The ratio of energy in the major
group is determined to maximize the difference of the characteristics (duration, bandwidth
and mean frequency) of wavelet packets of the major and minor groups. We varied this
ratio in increments of 5%, and of all cases considered 70% was observed to produce the
best results. The ratio is independent of any seismological parameters in current model
because of its simplicity; however further study is expected.

2.6.1 Major group of wavelet packets

The wavelet packets in the major group are strongly random in comparison with those in
the minor group, therefore, the squared amplitudes and time-frequency locations of wavelet
packets are modeled separately:

ama j ∼ Exponential[E(|cij,k,ma j|
2)] (2.40)

[

tk,ma j fi,ma j
]

∼ Lognormal[Mma j,Σma j] (2.41)

where ama j is the squared amplitudes of the wavelet packets in the major group cij,k,ma j,
andMma j and Σma j are defined by

Mma j =
[

E(ln tk,ma j) E(ln fi,ma j)
]

(2.42)

Σma j =

[

S2(ln tk,ma j) Cov(ln tk,ma j, ln fi,ma j)
Cov(ln tk,ma j, ln fi,ma j) S2(ln fi,ma j)

]

(2.43)
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where tk,ma j and fi,ma j are the center of the time and frequency location of the wavelet
coefficients in the major group.

The squared amplitudes of cij,k,ma j at the time tk,ma j and the frequency fi,ma j are inde-
pendent and identically distributed (i.i.d.) exponential random variables with mean E(|cij,k|

2),
and their time and frequency locations are i.i.d. bivariate lognormal random variables with
mean vector and covariance matrix of tk,ma j and fi,ma j. The locations are independent of
amplitudes. Figure 2.6 shows normal quantile-quantile plots for tk,ma j, fi,ma j, and aij,k,ma j
from the Saticoy St. recording, and the linear trends observed in Figure 2.6. It support
the proposed probabilistic rules for the wavelet packets in the major group are appropriate.
Figure 2.7 shows the relationship of ama j and tk,ma j, and ama j and fi,ma j for one exam-
ple ground motion. Based on this figure and many similar calculations for other ground
motions, we assume that Ama j is independent of tk,ma j and fi,ma j.
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Figure 2.6: Quantile-Quantile plot of the wavelet packets in the major group from the
recorded ground motion of the 1994 Northridge California earthquake at LABSN Station
00003 Northridge–17645 Saticoy Street [Rhyp = 18km, VS30 = 281m/s] (a) time of major
coefficients versus standard normal distribution, (b) frequency of major coefficients ver-
sus standard normal distribution, (c) amplitude of major coefficients versus exponential
distribution.
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Figure 2.7: Relationship between amplitude and time, and amplitude and frequency of
the wavelet packets in the major group from the 1994 Northridge California earthquake
recorded at LABSN Station 00003 Northridge–17645 Saticoy Street [M = 6.7, Rhyp =

18km, VS30 = 281m/s] recorded ground motion (a) amplitudes of major coefficients versus
time, (b) amplitudes of major coefficients versus frequency.

2.6.2 Minor group of wavelet packets

The modeling of the Fourier amplitudes are done by the lognormal density function by
Sabetta and Pugliese (1996) and Thráinsson and Kiremidjian (2002) to fit the Fourier am-
plitudes of recorded ground motions. Since the squared wavelet packets in the frequency
axis have the characteristics similar to the Fourier amplitudes, it is reasonable to apply
the lognormal function to the frequency characteristics of the wavelet packets. Here the
wavelet packets distribution in the minor group are estimated by the bivariate lognormal
functions of the time and frequency and residuals. The bivariate lognormal function is a
simple function and it requires only five parameters to control its characteristics. This func-
tion is selected based on the quality to fit the squared amplitudes of the wavelet packets in
the minor group.

First, we define X and Y as the natural log of time and frequency.

Xk = ln(tk), Yi = ln( fi) (2.44)

The bivariate lognormal function to fit |cij,k,min|
2 is then given by

|cij,k,min|
2 = |cij,k,min|2×ξk,i (2.45)
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where |cij,k,min|2 is bivariate lognormal function to fit |c
i
j,k,min|

2, which is defined as follows:

|cij,k,min|2 =
1

2πS(X)S(Y )
√

(1−ρ(X ,Y )2)

×
1
XkYi

exp
[

−
A2−2R(X ,Y )AB+B2

2{1−ρ2(X ,Y )}

]

(2.46)

where, A and B are defined as:

A =
Xk−E(X)

S(X)
, B=

Yi−E(Y )

S(Y )
(2.47)

where tk and fi are the central location of cij,k,min in the time and frequency axes, respec-
tively, ρ is the correlation coefficient of ln(tk) and ln( fi), and ξk,i are i.i.d. lognormal
random variables with median one and logarithmic standard deviation of the residual of
the wavelet packets in the minor group computed from the bivariate lognormal function.
Figure 2.8 shows fitting lognormal functions to the normalized wavelet packet amplitudes
in time axis and frequency axis, and normal quantile-quantile plots for ξk,i from the Sati-
coy St. recording. Figure 2.8 supports our assumed bivariate lognormal function for the
wavelet packets in the minor group.
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Figure 2.8: Test of modeling of the wavelet packets in the minor group from the recorded
ground motion of the 1994 Northridge California earthquake at LABSN Station 00003
Northridge–17645 Saticoy Street [Rhyp = 18km, VS30 = 281m/s] (a) fitting of lognormal
function in time axis, (b) fitting of lognormal function in frequency axis, (c) Quantile-
Quantile plot of the residuals of the wavelet packets.
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The time and frequency parameters in the previous section can be computed by com-
bining the parameters of the major and minor group. Therefore, 13 parameters are required
in this model: one each of E(t), S(t), E( f ), S( f ), and ρ(t, f ) for both the major and minor
groups, E(aij,k,ma j), and Eacc for total energy, and the standard deviation of ξk,i. Since the
proposed stochastic model provides the squared wavelet packets in the time and frequency
domain, the sign of the wavelet packet is also needed to reconstruct the time series data.
Here a random sign is applied because a variety of tests suggested that valuation in this
choices did not significantly affect ground motion properties of interest (such as spectral
acceleration).

2.6.3 Other modeling details

Some minor restrictions on the time and frequency boundaries of recorded ground motions
are required, in order to avoid unreasonably prolonged small-amplitude shaking in the time
axis and to avoid residual velocity. In the minor group, the stopping time of the wavelet
packets at each frequency level i is the temporal centroid +2S(t) given fi of the minor
group. Also the stopping time in the major group is the temporal centroid +1S(t) given fi
of the minor group. Therefore the wavelet packets in the major group are located within
the main part of the ground motion.

The approximate time interval (dtw) and frequency interval (d fw) between the center of
adjacent wavelet packets can be defined as follows:

dtw =
2Ndt
2N− j = 2 jdt (2.48)

d fw =
fN
2 j

=
1
2dt

1
2 j

(2.49)

where 2N is the number of data in the time series, j is the scale parameter (decomposition
level), dt is the time difference of time series, and fN is the Nyquist frequency. In our
model, the maximum wavelet decomposition level is decided by d fw = 0.1953Hz because
dtw is 2.56s for this level. Only the lowest frequency level is divided at 0.0977Hz; therefore,
the longest applicable period that can be modeled in the frequency domain is 10.24s. We
decided to use two types of frequency intervals to obtain longer applicable period and to
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set zeros to the wavelet packets in the lowest frequency level because the wavelets at this
level would produce non-zero residual velocities. The number of wavelet packets of the
recorded ground motions to estimate the model parameters equals to the number of their
time steps. The number of wavelet packets to simulate ground motion can be controlled by
the maximum time steps required.

A trigger time correction was necessary when estimating the parameters because some
model parameters (e.g. E(t)) are specified relative to the starting time of the recording.
We defined the trigger time in a recording as the time when the absolute value of the time
series crossed 1% of PGA, in order to have a consistent starting time in each recording.
The recorded time series used to calibrate the model were truncated by the bandpass filters
in the frequency domain to remove noise, and the filtered frequencies differed from ground
motion to ground motion, which make it difficult to directly estimate mean frequencies in
the motions. To address this problem, we estimated the parameters of the target ground mo-
tions using the Maximum Likelihood Method, noting the filter frequencies in the likelihood
formulation (appendix B). We assumed that only the wavelet packets in the minor group
are bandpass filtered. Therefore, the total energy Eacc can vary based on the extrapolation
of the wavelet packets in the minor group outside the bandpass filter. However, since this
is only for the wavelet packets in the minor group and only for the tail of the lognormal
distribution, this difference is very small.

2.7 Simulation of target ground motions

Using our stochastic ground motion model, we considered 153 ground motion recordings
from the 1994 Northridge California earthquake (M = 6.7). We estimated the 13 model pa-
rameters for each of these recordings using theMaximum LikelihoodMethod (appendix B).
We then generated 300 simulated motions for each of the 153 targets and computed the
wavelet packets, Fourier spectra, spectral acceleration (Sa), inelastic spectral displacement
(Sd), median of Eth(t), t95−5, mean period (Tm, Rathje et al. 2004), f95−5, and ρ(t, f ), and
Arias intensity (Ia, Arias 1970) for each simulated ground motion.

Figures 2.9 and 2.10 show two acceleration time series recorded at near and far dis-
tances, respectively, and selected simulated ground motions whose response spectra are



CHAPTER 2. STOCHASTIC GROUND MOTION MODEL 31

the closest to the median of the response spectra of the recorded ground motions. For the
recorded ground motions, in the far field, PGA is smaller, S(t) is larger, ρ(t, f ) is smaller,
and S( f ) is smaller than those in the near field. The simulations obtained from the proposed
model reflect these characteristics, which are observed empirically and expected theoreti-
cally.

Pseudo velocity response spectra of the recorded and simulated ground motions are
shown in Figure 2.11 with recorded ground motions. The pseudo velocity response spectra
of the simulated ground motions reasonably match those of the recorded ground motions.
In the far field, the median of the pseudo velocity response spectra of simulated ground mo-
tions is larger than that of the pseudo velocity response spectra from the recorded ground
motion at long periods because the recorded ground motion in the far field has been trun-
cated by the high-pass filter at 0.2Hz and it does not have any amplitude with a period larger
than 5s. In the proposed model, the wavelet packets are extrapolated beyond the trunca-
tion in the frequency domain because the parameters are estimated using the maximum
likelihood estimation approach described in appendix B.

Acceleration Fourier spectra of the recorded and simulated ground motions are shown
in figures 2.12 and 2.13. Peak frequency, bandwidth, and shape of the Fourier spectra
of the simulated ground motion reasonably match those of the recorded ground motions.
In the far field, the Fourier amplitudes of the recorded ground motion at low frequencies
have a discontinuity around 0.2Hz because of high-pass filtering. Therefore the Fourier
amplitudes of the simulated ground motion are larger than those of the recorded ground
motion at low frequencies in Figure 2.13.

Acceleration, velocity, and displacement time series of the simulated ground motions
are shown in figures 2.14 and 2.15 with recorded ground motions. PGA, PGV, PGD, and
waveforms of the simulated ground motions reasonably match those of the recorded ground
motions. In the far field, the displacements of the simulated ground motion are larger than
those of the recorded ground motion because of the recorded motion is missing its low
frequencies (which contribute significantly to displacement).

Figures 2.16 and 2.17 compare the median of elastic Sa and inelastic Sd with 5% damp-
ing ratio, respectively, of the recordings and associated simulations. For inelastic SDOF
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system, we employ a non-deteriorating bilinear oscillator with a positive hardening stiff-
ness ratio α = 0.05 (Chopra 2007). The SDOF model is controlled by ductility µ , which is
the ratio of a maximum displacement to a yield displacement. These figures show that the
two match reasonably well except for the PGA, Sa(0.2s) and inelastic Sd(0.2s).

In Figure 2.18, the medians of several other ground motion parameters reasonably
match those of their target recordings except for the duration parameter t95−5. The pa-
rameter t95−5 of the simulations tends to be longer than that of the target recordings in the
case of short duration because the stopping time of the recordings as well as the trigger time
are unknown and also because we set the time difference between adjacent wavelet packets
to 2.56s to obtain the frequency resolution less than 0.1Hz. Additionally, since PGA, Sa
and inelastic Sd in short periods are negatively correlated to duration, PGA and Sa in short
periods from the simulated ground motions are slightly smaller than those from the target
recordings.

To provide further validations, Appendix C provides results similar to those shown in
this chapter for recordings from the 1999 Chi-Chi, Taiwan, earthquake. All observations are
similar to those observed here from the 1994 Northridge California earthquake recordings.
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Figure 2.9: Simulation of recorded ground motion from the 1994 Northridge Califor-
nia earthquake at LABSN Station 00003 Northridge–17645 Saticoy Street [Rhyp = 18km,
VS30 = 281m/s] (a) acceleration time series of recorded ground motion, (b) simulated time
series, (c) wavelet packets of recorded ground motion, and (d) wavelet packets of simulated
time series.
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Figure 2.10: Simulation of recorded ground motion from the 1994 Northridge California
earthquake at CGS–CSMIP Station 25091 UCSB Goleta–UCSB Goleta [Rhyp = 123km,
VS30 = 339m/s] (a) acceleration time series of recorded ground motion, (b) simulated time
series, (c) wavelet packets of recorded ground motion, and (d) wavelet packets of simulated
time series.
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Figure 2.12: Acceleration Fourier spectra of simulated and recorded ground motion of
the 1994 Northridge California earthquake at LABSN Station 00003 Northridge–17645
Saticoy Street [Rhyp = 18km, VS30 = 281m/s].
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Figure 2.13: Acceleration Fourier spectra of simulated and recorded ground motion of
the 1994 Northridge California earthquake at CGS–CSMIP Station 25091 Santa Barbara–
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Figure 2.14: Recorded and simulated ground motion of the Northridge California
earthquake at LABSN Station 00003 Northridge–17645 Saticoy Street (a) and (b)
acceleration(g), (c) and (d) velocity (cm/s), and (e) and (f) displacement (cm) for recorded
and simulated ground motion, respectively.
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Figure 2.15: Recorded and simulated ground motion of the 1994 Northridge Califor-
nia earthquake at CGS–CSMIP Station 25091 Santa Barbara–UCSB Goleta (a) and (b)
acceleration(g), (c) and (d) velocity (cm/s), and (e) and (f) displacement (cm) for recorded
and simulated ground motion, respectively.
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2.7.1 Characteristics of median and logarithmic standard deviation of
spectral acceleration using simulation from our stochastic model

One important characteristic of simulated ground motions is the logarithmic standard devia-
tion of spectral acceleration (σlnSa). To examine the characteristics of σlnSa of the proposed
model, we generated time series data from four types of wavelet packets (Figure 2.19):
(A) normal distribution with mean zero and standard deviation one for all time steps and
periods, (B) normal distribution with mean zero and standard deviation three around 3s in
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period and 25s in time, keeping the other wavelet packets are the same as (A), (C) normal
distribution with mean zero and standard deviation three around 1s in period and 25s in
time, keeping the other wavelet packets are the same as (A), and (D) normal distribution
with mean zero and standard deviation three around 0.1s in period and 25s in time, keeping
the other wavelet packets are the same as (A). We generated 300 samples for each case
and compared the median and logarithmic standard deviation of Sa. Figures 2.20 and 2.21
show Sa and the median and logarithmic standard deviation of Sa of (A) and (B), and (C)
and (D), respectively. Figure 2.22 shows the median and logarithmic standard deviation of
Sa of all cases. The logarithmic standard deviations, σlnSa , become larger with increasing
period in all cases, and there are also large σlnSa for (B), (C), and (D) around periods of
large wavelet packets. The σlnSa of large wavelet packets decreases with decreasing period.
The reason is that a wavelet packet in a long period (low frequency) has larger coverage.
Therefore fluctuations of a wavelet packet in long periods can affect spectral acceleration
more than fluctuations in short period.

Figure 2.23 shows median and logarithmic standard deviation of Sa of simulated ground
motions for four target recorded ground motions with periods normalized by Tm. Two
trends appear in these figures. First, σlnSa becomes larger in period as shown in the Fig-
ure 2.22. Second, σlnSa increase significantly around T/Tm = 1.

This increase in σlnSa arises from the spectral shapes of the transfer functions of a single
degree of freedom (SDOF) system. The spectral acceleration at T is affected by long period
components more than by short period components because the transfer function of a SDOF
system with natural period T has larger amplitudes in periods> T than in periods< T .

The peak spectral accelerations are around T/Tm = 1. Therefore the spectral accelera-
tions at T/Tm < 1 are greatly influenced by the peak Fourier amplitudes, and the σlnSas at
T/Tm < 1 are dominated by σlnSas around T/Tm = 1 and smaller than those at T/Tm > 1.

The median and logarithmic standard deviation of the acceleration Fourier spectra of
the recorded ground motions are shown in Figure 2.24. The logarithmic standard deviations
of the acceleration Fourier spectra do not increase in period. Therefore the variability of
the Fourier amplitude of each frequency is independent of periods and it is different from
the variability of the spectral acceleration. Since the characteristics of the wavelet packets
in the frequency axis are similar to the characteristics of Fourier amplitudes, we need to
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study more about the relationship between the variability of Fourier amplitudes and spectral
accelerations in order to simulate ground motions with low logarithmic standard deviation
of spectral acceleration.
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Figure 2.19: Probability density function of amplitudes of wavelet packets.
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Figure 2.21: Sa of time series data from random wavelet packets (a) add large amplitude
only around time=25s and T=1s, and (b) add large amplitude only around time=25s and
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Figure 2.24: Comparison of acceleration Fourier spectra from five types of recorded ground
motions (a) Median, and (b) logarithmic standard deviation of acceleration Fourier spectra.

2.7.2 Relative importance of four types of random variables in our
stochastic model

The impact of random variables in the proposed model is examined by comparing the simu-
lated ground motions with the ground motion of the 1994 Northridge California earthquake
recorded at LABSN Station 00003 Northridge–17645 Saticoy Street. Four types of random
variables are included in the proposed model: the residuals of the wavelet packets from bi-
variate lognormal function in the minor group, the time-frequency location of the wavelet
packets in major group, the amplitudes of the wavelet packets in the major group, and
the sign of the wavelet packets. Figures 2.25, 2.26, and 2.27 show the Sa from simulated
ground motions with one of each type of random variables described above. The random
variable of the residuals of the wavelet packets in the minor group affects only Sa with small
amplitudes since the amplitudes of the wavelet packets in the minor group are smaller than
those in the major group.

The location and amplitudes of the wavelets in the major group, therefore, affect the Sa
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around the peak spectral acceleration.
The random sign affects Sa at all periods since it changes the wavelet packets in both

the major and the minor group. Based on the logarithmic standard deviation of Sa, the
influence of the random sign is the same as that of the other random variables.
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Figure 2.25: spectral acceleration (a) with all randomness, and (b) with only random vari-
ables for sign.
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10
-2

10
-1

10
0

10
1

10
-2

10
-1

10
0

10
1

Period(s)

S
a

(g
)

 

 
(a) Simulation with random amplitude
                                             in major

Median
Median±σ
Simulated samples

10
-2

10
-1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Period(s)

st
a

n
d

a
rd

 d
e

vi
a

tio
n

 o
f 
ln

(S
a

)

(b)

 

 
Simulation
with random sign
with random minor
with random loc in major
with random amp in major
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2.8 Conclusions

A stochastic model for simulating earthquake ground motions with time and frequency
nonstationarity has been developed. The model uses wavelet packets as a method to de-
scribe amplitudes of the ground motion as a function of time and frequency; due to these
packets having time and frequency localization, they are comparable to an evolutionary
power spectral density. This model can simulate ground motion recordings having PGA,
significant duration t95−5, mean period Tm, significant bandwidth f95−5, Arias intensity Ia,
Sa and inelastic Sd comparable to those same properties observed in recorded ground mo-
tions. These results suggest that the synthetic ground motions generated by the proposed
model are equivalent to the recorded ground motions in terms of the characteristics that are
examined here.

The proposed model has the following desirable features: a) the temporal and the spec-
tral nonstationarity can be controlled by adjusting the parameters describing amplitudes
of wavelet packets, b) the model is empirically calibrated and produces motions that are
consistent in their important characteristics with observed ground motion recordings, and
c) the procedure is computationally inexpensive (1000 simulations can be produced per
hour on a standard desktop PC). Obtaining large numbers of ground motions is therefore
efficient.



Chapter 3

Regression analysis of model parameters

3.1 Abstract

This chapter describes the calibration needed to use the proposed simulation model to pro-
duce a simulated ground motion for a specified earthquake scenario (i.e., magnitude, dis-
tance, site condition). This calibration is done by using regression analysis on the observed
simulation parameters in a large library of recorded strong ground motions, to identify the
relationship between seismological variables such as earthquake magnitude and distance
and the 13 parameters of the proposed simulation model. This regression captures relation-
ships in mean values, standard deviations and correlations of these parameters with respect
to the seismological variables. The resulting regression equations then form a model that
can be used to predict ground motions for a future earthquake scenario. This is analogous
to widely used empirical ground motion prediction models (formerly called “attenuation
models”) except that this model predicts parameters that are then used to generate entire
time series rather than only response spectra. This chapter describes the ground motion
library used for analysis and the development of appropriate functional forms for the pre-
dictive relationships, and it summarizes the final results from the regression models.

49
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3.2 Introduction

The stochastic ground motion model using wavelet packets, which can generate time se-
ries with target time and frequency nonstationarities, has been developed for simulating
recorded ground motions. The proposed stochastic model requires 13 parameters to de-
scribe the time and frequency characteristic of ground motion recordings. In order to simu-
late ground motions for future earthquakes instead of simulating ground motions similar to
past recorded ground motions, the model parameters need to be connected to seismological
variables that describe the possible scenarios of future earthquakes.

The model parameters have two types of characteristics: intra- and inter-event char-
acteristics. The intra-event characteristics are the trends within each earthquake, which
depend on the geometric relationships between stations and the earthquake as well as on
local factors such as basins and near-surface site conditions. The inter-event characteris-
tics are the trends between earthquakes, which depend on the characteristics of the earth-
quake source. Two types of multivariate regression approaches–mixed effect regression
and two-stage regression–are widely used for regression models of observed ground mo-
tion intensities, which have intra- and inter-event characteristics. The two-stage regression
was proposed by Joyner and Boore (1993) and the mixed effect regression was proposed
by Abrahamson and Youngs (1992) for regression models of observed ground motion in-
tensities. Joyner and Boore (1993) compare both types of regression analysis precisely.

In this dissertation, the two-stage regression analysis is employed since we can explore
functional forms of intra- and inter-event characteristics separately. The recorded ground
motions used in the regression analysis are selected from the database used in Boore and
Atkinson (2008) (denoted BA08) for Sa(1s), which is a subset of the Next Generation
Attenuation (NGA) database (Chiou et al. 2008). The two-stage regression analysis is
conducted for each model parameter using earthquake magnitude, hypocentral distance,
rupture distance (closest distance), and VS30 as predictors. One additional predictor used
here is the difference between hypocentral distances and rupture distances, which captures
the geometric relationship between the target location and the earthquake fault. The model
parameters are correlated through the correlation matrix of intra- and inter-event residuals.
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The results of the regression analysis are reasonable with respect to trends in the scal-
ing of parameters with moment magnitude, hypocentral and rupture distances, and VS30.
Also, spectral acceleration and waveform properties change as function of the predictor
parameters as expected empirically and theoretically.

3.3 Recorded ground motion database

The recorded ground motions for the regression analysis come from the NGA database
(Chiou et al. 2008), which includes 3551 recorded ground motions. In particular, the
recorded ground motions are selected from a subset of NGA database that is used in (Boore
and Atkinson 2008) for spectral acceleration at 1s (the lowest usable frequency is less
than or equal to 1Hz). The exclusion criteria that were applied are listed in Table 2.1 of
Boore and Atkinson (2007). One additional criteria hired here is the number of recorded
ground motions in each event. In this dissertation, the earthquakes used for the regression
analysis contain more than ten recorded ground motions in order to stabilize the regression
analysis. The final database consists of fault normal components of 1408 recorded ground
motions from 25 earthquakes as summarized in Table 3.1. Figure 3.1 shows the earthquake
magnitudes and hypocentral distances of the selected ground motions, and Figure 3.2 shows
a histogram of the VS30 values of the selected ground motions.
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Table 3.1: Selected earthquakes for regression analysis
EQID Name Year M Mechanism # of ground motions
30 San Fernando 1971 6.61 Reverse 31
50 Imperial Valley-06 1979 6.53 Strike-Slip 33
68 Irpinia, Italy-01 1980 6.90 Normal 12
76 Coalinga-01 1983 6.36 Reverse 44
90 Morgan Hill 1984 6.19 Strike-Slip 24
101 N. Palm Springs 1986 6.06 Reverse-Oblique 29
113 Whittier Narrows-01 1987 5.99 Reverse-Oblique 101
116 Superstition Hills-02 1987 6.54 Strike-Slip 11
118 Loma Prieta 1989 6.93 Reverse-Oblique 73
125 Landers 1992 7.28 Strike-Slip 67
126 Big Bear-01 1992 6.46 Strike-Slip 39
127 Northridge-01 1994 6.69 Reverse 153
129 Kobe, Japan 1995 6.90 Strike-Slip 12
136 Kocaeli, Turkey 1999 7.51 Strike-Slip 26
137 Chi-Chi, Taiwan 1999 7.62 Reverse-Oblique 380
138 Duzce, Turkey 1999 7.14 Strike-Slip 22
158 Hector Mine 1999 7.13 Strike-Slip 82
160 Yountville 2000 5.00 Strike-Slip 24
161 Big Bear-02 2001 4.53 Strike-Slip 41
163 Anza-02 2001 4.92 Normal-Oblique 71
164 Gulf of California 2001 5.70 Strike-Slip 11
166 Gilroy 2002 4.90 Strike-Slip 33
168 Nenana Mountain, Alaska 2002 6.70 Strike-Slip 33
169 Denali, Alaska 2002 7.90 Strike-Slip 23
170 Big Bear City 2003 4.92 Strike-Slip 33

EQID :NGA database earthquake ID number
M :moment magnitude
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Figure 3.1: Histogram of earthquake magnitudes and hypocentral distances of the selected
ground motions.
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Figure 3.2: Histogram of VS30 values of the selected ground motions.



CHAPTER 3. REGRESSION ANALYSIS OF MODEL PARAMETERS 54

3.4 Two-stage regression analysis

To generate a ground motion from a particular earthquake scenario (i.e., magnitude, dis-
tance and site condition), the 13 parameters for our model need to be predicted as a function
of those scenario parameters. To build this predictive model, two-stage regression analy-
sis (Joyner and Boore 1993,1994) is employed with moment magnitude (M), hypocentral
distance (Rhyp), rupture distance (Rrup), and average shear wave velocity within 30m depth
(VS30) as predictors (Thráinsson and Kiremidjian 2002, Pousse et al. 2006, and Rezaeian
2010).

As response variables, all 13 parameters–mean time E(t), standard deviation of time
S(t), mean frequency E( f ), standard deviation of frequency S( f ), and correlation coeffi-
cient of time and frequency ρ(t, f ) for both major and minor groups, mean amplitude in
the major group E(|aij,k,ma j|

2), total energy Eacc, and the standard deviation of residuals
ξk,i–were estimated using the Maximum Likelihood Estimation (Appendix B) and consid-
ering the truncation by bandpass filter in the frequency domain for each recorded ground
motion after a trigger time correction (Chapter 2.7). The parameters for the minor group
are described in Chapter 2 and repeated as follows:

|cij,k|
2 = |cij,k,ma j|

2+ |cij,k,min|
2 (3.1)

∑i,k |cij,k,ma j|
2

∑i,k |cij,k|2
= 0.7 (3.2)

Eacc = Eacc,ma j +Eacc,min (3.3)

Eacc,min =∑
i
∑
k
|cij,k,min|

2 (3.4)

E(t)min =∑
i
∑
k
tk
∣

∣

∣
cij,k,min

∣

∣

∣

2
/Eacc,min (3.5)
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S2(t)min =∑
i
∑
k
{tk−E(t)min}2

∣

∣

∣
cij,k,min

∣

∣

∣

2
/Eacc,min (3.6)

E( f )min =∑
i
∑
k
fi
∣

∣

∣
cij,k,min

∣

∣

∣

2
/Eacc,min (3.7)

S2( f )min =∑
i
∑
k
{ fi−E( f )min}2

∣

∣

∣
cij,k,min

∣

∣

∣

2
/Eacc,min (3.8)

ρ(t, f )min =
∑i∑k {tk−E(t)min}{ fi−E( f )min}

∣

∣

∣
cij,k,min

∣

∣

∣

2

S(t)minS( f )minEacc,min
, (3.9)

where cij,k denotes the ith set of wavelet packets at the jth scale parameter and k is the
translation parameter, and tk and fi are time and frequency of each wavelet packet, respec-
tively.

S(ξk,i) =
1

Nmin−1∑i ∑k
ln |cij,k,min|

2/|cij,k,min|2 (3.10)

where Nmin is the number of wavelet packets in the minor group and |cij,k,min|2 is bivariate
lognormal function to fit |cij,k,min|

2, which is defined in Equation 2.46.
The parameters for the major group of packets are described in Chapter 2 and repeated

as follows:

Eacc,ma j =∑
i
∑
k
|cij,k,ma j|

2 (3.11)

E(t)ma j =
Nma j

∑
m=1

tm/Nma j (3.12)
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S2(t)ma j =
Nma j

∑
m=1

{

tm−E(t)ma j
}2

/Nma j (3.13)

E( f )ma j =
Nma j

∑
m=1

fm/Nma j (3.14)

S2( f )ma j =
Nma j

∑
m=1

{

fm−E( f )ma j
}2

/Nma j (3.15)

ρ(t, f )ma j =
∑
Nma j
m=1

{

tm−E(t)ma j
}{

fm−E( f )ma j
}

S(t)ma jS( f )ma j
(3.16)

E(|aij,k,ma j|
2) =

Nma j

∑
m=1

|am,ma j|2/Nma j, (3.17)

where cij,k,ma j are wavelet packets in the major group, tm and fm are the representative time
and frequency of each wavelet packet, and Nma j is the number of wavelet packets in the
major group.

The correlations of time and frequency in the major and minor group are transformed
by the following equation because they are bounded at −1 and 1.

ρ ′ =Φ−1
(

ρ+1
2

)

(3.18)

where Φ is the cumulative density function of the standard normal distribution.
The following equation is a functional form for the model parameters based on the

ground motion prediction model (e.g. Boore et al. 1997, Abrahamson and Silva 2008,
Boore and Atkinson 2008, Campbell and Bozorgnia 2008, Chiou and Youngs 2008 and
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Idriss 2008):

Y = α+β1M+β2 ln(M)+β3 exp(M)+β4(Rhyp−Rrup)+β5 ln(R)

+β6 ln(VS30)+η+ ε (3.19)

R =
√

R2RUP+h2 (3.20)

where Y is the natural log of each model parameter (except for the case of correlation,
where Y = ρ ′), η and ε are intra- and inter-event residuals, respectively, and these resid-
uals for the 13 parameters are correlated. The parameter h is assigned to avoid extremely
large values in the near field and is determined by minimizing the mean square error and
fitting of the regression predictors (this is consistent with modern ground motion predic-
tion models). Forward stepwise regression analysis is conducted for every parameter in the
NGA database, and we selected moment magnitude, rupture distance, and VS30 based on
their statistical significance as determined from regression p-values.

For magnitude scaling, three types of functional forms of the magnitude are employed
in the regression analysis. For the model parameters related to the characteristics in the
time domain, exp(M) is used based on the trends of the target response variables. M is
used for the model parameters related to the characteristics in the frequency domain based
on the relationship between the magnitude and the corner frequency fc (Brune 1970), which
determines the frequency characteristics of the fault rupture. Also M is used in the regres-
sion analysis of E(a) and Eacc based on the relationship between magnitude and seismic
moment (Kanamori 1977), which is the strength of an earthquake caused by the fault. In
addition, ln(M) is employed for E(a) and Eacc since these parameters saturate at large
magnitudes.

For distance scaling, two types of distance predictors are employed. The predictor
R is employed, which is

√

R2RUP+h2 because the size of the fault should be accounted
for in the regression analysis to simulate ground motions close to the fault. For example,
S(t) cannot be zero and Eacc cannot be infinity at rupture distances of zero. To account
for the geometric relationship between the target station and the earthquake fault, another
predictor, the difference of distances Rhyp−Rrup, is included in the functional forms. The
predictor R takes the same values for many sites surrounding the fault; however, simulated
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ground motions need to have differing characteristics depending on whether the rupture
propagates towards or away from the site. Therefore, Rhyp−Rrup helps to capture that
effect.

The uncertainty terms, η and ε , are assumed to be normally distributed, with mean zero
and standard deviations of τ and σ , and they are assumed to be independent.

In the two-stage regression analysis, we separate the equation into two regression equa-
tions: the first one is associated with intra-event effects with distances and site conditions,
and the second one is associated with inter-event effects with the characteristics of the
earthquakes (Joyner and Boore 1993,1994).

Y =
N

∑
i=1

AIEQ+β4(Rhyp−Rrup)+β5 ln(R)+β6 ln(VS30)+ ε (3.21)

IEQ =

{

1 for earthquake i
0 otherwise

(3.22)

A = α+β1M+β2 ln(M)+β3 exp(M)+η (3.23)

where IEQs are indicator functions for the earthquakes and As are regression coefficients
computed from the first regression, and they are response variables of the second regression.
The functional form of magnitude in Equation 3.23 is determined by evaluating the p-values
for β1 through β3. Since each selected earthquake contains more than ten records, equal
weights are applied to the second regression, rather than performing a weighted regression.

The resulting regression coefficients are shown in Table 3.2, and the correlation of the
intra- and inter-event residuals are shown in tables 3.3 and 3.4, respectively. Regression
coefficients that were not statistically significant are set to zeros in Table 3.2. The model
parameters are correlated through the intra- and inter-event residuals as well as through
the regression coefficients since the model parameters computed from recorded ground
motions contain unknown effects that are not considered in the proposed regression model.
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Table 3.2: Coefficients of the prediction equation
α β1 β2 β3 β4 β5 β6 h σ τ

M ln(M) exp(M) Rhyp−Rrup ln(R) ln(VS30)
E(t)min 2.64 0 0 0.0004 -0.001 0.22 -0.16 1 0.18 0.21
S(t)min 3.06 0 0 0.0004 -0.005 0.11 -0.17 1 0.21 0.23
E( f )min 1.29 -0.14 0 0 -0.004 -0.23 0.36 10 0.35 0.26
S( f )min 1.48 -0.005 0 0 -0.003 -0.29 0.24 10 0.40 0.29
R(t, f )min -0.36 0.01 0 0 -0.00056 -0.03 0.04 10 0.06 0.03

E(t)ma j 1.95 0 0 0.0006 -0.002 0.34 -0.20 1 0.27 0.30
S(t)ma j 1.82 0 0 0.0006 -0.006 0.22 -0.20 1 0.34 0.33
E( f )ma j 0.81 -0.26 0 0 -0.004 -0.16 0.44 10 0.41 0.26
S( f )ma j 0.14 -0.12 0 0 -0.002 -0.24 0.39 10 0.56 0.37
R(t, f )ma j -0.54 0.01 0 0 -0.00008 -0.08 0.09 10 0.21 0.07

E(a)ma j -38.02 -4.52 37.30 0 0 -1.74 -0.94 10 1.13 0.71
Eacc -27.4 -2.58 27.00 0 0 -1.61 -0.88 10 0.85 0.46

S(ξk,i) 1.29 0.07
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Table 3.3: Correlation of intra event residuals

E(t)min S(t)min E( f )min S( f )min ρ ′(t, f )min E(t)ma j S(t)ma j E( f )ma j S( f )ma j ρ ′(t, f )ma j E(a)ma j Eacc
E(t)min 1.00 0.79 -0.25 -0.07 -0.41 0.84 0.59 -0.27 -0.11 -0.22 -0.21 -0.05
S(t)min 0.79 1.00 -0.18 -0.01 -0.39 0.58 0.63 -0.21 -0.03 -0.23 -0.30 -0.16
E( f )min -0.25 -0.18 1.00 0.83 0.10 -0.12 -0.10 0.86 0.77 0.04 -0.42 -0.27
S( f )min -0.07 -0.01 0.83 1.00 -0.11 0.02 0.06 0.63 0.76 -0.12 -0.51 -0.38
ρ ′(t, f )min -0.41 -0.39 0.10 -0.11 1.00 -0.30 -0.29 0.14 -0.09 0.53 0.09 0.01
E(t)ma j 0.84 0.58 -0.12 0.02 -0.30 1.00 0.63 -0.21 -0.05 -0.23 -0.24 -0.12
S(t)ma j 0.59 0.63 -0.10 0.06 -0.29 0.63 1.00 -0.20 0.00 -0.21 -0.33 -0.21
E( f )ma j -0.27 -0.21 0.86 0.63 0.14 -0.21 -0.20 1.00 0.80 0.08 -0.35 -0.18
S( f )ma j -0.11 -0.03 0.77 0.76 -0.09 -0.05 0.00 0.80 1.00 -0.11 -0.53 -0.33
ρ ′(t, f )ma j -0.22 -0.23 0.04 -0.12 0.53 -0.23 -0.21 0.08 -0.11 1.00 0.12 0.06
E(a)ma j -0.21 -0.30 -0.42 -0.51 0.09 -0.24 -0.33 -0.35 -0.53 0.12 1.00 0.89
Eacc -0.05 -0.16 -0.27 -0.38 0.01 -0.12 -0.21 -0.18 -0.33 0.06 0.89 1.00

Table 3.4: Correlation of inter event residuals
E(t)min S(t)min E( f )min S( f )min ρ ′(t, f )min E(t)ma j S(t)ma j E( f )ma j S( f )ma j ρ ′(t, f )ma j E(a)ma j Eacc

E(t)min 1.00 0.91 -0.24 -0.03 -0.55 0.92 0.79 -0.44 -0.17 -0.45 -0.51 -0.31
S(t)min 0.91 1.00 -0.16 0.07 -0.58 0.73 0.84 -0.35 -0.05 -0.43 -0.61 -0.35
E( f )min -0.24 -0.16 1.00 0.92 0.38 -0.29 -0.09 0.94 0.96 0.31 -0.25 0.14
S( f )min -0.03 0.07 0.92 1.00 0.28 -0.09 0.10 0.76 0.91 0.24 -0.39 0.02
ρ ′(t, f )min -0.55 -0.58 0.38 0.28 1.00 -0.46 -0.52 0.37 0.23 0.78 0.30 0.24
E(t)ma j 0.92 0.73 -0.29 -0.09 -0.46 1.00 0.75 -0.46 -0.24 -0.48 -0.38 -0.25
S(t)ma j 0.79 0.84 -0.09 0.10 -0.52 0.75 1.00 -0.24 0.04 -0.61 -0.69 -0.49
E( f )ma j -0.44 -0.35 0.94 0.76 0.37 -0.46 -0.24 1.00 0.91 0.29 -0.12 0.19
S( f )ma j -0.17 -0.05 0.96 0.91 0.23 -0.24 0.04 0.91 1.00 0.19 -0.38 0.04
ρ ′(t, f )ma j -0.45 -0.43 0.31 0.24 0.78 -0.48 -0.61 0.29 0.19 1.00 0.25 0.23
E(a)ma j -0.51 -0.61 -0.25 -0.39 0.30 -0.38 -0.69 -0.12 -0.38 0.25 1.00 0.80
Eacc -0.31 -0.35 0.14 0.02 0.24 -0.25 -0.49 0.19 0.04 0.23 0.80 1.00
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Since there are no statistically significant predictors for ξk,i in Figure 3.3, it is modeled
as a lognormal random variable with a constant logarithmic mean of 1.29 and logarith-
mic standard deviation of 0.07, which are independent of moment magnitude, hypocentral
distance, rupture distance, and VS30.

For the parameters on the time axis, values of β3 are positive, as seen in Figures 3.7
and 3.17, because earthquakes with large magnitudes have longer durations and thus also
later temporal centroids, as seen in Figures 3.5 and 3.15. The median prediction for the first
regression analysis of the temporal centroids in both the major and minor groups have large
variations in Figures 3.5 and 3.15 since the earthquakes are recorded by different seismo-
graph networks whose thresholds of the trigger time and ending time differ. Although the
trigger time is corrected (Section 2.6.3), the regression analysis of E(t)s are still less stable
than those of the other parameters. Values of β5 are also positive for those parameters, as
seen in Figures 3.4, 3.6, 3.14, and 3.16, because waves propagating over long distances
have scattered arrivals and include indirect waves as well as direct waves. The regression
coefficients for β4 are negative because the effect of forward directivity makes S(t) smaller
and E(t) earlier. Additionally, negative coefficients for β6 make S(t) larger and E(t) later
because ground motions with long period components amplified by soft soil tend to have
longer durations.

For the parameters on the frequency axis, values of β1 for the parameters E( f ) are
negative, as seen in Figures 3.9 and 3.19, because earthquakes with large magnitudes have
low corner frequencies (Brune 1970). The coefficients β1 of S( f ) are also negative, as seen
in Figures 3.11 and 3.21; however, the influence of magnitude for S( f ) is smaller than that
for E( f ).

A long distance of wave propagation makes E( f ) lower (i.e. values of β5 are negative)
in Figures 3.8 and 3.18 and makes S( f ) narrower in Figures 3.10 and 3.20 because high
frequency ground motion components attenuate more quickly with distance than low fre-
quency components. Additionally, a greater difference between hypocentral distance and
rupture distance makes E( f ) lower because of the forward directivity effect (Boatwright
and Boore 1982). The spectral centroid E( f ) increases with VS30 because the natural fre-
quency of the soil is higher in stiff soil than in soft soil. The spectral standard deviation
S( f ) also increases with VS30 because soft soil plays the role of a band pass filter.
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The time and frequency nonstationarity increases (i.e. ρ ′(t, f ) decreases) with distance
in Figures 3.12 and 3.22 because the higher frequency components of ground motions ar-
rive earlier than the lower frequency components, also because the indirect waves recorded
in the later part of ground motions have less high frequency components due to the attenu-
ation of high frequency components with distance. The time and frequency nonstationarity
slightly increases with magnitude in Figures 3.13 and 3.23 because the ground motions
with large magnitude have broader bandwidth and longer duration. In addition, the non-
stationarity decreases with VS30 because only narrow band components exist in soft soil
ground motions.

The mean energy Eacc increases with magnitude and saturates at large magnitudes, as
seen in Figure 3.27. Also, Eacc decreases with distance in Figure 3.26 and increases for
small VS30 due to site amplification. The trend of E(a)ma j is the same as that of Eacc in
Figures 3.24 and 3.25.

Regarding the normality of the intra- and inter-event residuals, the second regression
analysis is less stable than the first regression analysis (as seen in Figures 3.5, 3.7, 3.11, 3.15
and 3.17). Figures 3.5 and 3.7 show large inter-event residuals of E(t)min and S(t)min for
recorded ground motions from the 2001 Gulf of California earthquake and the 2002 Denali
earthquake since the trigger time and ending time to those recorded ground motions are un-
stable. Figure 3.11 shows large inter-event residuals of the bandwidth S( f )min for the 1983
Coalinga earthquake and 1997 Kobe earthquake. Also, Figure 3.22 shows skewed intra-
event residuals for the time and frequency nonstationarity. However these residuals can
still be reasonably assumed to be normally distributed within plus and minus one standard
deviation bounds.

More detailed information about the regression model development is available at our
website (www.stanford.edu/~bakerjw/gm_simulation.html). These regression anal-
yses are also performed using the mixed effect regression, and almost the same coeffi-
cients are obtained with that approach. In terms of the logarithmic standard deviation
of Sa observed in the simulated ground motions, the analyses are almost identical. The
regression model obtained using the Mixed Effect Regression can be found at our web-
site (www.stanford.edu/~bakerjw/gm_simulation.html). Therefore, the functional
forms of our model parameters can be considered appropriate.

www.stanford.edu/~bakerjw/gm_simulation.html
www.stanford.edu/~bakerjw/gm_simulation.html
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Figure 3.3: Characteristics of logarithmic standard deviation of randomness for wavelet
packets in minor group S(ξk,i) (a) S(ξk,i) versus rupture distance, (b) S(ξk,i) versus VS30,
(c) S(ξk,i) versus magnitude, and (d) quantile-quantile plot for S(ξk,i).
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Figure 3.4: First regression analysis of E(t) in minor group (a) median prediction from the
first regression, (b) quantile-quantile plot for intra event residuals, (c) intra event residuals
versus rupture distance, and (d) intra event residuals versus VS30.
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Figure 3.5: Second regression analysis of E(t) in minor group (a) median prediction of
A from the second regression, (b) quantile-quantile plot for intra event residuals, (c) in-
ter event residuals versus moment magnitude, and and (d) median prediction from total
regression.
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Figure 3.6: First regression analysis of S(t) in minor group (a) median prediction from the
first regression, (b) quantile-quantile plot for intra event residuals, (c) intra event residuals
versus rupture distance, and (d) intra event residuals versus VS30.
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Figure 3.7: Second regression analysis of S(t) in minor group (a) median prediction of
A from the second regression, (b) quantile-quantile plot for intra event residuals, (c) in-
ter event residuals versus moment magnitude, and and (d) median prediction from total
regression.
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Figure 3.8: First regression analysis of E( f ) in minor group (a) median prediction from the
first regression, (b) quantile-quantile plot for intra event residuals, (c) intra event residuals
versus rupture distance, and (d) intra event residuals versus VS30.
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Figure 3.9: Second regression analysis of E( f ) in minor group (a) median prediction of
A from the second regression, (b) quantile-quantile plot for intra event residuals, (c) in-
ter event residuals versus moment magnitude, and and (d) median prediction from total
regression.
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Figure 3.10: First regression analysis of S( f ) in minor group (a) median prediction from the
first regression, (b) quantile-quantile plot for intra event residuals, (c) intra event residuals
versus rupture distance, and (d) intra event residuals versus VS30.
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Figure 3.11: Second regression analysis of S( f ) in minor group (a) median prediction
of A from the second regression, (b) quantile-quantile plot for intra event residuals, (c)
inter event residuals versus moment magnitude, and and (d) median prediction from total
regression.
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Figure 3.12: First regression analysis of ρ ′(t, f ) in minor group (a) median prediction
from the first regression, (b) quantile-quantile plot for intra event residuals, (c) intra event
residuals versus rupture distance, and (d) intra event residuals versus VS30.
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Figure 3.13: Second regression analysis of ρ ′(t, f ) in minor group (a) median prediction
of A from the second regression, (b) quantile-quantile plot for intra event residuals, (c)
inter event residuals versus moment magnitude, and and (d) median prediction from total
regression.
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Figure 3.14: First regression analysis of E(t) in major group (a) median prediction from the
first regression, (b) quantile-quantile plot for intra event residuals, (c) intra event residuals
versus rupture distance, and (d) intra event residuals versus VS30.
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Figure 3.15: Second regression analysis of E(t) in major group (a) median prediction of
A from the second regression, (b) quantile-quantile plot for intra event residuals, (c) in-
ter event residuals versus moment magnitude, and and (d) median prediction from total
regression.
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Figure 3.16: First regression analysis of S(t) in major group (a) median prediction from the
first regression, (b) quantile-quantile plot for intra event residuals, (c) intra event residuals
versus rupture distance, and (d) intra event residuals versus VS30.
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Figure 3.17: Second regression analysis of S(t) in major group (a) median prediction of
A from the second regression, (b) quantile-quantile plot for intra event residuals, (c) in-
ter event residuals versus moment magnitude, and and (d) median prediction from total
regression.
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Figure 3.18: First regression analysis of E( f ) in major group (a) median prediction from the
first regression, (b) quantile-quantile plot for intra event residuals, (c) intra event residuals
versus rupture distance, and (d) intra event residuals versus VS30.
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Figure 3.19: Second regression analysis of E( f ) in major group (a) median prediction
of A from the second regression, (b) quantile-quantile plot for intra event residuals, (c)
inter event residuals versus moment magnitude, and and (d) median prediction from total
regression.
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Figure 3.20: First regression analysis of S( f ) in major group (a) median prediction from the
first regression, (b) quantile-quantile plot for intra event residuals, (c) intra event residuals
versus rupture distance, and (d) intra event residuals versus VS30.
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Figure 3.21: Second regression analysis of S( f ) in major group (a) median prediction
of A from the second regression, (b) quantile-quantile plot for intra event residuals, (c)
inter event residuals versus moment magnitude, and and (d) median prediction from total
regression.
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Figure 3.22: First regression analysis of ρ ′(t, f ) in major group (a) median prediction from
the first regression, (b) quantile-quantile plot for intra event residuals, (c) intra event resid-
uals versus rupture distance, and (d) intra event residuals versus VS30.
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Figure 3.23: Second regression analysis of ρ ′(t, f ) in major group (a) median prediction
of A from the second regression, (b) quantile-quantile plot for intra event residuals, (c)
inter event residuals versus moment magnitude, and and (d) median prediction from total
regression.
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Figure 3.24: First regression analysis of E(a) in major group (a) median prediction from the
first regression, (b) quantile-quantile plot for intra event residuals, (c) intra event residuals
versus rupture distance, and (d) intra event residuals versus VS30.



CHAPTER 3. REGRESSION ANALYSIS OF MODEL PARAMETERS 85

4.5 5.5 6.5 7.5

−
2

0
1

2
3

4

Magnitude

A
 f
ro

m
 1

st
 r

e
g

re
ss

io
n

 o
f 
E

(a
)

4.5 5.5 6.5 7.5

−
2

0
1

2
3

4

Magnitude

−3 −2 −1 0 1 2 3

−
3

−
1

0
1

2
3

Theoretical Quantiles

in
te

r-
e

ve
n

t 
re

si
d

u
a

ls
 o

f 
E

(a
)

4.5 5.5 6.5 7.5

−
1

.5
−

0
.5

0
.5

1
.5

Magnitude

in
te

r-
e

ve
n

t 
re

si
d

u
a

ls
 o

f 
E

(a
)

4.5 5.5 6.5 7.5

−
1

.5
−

0
.5

0
.5

1
.5

E
(a

)

−
2

0.1         1           10         100

Rupture Distance(km)

10
-8 

   
   

 1
0-
6  

   
   

10
-4 

   
   

 1
0-
2

Target Prediction

Target Prediction

(a) (b)

(c) (d)

Figure 3.25: Second regression analysis of E(a) in major group (a) median prediction
of A from the second regression, (b) quantile-quantile plot for intra event residuals, (c)
inter event residuals versus moment magnitude, and and (d) median prediction from total
regression.
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Figure 3.26: First regression analysis of Energy (a) median prediction from the first re-
gression, (b) quantile-quantile plot for intra event residuals, (c) intra event residuals versus
rupture distance, and (d) intra event residuals versus VS30.
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Figure 3.27: Second regression analysis of Energy (a) median prediction of A from the sec-
ond regression, (b) quantile-quantile plot for intra event residuals, (c) inter event residuals
versus moment magnitude, and and (d) median prediction from total regression.

3.5 Effect of model parameters on logarithmic standard
deviation of spectral acceleration

Spectral acceleration is an important property of the simulated ground motions because it
indicates the “intensity” of the ground motions with respect to their effect on structures.
We can also compare spectral accelerations from simulations to observed ground motions
to evaluate the realism of the simulations. Here the relative importance of the model pa-
rameters are examined by evaluating impact their on logarithmic standard deviations of Sa.
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Table 3.5: Simulation cases for relative importance of model parameters
name the parameter with uncertainty of regression
Case 0 None

Case 1 E(t)min
Case 2 S(t)min
Case 3 E( f )min
Case 4 S( f )min
Case 5 ρ(t, f )min
Case 6 E(t)ma j
Case 7 S(t)ma j
Case 8 E( f )ma j
Case 9 S( f )ma j
Case 10 ρ(t, f )ma j
Case 11 E(a)ma j
Case 12 Eacc

Figures 3.28 and 3.29 show 300 spectral responses of the simulated ground motions with
uncertainty in one of the model parameters considered at a time as listed in Table 3.5. The
median spectral amplitudes are almost the same for all cases.

According to the figures, the uncertainty in Eacc, E( f ), and S( f ) are important for the
logarithmic standard deviation of Sa. The mean energy (Eacc) scales σlnSa up at all periods
because Eacc is independent of frequency. The uncertainty in E( f ) and S( f ) makes σlnSa
larger at long periods because E( f ) changes the peak period of Sa and it changes the period
of the large lnSa. The uncertainties in the other parameters have lower influence on the
logarithmic standard deviation of Sa than these three parameters.
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Figure 3.28: Comparison of median spectral accelerations of simulated ground motion
based on predicted parameter (a) Case 0: without residuals, (b) Case 3: with residuals of
Energy, (c) Case 4: with residuals of E( f ) in minor, and (d) Case 6: with residuals of S( f )
in minor.
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Figure 3.29: Comparison of median spectral accelerations of simulated ground motion
based on predicted parameter (a) Case 8: with residuals of E(t) in major, (b) Case 9: with
residuals of E( f ) in major, (c) Case 12: with residuals of S( f ) in major, and (d) comparison
of logarithmic standard deviation of Sa; each case represent the simulated ground motions
with uncertainty in one of the model parameters considered at a time, Case 0: no uncer-
tainty in model parameters, Case 3: E( f )min, Case 4: S( f )min, Case 6: E(t)ma j, Case 8:
E( f )ma j, Case 9: S( f )ma j, Case 12: Eacc.
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3.5.1 Magnitude scaling

The simulated ground motions are generated with Rrup = 10km, Rhyp = 10km, VS30 =

400m/s, and M = 5, 6, 7 and 8. Figure 3.30 shows the median and logarithmic standard
deviation of the simulated ground motions for each case. The logarithmic standard devia-
tions of Sa increases with period, and the periods where the logarithmic standard deviations
start increasing are associated with the peak periods of Sa, which are associated with the
spectral centroid of the wavelet packets in both the major and minor groups. From the re-
gression analysis for the model parameters, the spectral centroids have negative trends with
M. Therefore the peak periods of Sa increase with M, consistent with trends in recorded
ground motions.

As seen in Figure 3.30, the logarithmic standard deviations start increasing at periods
where Sas decline. Sa at short periods has smaller logarithmic standard deviation than at
long periods because Sa is controlled by peak amplitude based on the shape of the transfer
function that is described in Section 2.7.1. Also, we have uncertainty in the spectral cen-
troid, so the fluctuation of the peak period affects the logarithmic standard deviation of Sa
around the peak of Sa. Hence, at periods greater than the peak Sa, the logarithmic standard
deviations significantly increase with period.

A second explanation for this increase in standard deviation is that the wavelet trans-
form has limited period resolution at these long periods, due to its finite time-domain reso-
lution. These large standard deviations of lnSa at long periods are a weakness of the pro-
posed stochastic model, as these standard deviations are larger than those seen in recorded
ground motions. Although the problem arises at long periods and for small-magnitude
earthquakes, the standard deviations of lnSa for large-magnitude earthquake are still large.
Fortunately, however, the standard deviations lnSa for spectral acceleration conditioned by
a particular period of engineering interest are observed to be small enough in comparison
with recorded ground motions. This is discussed further in Chapter 6.
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Figure 3.30: Spectral accelerations of simulated ground motions with a distance of 10km
and various magnitudes (a) median of Sa, (b) logarithmic standard deviation of Sa.

3.5.2 Variation in simulated ground motions as a function of source-
to-site geometry

To illustrate the effect of source-to-site geometry, simulated ground motions for nine dif-
ferent locations surrounding on earthquake rupture. The model parameters are predicted
based on a surface-rupturing vertical strike-slip fault withM= 7, andVS30 = 400m/s for all
sites. Since the regression model uses two types of distance, Rhyp and Rrup, the proposed
stochastic model can generate ground motions considering fault size and site locations.

The locations of the simulated ground motions are given in Figure 3.31 and Table 3.6.
Based on the geometric relationship between the fault and the location of the simulated
ground motions, the simulated ground motions at location F are expected to have a forward
directivity effect, which causes a shorter duration and larger amplitude than those of ground
motions recorded at the other locations.

In the proposed regression model, the duration decreases as Rhyp−Rrup gets bigger, but
the amount of energy in the ground motion does not change. Therefore, resulting simulated
ground motions with large Rhyp−Rrup have short durations and large amplitudes, which
are consistent with the directivity effect. Cases D, E, F, G, H, and I have Rhyp− Rrup
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Table 3.6: Distance values for simulated ground motions at the nine sites considered
Case Rrup(km) Rhyp(km) Rhyp−Rrup
A 100 100 0
B 60 60 0
C 10 10 0
D 10 27 13
E 10 51 41
F 10 60 50
G 50 100 50
H 42 60 18
I 71 100 29

greater than zero, so they have some level of forward directivity. Cases A, B, and C have
hypocentral distances Rhyp same as the rupture distances Rrup, therefore they don’t have
the forward directivity effect.
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Figure 3.31: Map of fault, epicenter, and the nine locations of the simulated ground mo-
tions.

Three hundred simulated ground motions are generated for each location and one sam-
ple is selected based on the similarity of its spectral acceleration to the median of spectral
accelerations from all 300. Figure 3.32 shows the median and logarithmic standard devia-
tion of the spectra of the simulated ground motions for Cases A and C. The median Sa in
Case C is larger than that in Case A, and the peak period in Case C is slightly longer than
that in Case A because short period components attenuate relatively faster with distance.
The logarithmic standard deviations of Sa of both cases are almost the same.

Figure 3.33 shows median and logarithmic standard deviations of Sa for Cases A, B,
C, D, E, F, and G. The location of the simulated ground motions in these cases are on
approximately a straight line along with the fault. Cases ordered according to median Sa
(largest to smallest) are F, E, D, C, G, B, and A. The order of median Sa in Cases C, D, E,
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F, and G is reasonable since the forward directivity effect in Case F is the strongest, and
the effect decreases in the order of F, E, D. The order of median Sa in Cases C, B, A is also
reasonable as their distance from fault increases in that order. The logarithmic standard
deviations of Sa of these cases are almost the same.

Figure 3.34 shows the median and logarithmic standard deviation of Sa for Cases F, G,
H, and I. Cases H and I are located on a straight line angled 45 degrees from the strike
of the fault. The median Sa in Case H is larger than that in Case I because of attenuation
with distance. The median Sas in Cases F and G are larger than those in Cases H and I,
respectively, since the directivity effect in Cases F and G are stronger than that in Cases H
and I. The logarithmic standard deviations of Sa are nearly identical in call cases.

Figures 3.35, 3.36, and 3.37 show example acceleration, velocity, and displacement
time series of the simulated ground motions, respectively, in Cases A, B, C, D, E, F, and
G. The all time series in Cases D, E, and F have shorter duration than those in other cases
since E(t) and S(t) of simulated ground motions decrease with increasing the difference
between hypocentral distance and rupture distance (Table 3.2). Also, the all time series in
Cases D, E, and F have larger amplitude than those in other cases since Eacc is independent
of the difference of those distances. Therefore, the velocity time series in Case F looks
more visually pulse-like than those in other cases.

Figures 3.38, 3.39, and 3.40 show example acceleration, velocity, and displacement
time series of the simulated ground motions, respectively, for Cases F, G, H, and I. The
time series in Cases F and H have shorter duration and larger amplitude than those in Cases
G and I respectively, as would be expected based on attenuation and wave scattering effects.
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Figure 3.32: Spectral accelerations of simulated ground motion without forward and back-
ward directivity (a) median Sa, (b) logarithmic standard deviation of Sa.
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Figure 3.33: Spectral accelerations of simulated ground motion with forward and backward
directivity (a) median Sa, (b) logarithmic standard deviation of Sa.
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Figure 3.35: Acceleration time histories of simulated ground motions at various locations
relative to the fault.
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Figure 3.36: Velocity time histories of simulated ground motions at various locations rela-
tive to the fault.
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Figure 3.37: Displacement time histories of simulated ground motions at various locations
relative to the fault.
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Figure 3.38: Acceleration time histories of simulated ground motions with weak directivity.
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Figure 3.39: Velocity simulated time histories of ground motions with weak directivity.
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Figure 3.40: Displacement simulated time histories of ground motions with weak directiv-
ity.

3.6 Conclusions

A regression analysis of the 13 model parameters of the proposed stochastic model for sim-
ulating earthquake ground motions has been conducted. Earthquake magnitude, hypocen-
tral distance, rupture distance, and VS30 were used as predictor variables to calibrate a
regression model based on data from 1408 recorded fault normal ground motions from the
NGA database. A two-stage regression analysis was employed, consistent with modern
ground motion prediction model development (a model was also developed using Mixed
Effects regression, and the results were nearly identical). Functional forms and predictor
parameters were determined using standard regression model building techniques, includ-
ing hypothesis testing to determine the statistical significance of each potential predictor
variable. Normality of the model residuals were evaluated using quantile-quantile plots.
The resulting regression coefficients were then inspected and all were found to be consis-
tent with seismological concepts.
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The resulting regression model provides mean values of the model parameters, standard
deviations of variations around those means, and correlation coefficients between parame-
ters (to capture the joint behavior of model errors for each pair of parameters). With this
regression model calibrated, it is possible to simulate realizations of the 13 model parame-
ters and generate corresponding ground motion time histories for any magnitude, distance,
and site condition within the range of calibration. Time histories were simulated using this
model, and characteristics of the resulting motions were studied. The simulated motions
show effects of magnitude scaling, distance scaling, and directivity (in the time histories
and response spectra) that are consistent with seismological expectations.

It is a straightforward to modify the predicted parameters, and the uncertainty in each
predicted parameter, in order to study the impact on resulting ground motion time histories
and response spectra. By varying these parameters, it was observed that uncertainty in
the energy parameter and the frequency-related parameters have the greatest impact on the
logarithmic standard deviation of Sa.

The results in this chapter suggest that the proposed regression model is appropriate to
connect the wavelet-based model parameters with seismological variables, so that one can
generate appropriate model parameters for any seismological condition of interest, even if
one does not have a “seed ground motion” for the condition of interest. This approach is
limited by the range of seismological conditions present in the data set used to calibrate
the model (approximately 6 ≤M ≤ 8, 220 ≤ VS30 ≤ 760m/s, and 1 ≤ Rrup ≤ 100km), but
nonetheless provides a valuable tool over a broad range of conditions.



Chapter 4

Comparison of simulation results with
ground motion prediction models

4.1 Abstract

The proposed simulation approach can now be used to produce suites of ground motions
for a given magnitude, distance, and site condition. The distributions of response spectra
(and other Intensity Measures) resulting from suites of simulations for a given magnitude,
distance, and site condition can be directly compared to results from empirical ground
motion prediction models that produce predictions of those same distributions. The ground
motions produced using this predictive model are studied extensively, and seen to have
elastic and inelastic response spectra, durations, Arias intensity, mean periods, significant
duration, and the characteristics of ε , that are consistent in both mean and variability to
existing published predictive models for those properties. These results demonstrate the
reasonableness of the simulation procedure, and its consistency with the ground motion
database used for calibration. In this context, the simulation procedure can be viewed
as comparable to those empirical predictive models, except that it produces entire ground
motion time histories rather than just numerical values for individual Intensity Measures of
interest.
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4.2 Introduction

The stochastic ground motion model using wavelet packets has been developed for simulat-
ing ground motions with time and frequency nonstationarity. The 13 parameters required
for the proposed stochastic ground motion model can be computed from regression equa-
tions given a target earthquake magnitude, hypocentral distance, rupture distance, and site
condition. To use these simulated ground motions for probabilistic seismic hazard analysis
and nonlinear structural analysis, the simulated ground motions computed from the pre-
dicted parameters need to be validated. Here the simulated ground motions generated by
the proposed stochastic ground motion model are compared to the properties of recorded
ground motions as predicted by existing ground motion prediction models (GMPM).

The following properties are selected to examine the properties of the simulated ground
motions. Spectral acceleration (Sa) is one of the most important properties of strong
ground motions for structures. It is the maximum absolute amplitude of response of a
single-degree-of-freedom (SDOF) system with a given natural period and damping, and
is computed as the maximum displacement multiplied by squared circular frequency ω2.
Results here will be for 5%-damped spectra. The spectral accelerations (Sa) of the simu-
lated ground motions are compared here with those from Next Generation of Attenuation
(NGA) GMPM. The NGA Relations Project developed ground motion prediction models
for shallow crustal earthquakes in the western United States and similar active tectonic re-
gions (Abrahamson and Silva 2008 (AS08), Boore and Atkinson 2008 (BA08), Campbell
and Bozorgnia 2008 (CB08), Chiou and Youngs 2008 (CY08) and Idriss 2008 (I08)) and
these models provide means and standard deviations of lnSa with 5% damping ratio. Also,
inelastic spectra is compared with predictions from the model of Bozorgnia et al. 2010
(CB10) that provides inelastic spectra with a specified ductility.

The residuals (ε) of recorded ground motions are studied to determine whether they are
normally distributed and the inter-period correlations of the ε’s are compared to predictions
by Baker and Jayaram (2008). The parameter ε and its correlation between periods are
related to the response of nonlinear multi-degree-of-freedom structures.

Arias intensity (Ia, Arias 1970) is a representative of the total energy of the ground mo-
tions, the significant duration (t95−5, Trifunac and Brady 1975) is connected to the amount
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of input energy per time, and the mean period (Tm, Rathje et al. 2004) can affect the struc-
tural response of the structure with the same natural period Kumar et al. (2011). Arias
intensity Ia is predicted by Travasarou et al. (2003), t95−5 is predicted by Abrahamson and
Silva (1996), and Tm is predicted by Rathje et al. (2004).

The properties described above are all predicted directly by regression models with
GMPMs. However, these properties from the simulated ground motions are not directly
connected to our regression models because these parameters are computed by resulting
time series data that is generated by our stochastic ground motion model with predicted
parameters from our regression model. For example, regression models of NGA GMPM
for Sa are constructed separately for each period using slightly different recorded ground
motion databases; however, Sa from the simulated ground motions are computed from the
time series with predicted parameters from the regression model. Therefore the compar-
isons of these properties from simulated ground motions with those from specifically es-
timated GMPMs is ambitious. This comparison is necessary, however, for comprehensive
validation of our stochastic model and regression analysis.

To evaluate the regression equations and resulting simulations, 300 simulated ground
motions are computed for each magnitude/distance/site condition of interest, and their
ground motion properties are compared to those properties predicted by GMPM. The ex-
amined properties are reasonably observed to match those from GMPM for 6 ≤ M ≤ 8,
220 ≤ VS30 ≤ 760m/s, 1 ≤ Rrup ≤ 100km, 0.01 ≤ T ≤ 3s, and vertical strike-slip fault.
The results suggest that the simulations produced by the proposed stochastic model and
the regression analysis are reasonable under these conditions. This suggests that we can
use the simulated ground motions for the probabilistic seismic hazard analysis and perhaps
nonlinear dynamic structural analysis.
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4.3 Comparison with NGA GMPM for spectral accelera-
tion

4.3.1 Median and logarithmic standard deviation of response spectra

In this section, response spectra comparisons are performed, for vertical strike slip faults
under a variety of earthquake magnitudes, distances and site conditions. The NGA models
include additional predictor variables other than those used by the model proposed here,
so appropriate values of those additional predictor variables are computed as follows, and
used for the later comparisons of predictions.

In order to compare with the NGA GMPM, the median value of depth-to-top-of-rupture
(Ztor) is computed as: 6km for M = 5, 3km for M = 6, 1km for M = 7, and 0km for M = 8
based on the recommendation of Abrahamson et al. (2008), and Rrup is defined by the
depth-to-top-of-rupture and Rjb as follows:

Rrup =
√

R2jb+Z2tor (4.1)

Z1.0 values are inferred from VS30 using the suggested approaches by individual models.
Z1.0 for AS08 are from Abrahamson and Silva (2008), and Z1.0 for CY08 is defined using
the following equation from Chiou and Youngs (2008):

ln(Z1.0) = 28.5−
3.82
8
ln(V 8S30+378.78) (4.2)

Distance scaling

Predictions of PGA and Sa at three periods for varying distances, and for a soil site con-
dition (VS30 = 270m/s, Z1.0 = 492m for AS08, Z1.0 = 327m for CY08, Z2.5 = 0.64km) are
shown in Figures 4.1, 4.2, 4.3, and 4.4. We see that the medians of PGA and Sa observed
in the simulations are smaller than those of the GMPMs for Rjb < 10km and M < 5. This
is in part because there are few events with small magnitude and close distance in the cali-
bration dataset, so the regression model is less reliable in those cases. At larger magnitudes
or distances, the agreement between the simulations and GMPMs is relatively good.
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Figure 4.1: Median of PGA computed from the NGA GMPMs and simulations (1≤ Rjb ≤
200km, VS30 = 270m/s). (a)M = 5, (b) M = 6, (c) M = 7, and (d)M = 8.
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Figure 4.2: Median of elastic Sa at T = 0.2s computed from the NGA GMPMs and sim-
ulations (1 ≤ Rjb ≤ 200km, VS30 = 270m/s). (a) M = 5, (b) M = 6, (c) M = 7, and (d)
M = 8.
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Figure 4.3: Median of elastic Sa at T = 1s computed from the NGA GMPMs and sim-
ulations (1 ≤ Rjb ≤ 200km, VS30 = 270m/s). (a) M = 5, (b) M = 6, (c) M = 7, and (d)
M = 8.
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Figure 4.4: Median of elastic Sa at T = 3s computed from the NGA GMPMs and sim-
ulations (1 ≤ Rjb ≤ 200km, VS30 = 270m/s). (a) M = 5, (b) M = 6, (c) M = 7, and (d)
M = 8.

Magnitude scaling

The magnitude scaling of the median PGA and Sa at three periods for Rjb = 10km and
30km are shown in Figures 4.5 and 4.6, respectively. For M ≥ 6, the median Sas from the
simulations again match reasonably those from GMPMs.
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Figure 4.5: Median of PGA and elastic Sa computed from the NGA GMPMs and simu-
lations (5 ≤ M ≤ 8, Rjb = 10km VS30 = 270m/s). (a) PGA, (b) Sa at T = 0.2s, (c) Sa at
T = 1s, and (d) Sa at T = 3s.
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Figure 4.6: Median of PGA and elastic Sa computed from the NGA GMPMs and simu-
lations (5 ≤ M ≤ 8, Rjb = 30km VS30 = 270m/s). (a) PGA, (b) Sa at T = 0.2s, (c) Sa at
T = 1s, and (d) Sa at T = 3s.

VS30 scaling

The VS30 scaling of the median PGA and spectral acceleration for Rjb = 10, 30, and 100km
are shown in Figures 4.7, 4.8, and 4.9 for M = 6, Figures 4.10, 4.11, and 4.12 for
M = 7, and Figures 4.13, 4.14, and 4.15 for M = 8. For M = 6 and Rjb = 10km, Sa of
V30 > 300m/s from the simulated ground motions are smaller than those from GMPMs
since Sa with Rjb < 10km is less reliable. For the other cases with M = 6, Sa from the
simulated ground motions reasonably match those from GMPMs. Also, For M = 7, Sa
from the simulated ground motions reasonably match those from GMPMs.
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ForM= 8 and Rjb = 100km, the spectra from the simulated ground motions are slightly
smaller than those from GMPMs. For other cases with M = 8, the spectra from the simu-
lated ground motions reasonably match those from GMPMs.

The discrepancies of Sa between the simulated ground motions and the GMPMs are
caused by the difference of functional forms in the models. The regression functions of
the GMPMs have a nonlinear term for VS30; however, our model employs a linear term for
VS30.
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Figure 4.7: Median of PGA and elastic Sa computed from the NGA GMPMs and simula-
tions (M = 6, Rjb = 10km, 100 ≤VS30 ≤ 2000m/s). (a) PGA, (b) Sa at T = 0.2s, (c) Sa at
T = 1s, and (d) Sa at T = 3s.
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Figure 4.8: Median of PGA and elastic Sa computed from the NGA GMPMs and simula-
tions (M = 6, Rjb = 30km, 100 ≤VS30 ≤ 2000m/s). (a) PGA, (b) Sa at T = 0.2s, (c) Sa at
T = 1s, and (d) Sa at T = 3s.
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Figure 4.9: Median of PGA and elastic Sa computed from the NGA GMPMs and simula-
tions (M = 6, Rjb = 100km, 100≤VS30 ≤ 2000m/s). (a) PGA, (b) Sa at T = 0.2s, (c) Sa at
T = 1s, and (d) Sa at T = 3s.
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Figure 4.10: Median of PGA and elastic Sa computed from the NGA GMPMs and simula-
tions (M = 7, Rjb = 10km, 100 ≤VS30 ≤ 2000m/s). (a) PGA, (b) Sa at T = 0.2s, (c) Sa at
T = 1s, and (d) Sa at T = 3s.
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Figure 4.11: Median of PGA and elastic Sa computed from the NGA GMPMs and simula-
tions (M = 7, Rjb = 30km, 100 ≤VS30 ≤ 2000m/s). (a) PGA, (b) Sa at T = 0.2s, (c) Sa at
T = 1s, and (d) Sa at T = 3s.
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Figure 4.12: Median of PGA and elastic Sa computed from the NGA GMPMs and simula-
tions (M = 7, Rjb = 100km, 100≤VS30 ≤ 2000m/s). (a) PGA, (b) Sa at T = 0.2s, (c) Sa at
T = 1s, and (d) Sa at T = 3s.
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Figure 4.13: Median of PGA and elastic Sa computed from the NGA GMPMs and simula-
tions (M = 8, Rjb = 10km, 100 ≤VS30 ≤ 2000m/s). (a) PGA, (b) Sa at T = 0.2s, (c) Sa at
T = 1s, and (d) Sa at T = 3s.
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Figure 4.14: Median of PGA and elastic Sa computed from the NGA GMPMs and simula-
tions (M = 8, Rjb = 30km, 100 ≤VS30 ≤ 2000m/s). (a) PGA, (b) Sa at T = 0.2s, (c) Sa at
T = 1s, and (d) Sa at T = 3s.
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Figure 4.15: Median of PGA and elastic Sa computed from the NGA GMPMs and simula-
tions (M = 8, Rjb = 100km, 100≤VS30 ≤ 2000m/s). (a) PGA, (b) Sa at T = 0.2s, (c) Sa at
T = 1s, and (d) Sa at T = 3s.

Variation of response spectra with period

The median response spectra for M = 5, 6, 7, and 8 for vertical strike-slip earthquakes
with site VS30 = 270m/s are shown in Figure 4.16 for Rjb = 10km and Figure 4.17 for
Rjb = 30km. For both cases, Sa from the simulated ground motions reasonably match those
from GMPMs except the case of M = 5.
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Figure 4.16: Median of elastic Sa computed from the NGAGMPMs and simulations (Rjb =

10km, VS30 = 270m/s) for (a)M = 5, (b) M = 6, (c) M = 7, and (d)M = 8.
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Figure 4.17: Median of elastic Sa computed from the NGAGMPMs and simulations (Rjb =

30km, VS30 = 270m/s) for (a)M = 5, (b) M = 6, (c) M = 7, and (d)M = 8.

Logarithmic standard deviation of spectral acceleration

The logarithmic standard deviations of response spectra for M = 5, 6, 7, and 8 for vertical
strike-slip faults with site VS30 = 270m/s are shown in Figures 4.18 for Rjb = 10km and
4.19 for Rjb = 30km. For all cases, standard deviations from simulations are larger than
those from GMPMs at long periods. This result from the relationship between wavelet
packets and response spectra was discussed in Section 3.5.1.

The magnitude dependence of the standard deviation forM= 5, 6, 7, and 8 earthquakes
is shown in Figure 4.20 for Rjb = 10km , and Figure 4.21 for Rjb = 30km. For all cases,
the trend of the logarithmic standard deviation of Sa is the same as the previous cases.
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Figure 4.18: Logarithmic standard deviation of elastic Sa computed from the NGAGMPMs
and simulations (Rjb = 10km, VS30 = 270m/s). (a) M = 5, (b) M = 6, (c) M = 7, and (d)
M = 8.
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Figure 4.19: Logarithmic standard deviation of elastic Sa computed from the NGAGMPMs
and simulations (Rjb = 30km, VS30 = 270m/s). (a) M = 5, (b) M = 6, (c) M = 7, and (d)
M = 8.



CHAPTER 4. COMPARISON OF SIMULATION RESULTS WITH GMPM 127

4 5 6 7 8
0

0.5

1

1.5

M

S
ta

n
d

a
rd

 d
e

vi
a

tio
n

 o
f 
ln

(S
a

)

 

 
(a)

PGA

AS08
BA08
CB08
CY08
SIM

4 5 6 7 8
0

0.5

1

1.5

M

S
ta

n
d

a
rd

 d
e

vi
a

tio
n

 o
f 
ln

(S
a

) (b)

T=0.2s

4 5 6 7 8
0

0.5

1

1.5

M

S
ta

n
d

a
rd

 d
e

vi
a

tio
n

 o
f 
ln

(S
a

) (c)

T=1.0s

4 5 6 7 8
0

0.5

1

1.5

M

S
ta

n
d

a
rd

 d
e

vi
a

tio
n

 o
f 
ln

(S
a

) (d)

T=3.0s

Figure 4.20: Logarithmic standard deviation of elastic Sa computed from the NGAGMPMs
and simulations (Rjb = 10km, VS30 = 270m/s). (a) PGA, (b) T = 0.2s, (c) T = 1.0s, and
(d) T = 3.0s.
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Figure 4.21: Logarithmic standard deviation of elastic Sa computed from the NGAGMPMs
and simulations (Rjb = 30km, VS30 = 270m/s). (a) PGA, (b) T = 0.2s, (c) T = 1.0s, and
(d) T = 3.0s.

4.3.2 Correlation of Epsilon

The residual of lnSa from the mean prediction (ε) is defined by the following equation:

ε(T ) =
lnSa(T )−µlnSa(T )(M,R,T )

σlnSa(T )
(4.3)

where Sa is spectral acceleration, µlnSa is the mean of logarithmic spectral acceleration
from a ground motion prediction model, and σlnSa is the logarithmic standard deviation
of spectral acceleration from the ground motion prediction model. This ε is an implicit
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indicator of the “shape” of the response spectrum (Baker and Cornell 2005).
Values of ε at multiple periods can be considered as having multivariate normal dis-

tribution (from Jayaram and Baker 2008) and correlation of εs at different periods are
modeled by Baker and Jayaram (2008). In general the correlation between εs at two peri-
ods decreases if the difference of periods increases. However, for short period components
(T < 0.1s), the correlation of εs increases as the difference of periods increases. This in-
creasing correlation is caused by the balance of short period components and long period
components for impulse response function and Fourier amplitude (Okano et al. 2010).
Based on the shape of the impulse response function of an SDOF system at period T1, the
response of an SDOF system can be affected by long period (greater than T1) components
more than short period (smaller than T1) components of input. Also, Fourier amplitudes of
most ground motion recordings decrease as the period gets shorter for short period com-
ponents (less than 0.1s). Therefore, response of an SDOF system in shorter periods than a
particular periods dominated by long period components and the resulting correlations of
εs with short period increase even though the difference of periods increases. Figure 4.22
shows correlations of ε from our simulations and those from Baker and Jayaram (2008).
Also the contours of the ε correlations computed by the simulated ground motions are
shown in Figure 4.23. Our correlation results match those from Baker and Jayaram (2008)
in short periods as well as in long periods.

One of the reasons for this good agreement is the wavelet packet transform approach
that we are using for our model. The kernel function of the wavelet packet is localized in a
range of time and frequency, and therefore, the response spectrum of the kernel function is
also localized in a narrow range of periods. Hence, correlations of εs in different periods
with small period differences are high and they decrease as the period difference increases.
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4.4 Inelastic response spectra

We can also evaluate the inelastic response spectra from the simulated time series data. The
Inelastic response spectra here is defined as Fy/W (where Fy is the yield strength and W
is the weight of the SDOF), and are computed for elastic-perfectly-plastic (EPP) systems
with 5% viscous damping ratio and ductility ratio µ = 8 for inelastic behavior of force and
displacement (Chopra 2007). We compared inelastic response spectra observed from the
simulations with predictions from Bozorgnia et al. (2010) (CB10) with constant ductility.

The medians and logarithmic standard deviations of Fy/W for M = 6, 7, and 8 and soil
site conditions (VS30 = 270m/s) are shown in Figures 4.24, 4.25, and 4.26. These figures
show the same trends as were observed from elastic response spectra. In the long period
cases, logarithmic standard deviations from simulations are again larger than those from
GMPMs.
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Figure 4.24: Median and logarithmic standard deviation of inelastic response spectra Fy/W
computed from the GMPM and simulations (M = 6, VS30 = 270m/s, µ = 8). (a) T = 0.2s,
(b) T = 1s, and (c) T = 3s.
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Figure 4.25: Median and logarithmic standard deviation of inelastic response spectra Fy/W
computed from the GMPM and simulations (M = 7, VS30 = 270m/s, µ = 8). (a) T = 0.2s,
(b) T = 1s, and (c) T = 3s.
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Figure 4.26: Median and logarithmic standard deviation of inelastic response spectra Fy/W
computed from the GMPM and simulations (M = 8, VS30 = 270m/s, µ = 8). (a) T = 0.2s,
(b) T = 1s, and (c) T = 3s.

4.5 Arias intensity

Arias intensity (Ia, Arias 1970) is defined as follows:

Ia =
π
2g

∫ ∞

0
{x(t)}2 (4.4)

where x(t) is acceleration time series in units of g and g is acceleration of gravity 981cm/s2.
Arias intensity Ia from the simulated groundmotions and those fromGMPM (Travasarou

et al. 2003) are shown in Figure 4.27, and they reasonably match each other.
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Figure 4.27: Median and logarithmic standard deviation of IA computed from the GMPM
and simulations (VS30 = 270m/s). (a)M = 6, (b) M = 7, and (c) M = 8.

4.6 Significant duration

Significant duration (Trifunac and Brady 1975) was defined earlier in Equation 2.29. The
significant duration (t95−5) from the simulated ground motions and those from GMPMs
(Trifunac and Brady 1975 (TB1975) and Abrahamson and Silva 1996 (AS1996)) are shown
in Figure 4.28. The AS1996 model is not widely published, but is documented by Stewart
et al. (2001). The median of t95−5 from the simulated ground motions is close to those
from TB1975 when M = 6 and to those from both GMPMs when M = 7. When M = 8,
the median of t95−5 is larger than those from both GMPMs. This is caused by differences
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in the model functional forms. From the regression analysis for S(t), the significant du-
ration has approximately linear relationship with logarithmic distance; however, AS1996
employed separate functional forms for Rrup < 10km and Rrup > 10km, and the significant
duration from TB1975 has a linear relationship with distance. These differences cause the
discrepancy of t95−5 between simulations and the GMPMs.

Also, t95−5 here is computed by the simulated ground motions with Rhyp = Rrup, which
is for a point-source or backward directivity effect. Therefore the median of t95−5 is slightly
larger than other models for large magnitudes.
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Figure 4.28: Median and logarithmic standard deviation of significant duration computed
from the GMPM and simulations (VS30 = 270m/s). (a) M = 6, (b) M = 7, and (c) M = 8.
AS1996 is the prediction from Abrahamson and Silva (1996), as reproduced in Stewart
et al. (2001), and TB1975 is the prediction from Trifunac and Brady (1975).
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4.7 Mean period

Mean period is defined by Rathje et al. (2004) as follows:

Tm =
∑i

C2i
fi

∑iC2i
(4.5)

where fi is frequency i and Ci is the Fourier amplitude of the ground motion at that fre-
quency and 0.25≤ fi ≤ 20Hz with Δ f ≤ 0.05Hz.

The mean period (Tm) from the simulated ground motions and those from GMPM are
shown in Figure 4.29. Since the reliable magnitude range of the regression model for Tm
is from 5.5 to 7.6 in Rathje et al. (2004), the figure shows Tm only for M = 6 and 7. The
GMPM predictions and simulations reasonably match each other, indicating another form
of agreement between the frequency content of the simulated ground motions and observed
ground motions.
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Figure 4.29: Median and logarithmic standard deviation of mean period computed from the
Rathje et al. (2004) GMPM and simulations (VS30 = 270m/s). (a) M = 6 and (b) M = 7.

4.8 Conclusions

Properties of ground motions simulated using the proposed stochastic model have been
compared to empirical models that predict various properties of ground motions. Properties
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considered include elastic and inelastic response spectra, significant duration, mean period
and Arias intensity. Simulations were produced and evaluated for vertical strike-slip faults
with 5≤M ≤ 8, 200≤VS30 ≤ 2000m/s, 1≤ Rrup ≤ 100km, and 0.01≤ T ≤ 10s.

For large ranges of those considered conditions, the properties of the simulated mo-
tions were seen to be consistent with the properties in recorded ground motions. Con-
ditions under which the matches were good were 6 ≤ M ≤ 8, 220 ≤ VS30 ≤ 760m/s,
1 ≤ Rrup ≤ 100km, and 0.01 ≤ T ≤ 3s. Over that range, elastic and inelastic response
spectra were similar to predictions from empirical GMPMs, in terms of both median val-
ues and standard deviations of log spectra. The residuals between spectra of the simulations
and corresponding median predictions were also studied. These residuals (“εs”) were seen
to be normally distributed. Correlations between values at pairs of periods were studied for
all period pairs in the period range of interest, and seen to be consistent with observed cor-
relations in recorded motions. Arias intensity and mean period were seen to be generally
consistent, in both median and log standard deviation, with recent empirical models. The
significant duration here is computed by the simulated ground motions with Rhyp = Rrup,
which is for a point-source or backward directivity effect. Therefore the median of t95−5
is slightly larger than other models in large magnitudes because the earthquake with large
magnitudes have large fault and Rhyp and Rrup are different in most sites.

Given the comparison of these various ground motion properties with empirical pre-
dictive models, the simulated ground motions are suitable for use in a simulation-based
probabilistic seismic hazard analysis procedure that will be described next. The reasonable
match also suggests that the simulations may be appropriate for use in nonlinear dynamic
structural analyses as input ground motions, although that topic will be studied in more
detail later before a firm conclusion is drawn.



Chapter 5

Simulation-based probabilistic seismic
hazard analysis

5.1 Abstract

Given the comparison of the simulated ground motions with empirical ground motion pre-
diction models (GMPMs) for elastic spectral acceleration and other parameters, the pro-
posed simulation model can be used in place of those GMPMs in probabilistic seismic
hazard analysis (PSHA) calculations. The proposed procedure utilizes Monte Carlo Sim-
ulation to produce a large suite of ground motions representing potential future ground
motions at the site of interest. This suite of ground motions can be directly compared to
traditional seismic hazard curves, and the availability of corresponding time histories facili-
tates a variety of calculations relating to deaggregation and vector-valued PSHA that are not
as easily achievable using more traditional approaches. This simulation-based procedure
works as follows: first we simulate an earthquake scenario (magnitude/distance/etc.) using
the same seismic source model used in traditional PSHA; then we simulate a corresponding
ground motion using the model proposed earlier. We repeat this simulation procedure many
times to obtain a suite of potential ground motions. A traditional seismic hazard curve pro-
vides the rate (or annual probability) of exceeding a given level of spectral displacement
at a specified period and a specified damping ratio; with this method the same result can

139
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be obtained by finding the fraction of the simulated ground motions having a spectral dis-
placement larger than the level of interest at that period. But in addition to computing the
parameters for which GMPMs are available, the proposed simulation-based PSHA can pro-
vide other parameters (e.g. spectral ordinates at other values of damping, hysteretic energy
demands, etc). This chapter will describe the simulation procedure, demonstrate its equiv-
alence to traditional PSHA, and then illustrate some of the additional hazard calculations
that are feasible here but not possible using the traditional approach.

5.2 Introduction

The proposed stochastic ground motion model can simulate ground motions corresponding
to a given magnitude, distance and site condition, and their characteristics are generally
consistent with Sd , Ia, t95−5, Tm and inelastic response spectra values predicted by existing
ground motion prediction models (GMPMs). In this chapter, those properties are used to
compute seismic hazard curves using simulated ground motions. In traditional probabilis-
tic seismic hazard analysis (PSHA, Kramer 1996, McGuire 2004), we compute the annual
exceedance of Sd(T ) at a target site combining the probability distribution of earthquake
magnitudes and distances (the “source model”) with the predicted probability that Sd(T )

exceeds x given each magnitude and distance (the GMPMs). Here we use the same PSHA
source model to generate Monte Carlo Simulations of magnitudes and distances of poten-
tial earthquakes, and then use the proposed stochastic model to simulate a ground motion
corresponding to each magnitude and distance. This procedure produces a synthetic catalog
of potential earthquake ground motions at the site, and we can compute a seismic hazard
curve by simply counting how often the simulated ground motions in this catalog cause
exceedance of the ground motion intensity level of interest.

In the simulation-based PSHA in this dissertation, 10,000 simulated ground motions are
generated using the proposed stochastic ground motion model, and used to compute seis-
mic hazard curves. A physics-based seismic hazard project named CyberShake (Graves
et al. 2010) aims to produce the same output; that project computes the annual exceedance
rates of Sd using ground motions generated by physics-based simulation. Their physics-
based simulations are desirable, as discussed in Chapter 1, because they can consider path
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effects and rupture characteristics in their simulations. That approach also has limitations,
however, as it cannot currently simulate periods lower than 0.5s, and as computation of
their results requires a petascale supercomputer (Cui et al. 2010). In contrast, our model
can compute the required time series quickly (1,000 simulations per hour) with high fre-
quency components, which is beneficial for performing fast analyses on standard computer
hardware.

One advantage of the simulation-based PSHA is that we just need to count the number
of the simulated ground motions whose intensity exceeds the specified threshold and we
can efficiently compute hazard curves in this way for any ground motion intensity measure
(such as inelastic response spectra) using the same procedure. Another advantage of the
simulation-based PSHA is its ability to perform deaggregation in a very flexible manner.
Deaggregation of probabilistic seismic hazard analysis results (McGuire 1995, Bazzurro
and Cornell 1999) is a procedure to compute the contribution of each potential earthquake
magnitude and distance to occurrence of a given Sd level. In traditional PSHA, we can
only deaggregate the model parameters required by GMPM (e.g. magnitude and distance).
However, in simulation-based PSHA, we can perform a deaggregation-like calculation to
determine the distribution of any parameter that can be computed from time series (e.g.
duration, Arias intensity, and dominant frequency).

In this chapter, the simulation-based PSHA procedure is described and used to produce
example seismic hazard curves. Simulation-based hazard curves for spectral displacement
are compared to results from traditional PSHA, and seen to be comparable. Magnitude
deaggregation results are also produced and seen to be equivalent to magnitude deaggre-
gation in terms of its probability distributions given Sd levels for the example site obtained
using traditional procedures. Additionally, the ground motion parameters, Ia, t95−5 and Tm
are deaggregated for the hazard curve of Sd(T ) and inelastic Sd(T ). These results are novel,
and can be used to understand what properties of ground motions impact hazard curves for
ground motion parameters such as Sd(T ) and inelastic Sd(T ).
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5.3 Simulation-based PSHA and deaggregation

The traditional PSHA calculation is defined as follows:

νSd(T )(x) =∑
i
νi
∫ ∫

P(Sd(T ) > x|r,m) fi(m,r)dmdr, (5.1)

where νSd is the mean annual rate of ground motions with Sd greater than x, and νi is the
mean annual rate of earthquakes on seismic source i above a minimum magnitude. The
conditional probability P(Sd > x|r,m) is computed using a GMPM and fi(m,r) is the joint
probabilistic density function of earthquake magnitudes and distances on seismic source i
as specified by an earthquake recurrence model and geometric information.

In the following example, we will consider an example site with unknown magnitudes
but a fixed distance and VS30. In such a case, Equation 5.1 can be simplified to

νSd(T )(x) =∑
i
νi
∫

P(Sd(T ) > x|m) fi(m)dm. (5.2)

The deaggregation for moment magnitudeM = m given Sd(T ) > x is computed as follows

P(M = m|Sd(T ) > x) =
νSd(T )>x,M=m

νSd(T )>x
(5.3)

=
νSd(T )>x|M=m fi(m)

νSd(T )>x
(5.4)

Alternatively we can define the deaggregation for Sd = x using following equation (Bazzurro
1998):

P(M = m|Sd(T ) = xk)

=
P(M = m,Sd(T ) = xk)

P(Sd(T ) = xk)

=
P(M = m,Sd(T ) > xk+1)−P(M = m,Sd(T ) > xk−1)

P(Sd(T ) > xk+1)−P(Sd(T ) > xk−1)
. (5.5)

If we use simulated ground motions instead of traditional PSHA, we can compute
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νSd(T )(x) as follows:

νSd(T )(x) = ∑
i
νi

n

∑
j=1

1
n
I(Sd, j(T ) > x) (5.6)

I(Sd, j > x) =

{

1 Sd, j(T ) > x
0 otherwise

(5.7)

where I is indicator function, n is the number of simulations and Sd, j(T ) is the Sd(T ) value
of the jth simulated ground motion. The magnitudes of the simulated ground motions are
generated from fi(m). With this approach we are computing the hazard curve for Sd(T ) by
counting number of the ground motions whose Sd is greater than x instead of computing
P(Sd(T ) > x|m) from a GMPM.

Simulation-based PHSA also can be used for deaggregation. We can compute the deag-
gregation distribution by counting the fraction of simulated ground motions with a particu-
lar Sd level that also have the specified magnitude value of interest:

P(M = m|Sd(T ) = x) =
∑nj=1 I(Sd, j(T ) = x,Mj = m)

∑nj=1 I(Sd, j(T ) = x)
(5.8)

where

I(Sd, j(T ) = x) =

{

1 Sd, j(T ) = x
0 otherwise

(5.9)

I(Sd, j = x,Mj = m) =

{

1 Sd, j(T ) = x andMj = m
0 otherwise

(5.10)

The magnitudes of the simulated ground motions are generated from fi(m), the distri-
bution of magnitudes from earthquake source i. Large magnitude earthquakes are generally
rare relative to smaller magnitude earthquakes on a given source. This causes some numer-
ical challenges, because even a large set of simulated ground motions may not have many
ground motions from extremely large magnitude events, and thus the contributions of those
events to large-amplitude Sd values (which are generally of most engineering interest may
not be known with great confidence). To overcome this shortage of the simulated ground
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motions with large magnitudes, we can use an alternate form of Monte Carlo Simulation
known as Importance Sampling.

With Importance Sampling, we generate samples (of earthquake magnitudes, in this
particular application) from a sampling distribution, denoted ki(m), rather than from the
real distribution of that variable. The differences between the sampling distribution and
the real target distribution are then reconciled by weighting each sample in proportion to
the differences between the two distributions’ probability density functions, and evaluated
at the value of that particular sample. Here we will use a uniform distribution for mag-
nitudes as a sampling distribution ki(m), which will produce many more large magnitude
simulations than the real distribution fi(m).

The simulation-based PSHA calculation using these importance-sampled simulations
is then computed as follows:

νSd(T )(x) = ∑
i
νi
1
n

n

∑
j=1

I(Sd, j(T ) > x)
fi(mj)

ki(mj)
(5.11)

I(Sd, j(T ) > x) =

{

1 Sd, j(T ) > x
0 otherwise

(5.12)

We can also compute deaggregation results by counting the number of simulated ground
motions multiplied by their importance sampling weights

P(M = m|Sd(T ) = x) =
∑nj=1 I(Sd, j(T ) = x,Mj = m) fi(m)

ki(m)

∑nj=1 I(Sd, j(T ) = x) fi(mj)
ki(mj)

(5.13)

With this simulation-based PSHA approach, the Sd values counted above are associ-
ated with full simulated ground motion time histories, and so these Sd values are naturally
connected to other ground motion intensity measures. Below, we will compute deaggrega-
tion results that provide the distributions of Arias intensity, significant duration, and mean
period associated with ground motions having a specified spectral displacement, by substi-
tuting any of these parameters for magnitude in Equation 5.13.
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5.4 Example site description

Next we will perform a series of calculations to demonstrate the above equations, so we
must first define an example site to perform hazard calculations at. The example site has
a single vertical strike-slip fault at a distance of 10 kilometers (i.e., Rhyp = Rrup = 10km
for all earthquakes), and the site VS30 value is 400m/s. Earthquakes on this source have
magnitudes with a characteristic earthquake recurrence law described in more detail below
(Youngs and Coppersmith 1985), and there are 0.2 earthquakes per year with a minimum
magnitude (i.e. νi = 0.2). This simple site description was chosen because it can demon-
strate the hazard calculation procedure, including deaggregation to find the contributions
of the various magnitudes to each Sd amplitude, but it is simple enough that the results will
be transparent. These conditions approximate those for a site located near a single active
fault such as is the case at many sites in the Bay Area of northern California.

The characteristic earthquake recurrence law is based on the assumption that a fault
tends to have relatively frequent earthquakes with a characteristic magnitude, and that
occurrence of earthquakes at lower magnitudes is well described by a model called the
Gutenberg-Richter recurrence law. The standard Gutenberg-Richter recurrence law is de-
fined as follows:

log(νm) = a−bm (5.14)

where νm is the mean annual rate of earthquakes with magnitude greater than m, and a and
b are constants.

The characteristic earthquake recurrence law is defined by the following probability
density function (PDF).

fM(m) =























0 m< m0
c10a−bm m0 < m< m′

fM(mc) m′ < m< mu

0 m> mu

(5.15)

where m0 is the minimum magnitude, mu is the upper bound magnitude, m′ is lower bound
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magnitude of characteristic earthquakes, mc is the earthquake magnitude with a probability
of occurrence equal to the probability of occurrence of an magnitude in the characteristic
range, and c is a constant determined by the need to have the area under this probability
density function equal one. For the example site considered here, we use b = 1, m0 = 5,
mu = 7.9, m′ = 7.4, mc = 6.4. Figure 5.1 shows a plot of this density function.
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Figure 5.1: Probability density function for earthquake magnitudes for the example site,
using the Gutenberg-Richter recurrence law with the characteristic earthquake model (y
axis in logarithmic scale).

Figure 5.2 shows the histogram of the 10,000 earthquake magnitudes generated using
this characteristic earthquake recurrence law. Note that the shape of the histogram in Fig-
ure 5.1 appears to differ from the shape of the PDF in Figure 5.2, but that is because the y
axis of the former is plotted with a logarithmic scale (to highlight the log-linearity of the
probabilities), while the latter is plotted in linear scale to emphasize true proportions of
simulations with a given range of magnitudes. Note that in Figure 5.2 there are relatively
few simulations with large magnitudes, so as an alternative we also simulate 10,000 uni-
formly distributed magnitudes generated to use with importance sampling, as shown in the
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histogram of Figure 5.3.
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Figure 5.2: Histogram of moment magnitude of simulated ground motion based on charac-
teristic recurrence model.
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Figure 5.3: Histogram of moment magnitude of simulated ground motion for importance
sampling.

5.5 Hazard curves for elastic and inelastic spectral dis-
placement

The hazard curves for the example site described in the previous section are computed using
both the traditional PSHA approach and the proposed simulation-based PSHA approach.
The Boore and Atkinson (2008) GMPM is used for the traditional PSHA calculation. For
the simulation-based calculations, both the direct Monte Carlo simulations and the Impor-
tance Sampling simulations are used, and the two sets of results are reported separately.
Hazard curves are computed for periods of T = 0.5s, 0.95s, and 2.6s for each case (0.95s
and 2.6s are associated with the fundamental periods of 4- and 20-story buildings, respec-
tively, used in the next chapter, and 0.5s was added so that a shorter period could also be
considered). The hazard curves are plotted in Figure 5.4.

A few observations can be made from these results. First, the hazard curves from all
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three calculation approaches are in very good agreement, especially for annual rates of
exceedance greater than 10−3. At lower rates of exceedance, the simulation-based results
are less stable–particularly the direct Monte Carlo results. At rates down near 10−5, the
corresponding Sd values from the Monte Carlo approach are based on observations of only
a few ground motions (since these rates are by definition rare). The importance sampled
results are more stable, since strong ground motions have been preferentially sampled in
that case; this is the reason why computing the hazard curve using importance sampling is
a desirable approach.

The match between the simulation-based and traditional hazard curves depends on the
simulated ground motions having response spectra comparable to the spectra predicted
by the GMPM used in PSHA. The simulated ground motions used here are comparable,
but there were discrepancies in some cases that did not influence these hazard curves to
the extent that one might expect. In Chapters 3 and 4, the standard deviation of lnSd
(σlnSd ) values at long periods from the simulations was observed to be larger than predicted
by GMPMs, which might have been expected to produce larger hazard at small rates of
exceedance (i.e., in the “tail of the hazard curve”). However, as observed in Section 3.5.1,
σlnSd , this problem was less significant for large-magnitude ground motions, and the tail of
the hazard curve is primarily controlled by ground motions from large magnitudes, so this
problem did not manifest itself here.
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Figure 5.4: Hazard curves for Sd based on the characteristic recurrence model.

Hazard curves for inelastic Sd are plotted in Figure 5.5, using both traditional and
simulation-based PSHA. The traditional PSHA results were computed using the model
of Boore and Atkinson (2008) for elastic Sd and the model of Tothong and Cornell (2006)
for the ratio of inelastic to elastic spectral displacement; together these two models form
the required GMPM. The inelastic Sd were computed using a non-deteriorating bilinear
oscillator with a positive hardening stiffness ratio α = 0.05 (Chopra 2007). Yield displace-
ment dy is computed using a constant yield acceleration of 0.2g, with the corresponding
yield displacement for each period T then defined as follows:

dy = 0.2g
{

T
2π

}2
, (5.16)

where g is acceleration of gravity (981cm/s2). This is an assumption for the performance
of the simulation-based hazard analysis and deaggregation although it is not a realistic as-
sumption to design buildings. Again the simulation-based hazard curves obtained using
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Importance Sampling are seen to be more stable than those from basic Monte Carlo simu-
lation at Sd levels with low exceedance rates. The hazard curves from the simulation-based
PSHA and the traditional PSHA reasonably match for rates greater than 5∗10−3. At lower
rates, the two do not agree as closely, but it is not clear whether one approach is systemati-
cally biased high or low with respect to the other.
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Figure 5.5: Hazard curve of inelastic Sd based on characteristic recurrence model.

5.6 Deaggregation of hazard curve

5.6.1 Deaggregation of moment magnitude

Figures 5.6, 5.7, and 5.8 show the deaggregation of magnitude given elastic Sd(T ) for T =

0.5, 0.95, and 2.6s, respectively. The deaggregations are computed for Sd levels having two
exceedance probabilities: 10% probability of exceedance in 50 years, and 2% probability of
exceedance in 50 years. Results are shown for both the simulation-based procedure and the
traditional procedure, and the two show good agreement. The lower tail of the probability
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of the deaggregated magnitude has low-resolution predictions from the simulation-based
procedure. This is caused by the deaggregation using importance sampling (Equation 5.13).
In the deaggregation using importance sampling, the weight fi(m) is applied to the number
of simulated ground motions with a particular Sd level. Therefore, even though the number
is small, the large probability appears in the small magnitude

The deaggregation distributions clearly vary as the Sd level (and associated exceedance
probability) varies. The Sd at high exceedance probabilities are likely to be caused by
ground motions with small magnitudes, and the Sd with low exceedance probabilities are
more likely to be caused by ground motions with large magnitudes.

Figure 5.9 shows the mean M given an elastic or inelastic Sd level. In both cases, M
increases with increasing elastic and inelastic Sd . Since the maximum M of the charac-
teristic recurrence law that we used is 7.9, the maximum mean M of deaggregation is less
than 7.9. The mean magnitudes for in both cases decrease with increasing T . Also, the
mean magnitude for a given inelastic Sd is slightly larger than that for the corresponding
elastic Sd since the ground motions with large magnitude are likely to have longer period
components than those with small magnitude.
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Figure 5.6: Probability of M given Sd(0.5s) (a) Sd(0.5s) with 10% probability of ex-
ceedance in 50 years, (b) Sd(0.5s) with 2% in probability of exceedance 50 years from
simulation-based PSHA, (c) Sd(0.5s) with 10% probability of exceedance in 50 years, (d)
Sd(0.5s) with 2% probability of exceedance in 50 years from traditional PSHA. Mean val-
ues of deaggregated magnitudes are noted in each sub-figure.
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Figure 5.7: Probability of M given Sd(0.95s) (a) Sd(0.95s) with 10% probability of ex-
ceedance in 50 years, (b) Sd(0.95s) with 2% probability of exceedance in 50 years from
simulation-based PSHA, (c) Sd(0.95s) with 10% probability of exceedance in 50 years,
(d) Sd(0.95s) with 2% probability of exceedance in 50 years from traditional PSHA. Mean
values of deaggregated magnitudes are noted in each sub-figure.
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Figure 5.8: Probability of M given Sd(2.6s) (a) Sd(2.6s) with 10% probability of ex-
ceedance in 50 years, (b) Sd(2.6s) with 2% probability of exceedance in 50 years from
simulation-based PSHA, (c) Sd(2.6s) with 10% probability of exceedance in 50 years, (d)
Sd(2.6s) with 2% probability of exceedance in 50 years from traditional PSHA. Mean val-
ues of deaggregated magnitudes are noted in each sub-figure.
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Figure 5.9: MeanM given Sd for the example site (a) for elastic Sd (b) for inelastic Sd .

5.6.2 Deaggregation of Arias intensity

Deaggregation results for Arias intensity given elastic and inelastic Sd(T ) for T = 0.5, 0.95,
and 2.6s are computed. The Arias intensity for a given ground motion (Ia, Arias 1970) is
defined as follows:

Ia =
π
2g

∫ ∞

0
{x(t)}2 (5.17)

where x(t) is the ground motion’s acceleration time series and g is acceleration of gravity
981cm/s2. This is one potential measure of total input energy in a ground motion.

Deaggregation of the Arias intensity given elastic and inelastic Sd(T ) for T = 0.5, 0.95,
and 2.6s are computed. The deaggregation of the Arias intensity is only available from
simulation-based PSHA for the reasons discussed earlier. Figure 5.10 shows the mean of Ia
given a target elastic or inelastic Sd level. In both cases, Ia linearly increases with increasing
elastic and inelastic Sd in logarithmic axes. This suggests that large elastic or inelastic Sd
are likely to be caused by ground motions with large Ia. Also, the correlations of mean Ia
and elastic or inelastic Sd decrease with increasing T . The maximum deaggregation Ia for
all periods are almost identical since the maximum Ia depends on the maximum observed
valued in the simulated ground motions. The difference between the elastic and inelastic
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Sd cases is very small. These trends are similar to those of the deaggregation of magnitude
and they are consistent with the regression analysis since Eacc is positively correlated with
magnitude in Figure 3.27 and Eacc and Ia have strong correlation by definition, as indicated
in equations 2.27 and 5.17.
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Figure 5.10: Mean Ia given Sd for the example site (a) for elastic Sd (b) for inelastic Sd at
T = 0.5, 0.95, and 2.6s.

5.6.3 Deaggregation of significant duration

The 5−95% significant duration, denoted t95−5, is the duration of the ground motion that
contains 90% of its total energy. It is defined by the upper limit of the first integral in the
following equations:

∫ t5+t95−5
t5 |x(t)|2 dt

Eacc
= 0.9,

∫ t5
0 |x(t)|2 dt
Eacc

= 0.05 (5.18)

where Eacc is the total energy of the time series and x(t) is the ground motion’s acceleration
time series.

Deaggregation of the significant duration given elastic and inelastic Sd(T ) for T = 0.5,
0.95, and 2.6s are computed. The deaggregation of this parameter is also only available
from simulation-based PSHA for the reasons discussed earlier. Figure 5.11 shows the mean
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of significant duration given a target elastic or inelastic Sd level. In both cases, the mean
of the significant duration increases as the target level increases. This suggests that large
elastic and inelastic Sd are likely to be caused by ground motions with long significant
duration. In addition, the mean t95−5 in both cases decrease with increasing T when elastic
or inelastic Sd > 2cm. Since the maximum t95−5 deaggregation value is limited by the
maximum observed value in any of the simulated ground motions, the maximum t95−5
of deaggregation is almost identical in all cases. The difference between the elastic and
inelastic cases is very small.
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Figure 5.11: Mean t95−5 given Sd for the example site (a) for elastic Sd (b) for inelastic Sd
at T = 0.5, 0.95, and 2.6s.

5.6.4 Deaggregation of mean period

Mean period (Tm) is defined by Rathje et al. (2004) as follows:

Tm =
∑i

C2i
fi

∑iC2i
(5.19)

where fi is frequency i and Ci is the Fourier amplitude of the ground motion at that fre-
quency and 0.25 ≤ fi ≤ 20Hz with Δ f ≤ 0.05Hz. This parameter is of potential interest
here because Rathje et al. (2004) found it to influence site response and Kumar et al. (2011)
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found that it influences MIDR in structural analysis.
Deaggregation of the mean period given elastic and inelastic Sd(T ) for T = 0.5, 0.95,

and 2.6s are computed. Figure 5.12 shows the mean of the significant duration given a
target elastic or inelastic Sd level. The mean period Tm is clearly related to the elastic and
inelastic Sd level, indicating that large elastic and inelastic Sd are likely to be caused by
ground motions with long mean period. The relationship between mean Tm and elastic or
inelastic Sd are approximately identical for all periods, but slightly decrease with increasing
T . The difference between the elastic and inelastic cases is very small.
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Figure 5.12: Mean Tm given Sd for the example site (a) for elastic Sd (b) for inelastic Sd at
T = 0.5, 0.95, and 2.6s.

5.6.5 Deaggregation of response spectra

Rather than look at a single ground motion parameter, we can also study entire response
spectra from ground motions having a certain level of Sd at a specified period. Using
the traditional approach, the conditional mean spectrum (CMS) (Baker 2011) provides an
analogous prediction of the response spectra having a given Sd at a conditioning period,
and corresponding magnitude and distance from deaggregation. The CMS is defined as
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follows:

µlnSd(Ti)| lnSd(T1) = µlnSd(M,Rrup,Ti)+ρ(Ti,T1)ε(T1)σlnSd(Ti) (5.20)

σlnSd(Ti)| lnSd(T1) = σlnSd(T1)

√

1−ρ(Ti,T1)2 (5.21)

ε(T ) =
lnSd(T )−µlnSd(M,Rrup,T )

σlnSd(T )
, (5.22)

where µlnSd(Ti)| lnSd(T1) and σlnSd(Ti)| lnSd(T1) are the predicted mean and standard deviations
of lnSd (i.e., median prediction and logarithmic standard deviation of the response spectra)
predicted by the CMS, µlnSd(M,R,T ) and σlnSd(T ) are the predicted median and logarith-
mic standard deviation of Sd provided by a GMPM, M and Rrup are the magnitude and
rupture distance for which the GMPM is evaluated, and ρ(Ti,T1) is correlation between
ε(Ti) and ε(T1). In the equations above, T1 denotes the period at which the hazard analysis
is being performed, and Ti denotes the other periods of interest.

Figures 5.13 and 5.14 show the response spectra of the simulated ground motions with
Sd(0.5s) amplitudes exceeded with target probabilities: 10% and 2% in 50 years. Also
shown on that plot are the median and two percentiles of the response spectra, and corre-
sponding predictions from the CMS calculations above. Figures 5.15 through 5.18 show
the same results for Sd(0.95s) and Sd(2.6s). Several observations can be made from these
figures.

The response spectra are pinched at 0.5s because the motions are selected based on
their amplitude at that period. The median percentiles of the record spectra reasonably
match the corresponding CMS values superimposed on these figures. This is the result of
the means, standard deviations and correlations of lnSd values from the simulations being
comparable to the values predicted by the models used to compute the CMS. This is also
a useful independent validation of CMS concepts, as the CMS calculations are intended to
predict the spectra of ground motions, conditional on their spectral value at a single period;
we see here from simulated ground motions satisfying that condition that the CMS makes
relatively accurate predictions.
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Figure 5.13: Response spectra of ground motions selected based on their match with the
Sd(0.5s) amplitude exceeded with in 10% probability in 50 years.
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Figure 5.14: Response spectra of ground motions selected based on their match with the
Sd(0.5s) amplitude exceeded with in 2% probability in 50 years.
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Figure 5.15: Response spectra of ground motions selected based on their match with the
Sd(0.95s) amplitude exceeded with in 10% probability in 50 years.
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Figure 5.16: Response spectra of ground motions selected based on their match with the
Sd(0.95s) amplitude exceeded with in 2% probability in 50 years.
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Figure 5.17: Response spectra of ground motions selected based on their match with the
Sd(2.6s) amplitude exceeded with in 10% probability in 50 years.
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Figure 5.18: Response spectra of ground motions selected based on their match with the
Sd(2.6s) amplitude exceeded with in 2% probability in 50 years.
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5.6.6 Deaggregation of response spectra, conditioned on an inelastic
spectral value at a single period

In this section we repeat the calculations of the previous section, but here the simulated
ground motions are selected to match a certain level of inelastic Sd at the conditioning
period. Figures 5.19 and 5.20 show (elastic) response spectra of those simulated ground
motions with inelastic Sd(0.5s) equal to the amplitudes with exceedance probabilities of
10% and 2% in 50 years, respectively. Also shown for reference are the median and two
percentiles of those spectra, and comparable elastic CMS predictions. The CMS predic-
tions are not expected to be precise representations of the observed spectra, because the
CMS is computed conditional on an elastic spectral value rather than an inelastic spectral
value. They are nonetheless included to aid in highlighting the effect of switching to an
inelastic spectral value for conditioning.

The spectra shown in Figure 5.19 and are not pinched at the conditioning period, be-
cause these simulated ground motions are selected based on the inelastic Sd and so there
is no expectation that their elastic spectra at that same period would be identical for each
ground motion. The 16% and 84% percentiles of the spectra are relatively narrow over a
range of periods from the conditioning period to some longer period. These are the range of
periods for which the elastic spectra are correlated with the inelastic spectra amplitude used
for conditioning; this is intuitive based on the concept that the inelastic oscillator’s period
effectively “lengthens” when its stiffness reduces due to nonlinearity, and thus the elastic
spectra at these lengthened periods are similar for ground motions with a given inelastic
spectral value. There is no narrowing of the percentiles of the spectra at periods shorter
than the conditioning period, as there are no higher modes that contribute to response of
this single-degree-of-freedom oscillator. The same effect is observed in Figure 5.20, but
the range of periods with similar spectra is broader due to the greater nonlinearity of the
oscillator in that case.
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Figure 5.19: Response spectra of ground motions selected based on their match with the
inelstic Sd(0.5s) amplitude exceeded with in 10% probability in 50 years.
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Figure 5.20: Response spectra of ground motions selected based on their match with the
inelstic Sd(0.5s) amplitude exceeded with in 2% probability in 50 years.
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Figures 5.21 and 5.22 show response spectra of simulated ground motions with inelas-
tic Sd(0.95s) equal to the amplitudes with exceedance probabilities of 10% and 2% in 50
years, respectively. Figures 5.23 and 5.24 show response spectra of simulated ground mo-
tions with inelastic Sd(2.6s) equal to the amplitudes with exceedance probabilities of 10%
and 2% in 50 years, respectively. These figures all have the same trends as were observed
in Figures 5.19 and 5.20 .
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Figure 5.21: Response spectra of ground motions selected based on their match with the
inelstic Sd(0.95s) amplitude exceeded with in 10% probability in 50 years.
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Figure 5.22: Response spectra of ground motions selected based on their match with the
inelstic Sd(0.95s) amplitude exceeded with in 2% probability in 50 years.
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Figure 5.23: Response spectra of ground motions selected based on their match with the
inelstic Sd(2.6s) amplitude exceeded with in 10% probability in 50 years.
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Figure 5.24: Response spectra of ground motions selected based on their match with the
inelstic Sd(2.6s) amplitude exceeded with in 2% probability in 50 years.

5.7 Conclusions

Seismic hazard analysis using simulated ground motions has been proposed and compared
with traditional PSHA (which uses ground motion prediction models in place of simula-
tions). The simulated ground motions were generated by the proposed stochastic model
for distributions of earthquake magnitudes and distances that may occur at the site of inter-
est. Hazard curves from the simulation-based PSHA are efficient to compute, as they only
require counting the number of simulated ground motions whose IM of interest exceeds
the specified threshold instead of calculating integration of probabilistic density function
of IM. Deaggregation of magnitude was also computed. Example results demonstrated that
the hazard curves and deaggregated magnitudes from simulation-based PSHA match those
from traditional PSHA.

Additionally deaggregations of other characteristics of the time series were computed.
We examined the deaggregation of Arias intensity, significant duration, and mean period.
These parameters were observed to have relationships with the amplitude of Sd , and the
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relationships and deaggregation results were physically reasonable. Finally we examined
the spectral shape of ground motions having a certain Sd or inelastic Sd at a given period.
The response spectra of ground motions having a given Sd(T )were by definition “pinched”
to a single value at the conditioning period T1. At other periods, the spectra were consistent
with empirical equations for the Conditional Mean Spectrum. The elastic response spectra
of ground motions having a specified inelastic Sd are not pinched at any single period.
These spectra did have a narrow distribution at periods from T1 (the conditioning period)
to approximately 2T1. This is consistent with concepts that the “equivalent period” of a
nonlinear oscillator lengthens, and thus elastic response spectra at lengthened periods are
indicators of inelastic oscillator response.

Using simulation-based PSHA, we can compute hazard curves for a wide variety of
ground motion properties, and also compute deaggregation results for a variety of charac-
teristics of time series with a given intensity level. The method used here for simulation-
based PSHA will later be extended to compute hazard curves for structural response levels
rather than ground motion hazard, by inputting all of the simulated ground motions into
a structural model and computing the fraction of ground motions causing exceedance of
some level of structural response. We will compute this response hazard in Chapter 7, but
first we study structural responses from simulated ground motions and recorded ground
motions in the following chapter.



Chapter 6

Structural analysis using simulated
ground motions

6.1 Abstract

The previous chapters of this dissertation have indicated that ground motions simulated
using the proposed approach are in general statistically consistent with recorded ground
motions in terms of their elastic and inelastic response spectra, durations, Arias intensities,
mean periods, and characteristics of ε . But these are only useful proxies for the most im-
portant parameter, which is the response of a nonlinear multi-degree-of-freedom (MDOF)
model. This chapter will study the statistical distributions of displacements and accelera-
tions observed in two nonlinear MDOFmodels subjected to the simulations developed here,
and compare them to those obtained using recorded ground motions. The procedure used to
identify appropriate simulated and recorded ground motions is described, and the structural
models and response metrics are introduced. A variety of comparisons indicate that, to the
extent that there exist comparable sets of observed and simulated ground motions, the dis-
tributions of structural responses resulting from the two sets are comparable with respect to
the parameters described above. Notably, the complete distribution of structural responses
are comparable–not only the mean or median response. These results suggest that the pro-
posed simulated ground motions are suitable for use in “performance-based” engineering
assessments that require the estimation of probability distributions for structural responses

170
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under earthquake shaking.

6.2 Introduction

Performance based engineering requires a large number of input ground motions in order
to evaluate the structural behavior in earthquakes in terms of probabilistic characteriza-
tion of engineering demand parameters. However, the number of recorded ground mo-
tions is often not sufficient for a given analysis situation, so ground motion scaling and
spectrum matching are used to overcome the shortage of recorded ground motions. Simu-
lated ground motions can be used instead if their properties are comparable with those of
recorded ground motions. Many characteristics of the simulated ground motions generated
by the proposed stochastic model were evaluated in Chapter 4 and found to be consistent
with corresponding GMPMs. In this chapter, the characteristics of the simulated ground
motions are examined in terms of the following Engineering Demand Parameters (EDPs):
ductility, maximum inter-story drift ratio (MIDR), and peak floor acceleration (PFA). The
EDPs are computed for 4- and 20-story RC moment frame buildings, which were devel-
oped by Haselton et al. (2009). Forty recorded ground motions are selected and scaled to
match either a fixed target spectrum or to match a distribution of spectra (i.e., a mean and
standard deviation of lnSa) using the approach of Jayaram et al. (2011). The target spectra
is computed by Campbell and Bozorgnia (2008) for a scenario with M = 7, Rrup = 10km,
VS30 = 400m/s, and vertical strike-slip fault. A third set of the input ground motions are
selected from the simulated ground motions to match the target spectra at a fundamental
period of each building.

The probabilistic characteristics of the EDPs computed using the simulated ground mo-
tions reasonably match those using the recorded ground motions selected to match the mean
and standard deviation of the target spectra in terms of empirical cumulative distribution
functions. These results suggest that the simulated ground motions can be used for nonlin-
ear structural dynamic analysis and response hazard analysis.
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6.3 Structural model

A series of inelastic single-degree-of-freedom (SDOF) systems and two multiple-degree-
of-freedom structures (MDOFs) are considered in this chapter to compare the structural
response to simulated ground motions generated with the proposed procedure and compare
it to the structural response of the same structures but to recorded ground motions. For
inelastic SDOF systems we employ six non-deteriorating bilinear oscillators characterized
by a postelastic stiffness ratio of α = 0.10 and a period of vibration of T = 0.5s. The yield
displacement, and hence lateral strength since the period of vibration is the same for all six
systems, of each non-deteriorating oscillator is related to the spectral ordinates as follows

dy =
Sa(T )

R

{

T
2π

}2
(6.1)

We consider three levels of ground motion intensity, characterized by ε values of 0,
1 and 2 and two strength ratios R = 4 and 8 for a total of six different SDOF oscillators,
all with the same period of vibration but the six have different yield displacements and
different lateral strengths.

For MDOF models we used two buildings models that have been used in the past by
other investigators (Haselton and Deierlein 2008) and are well documented in the literature
(Haselton et al. 2009) and each of these two models is subjected to simulated and recorded
ground motions with three levels of intensity. The first, second, and third mode periods
(T1, T2, and T3) for 4-story building are 0.94s, 0.3s, and 0.17s, and for 20-story building are
2.63s, 0.85s, and 0.46s, respectively.

6.4 Input ground motions

Ten thousand simulated ground motions are generated for a scenario with M = 7, VS30 =

400m/s, Rhyp = 10km, Rrup = 10km, ZVS = 2km, ZTOR = 0, vertical strike-slip fault, and
arbitrary component. The input ground motions are selected that match target lnSa(T1) val-
ues equal to the mean prediction, mean+1σ , and mean+2σ from Campbell and Bozorgnia
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2008 (denoted here asCB08) ground motion prediction model. Note that spectral accelera-
tions for a given earthquake scenario are lognormally distributed, so their distributions are
often described in terms of the mean and standard deviation of logarithmic Sa values; the
exponential of the mean lnSa value is the median of the non-logarithmic Sa, so the terms
mean and median are both used to describe these target Sa values.

The number of selected ground motions are shown in Table 6.1. The number of avail-
able appropriate ground motions decreases with increasing ε since spectral accelerations
with large ε are by definition rare. Figures 6.1, 6.2, and 6.3 show the means and standard
deviations of logarithmic spectral accelerations with 5% damping computed from the simu-
lated ground motions, the conditional mean spectrum (CMS, Baker 2011), and the uniform
hazard spectrum (UHS). The CMS is computed by the following equations:

µlnSa(Ti)| lnSa(T1) = µlnSa(M,R,Ti)+ρ(Ti,T1)ε(T1)σlnSa(Ti) (6.2)

σlnSa(Ti)| lnSa(T1) = σlnSa(T1)

√

1−ρ(Ti,T1)2 (6.3)

ε(T ) =
lnSa(T )−µlnSa(M,R,T )

σlnSa(T )
(6.4)

where µlnSa(Ti)| lnSa(T1) and σlnSa(Ti)| lnSa(T1) are the mean and standard deviation of log spec-
tral accelerations, conditioned on a known value of Sa(T1), and µlnSa(M,R,T ) and σlnSa(T )

are the predicted mean and standard deviation of lnSa at all periods, and we always condi-
tion on the 1st mode period T1. The UHS is computed by the mean lnSa prediction of CB08
plus ε×σ (i.e., a fixed number of standard deviations larger than the mean prediction). The
above calculations imply that the CMS equals to the UHS when ε = 0, because both are
equal to the mean lnSa prediction in that case.

The µlnSa(Ti)| lnSa(T1) of the selected ground motions with ε = 0 are slightly smaller than
the CMS at long periods, consistent with Figure 4.4 earlier. Also, σlnSa(Ti)| lnSa(T1) of the
selected ground motions with ε = 0 are slightly larger than the CMS at long periods (max-
imum factor is 1.4 for T1 = 0.5s), consistent with Figure 4.18 earlier. These are cause by
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Table 6.1: Number of selected ground motions
ε = 0 ε = 1 ε = 2

T1 = 0.5s for SDOF 1552 812 126
T1 = 0.94s for 4-story 1394 764 147
T1 = 2.63s for 20-story 1040 601 133

the limited period resolution at these long periods, due to the finite time-domain resolution
of the wavelet packet transform. However, µlnSa(Ti)| lnSa(T1) and σlnSa(Ti)| lnSa(T1) of the se-
lected ground motions reasonably match those of the CMS in the case of ε = 1 and ε = 2
in Figures 6.1, 6.2, and 6.3. Since the logarithmic standard deviation of Sa of simulated
ground motions are larger than those of GMPM and the inter-period correlations of ε in
long periods are also larger than those of Baker and Jayaram (2008), the logarithmic stan-
dard deviation of Sa conditioned by Sa(T1) is comparable to that of the CMS (Figure 6.4).
In Equation 6.3, we can see the trade-off between σlnSa(T1) and ρ(Ti,T1). Similarly the
mean of Sa conditioned by Sa(T1) is comparable to that of the CMS.
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Figure 6.1: Spectral accelerations of selected ground motions for T1 = 0.5s (a) ε = 0, (b)
ε = 1, (c) ε = 2, (d) logarithmic standard deviation for all ε .
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Figure 6.2: Spectral accelerations of selected ground motions for T1 = 0.94s (a) ε = 0, (b)
ε = 1, (c) ε = 2, (d) logarithmic standard deviation for all ε .
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Figure 6.3: Spectral accelerations of selected ground motions for T1 = 2.63s (a) ε = 0, (b)
ε = 1, (c) ε = 2, (d) logarithmic standard deviation for all ε .



CHAPTER 6. STRUCTURAL ANALYSIS 178

0.01 0.1 1 10
0

0.5

1

1.5

period(s)


 o

f 
ln

(S
a

)
(a)

 

 

Simulations
Model

0.01 0.1 1 10
0

0.5

1

period(s)


(

(T
),
(

T
1
))

(b)

0.01 0.1 1 10
0

0.5

1

1.5

period(s)


 o

f 
ln

(S
a

) 
g

iv
e

n
 ln

(S
a

(T
1
)

(c)

Figure 6.4: Relationship between (a) logarithmic standard deviation of spectral acceler-
ation, (b) inter-period correlation of ε , and (c) logarithmic standard deviation of spectral
acceleration conditioned by spectral acceleration at T1 = 0.94s.
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6.5 Structural analysis for SDOF system

Dynamic nonlinear structural analysis of the SDOF system for the three types of input
ground motions are computed: 1) Recorded 1: recorded ground motions are selected and
scaled based on their match to the target mean CMS, 2) Recorded 2: recorded ground mo-
tions are selected and scaled based on their match to the mean and standard deviation of the
target CMS using the approach of Jayaram et al. (2011), 3) Simulated: simulated ground
motions are selected to match Sa(T1) associated with the target ε . No further effort was
made to select simulated motions where spectra matched some specific target. The statisti-
cal characteristics of the ductility demands of the six SDOF non-degrading oscillators are
shown in Table 6.2, and the cumulative probabilities of ductility demands are shown in Fig-
ures 6.5, 6.6, and 6.7 for ε = 0, 1, and 2, respectively. As shown in Table 6.2, for a given
level of ε , median ductility demands are much larger for the systems with R= 8 than for the
systems with R= 4 because the former systems have half the lateral strength than the latter
systems. Since these as short period systems, as expected, the median ductility demands of
the weaker systems (R= 8) are more than twice the median ductility demand of the stronger
systems (R= 4). For a given strength ratio, the median ductility demands exhibit are sim-
ilar with small reductions in median ductility demand because systems subjected to ε = 1
records are stronger than SDOF systems subjected to ε = 0 records and, similarly, SDOF
systems subjected to ε = 2 records are stronger than SDOF systems subjected to ε = 1
records. The small reduction in ε is due to the relationship between the effective periods
in nonlinear structural behavior and the spectral shape of the input ground motions: the
Sa’s of the input ground motions with large ε decrease more quickly for T > T1 than those
with small ε . In all ε cases, the probability distributions of the Recorded 2 set have heavier
tails than those of the Recorded 1 set because the input ground motions of the Recorded 2
set consider not only mean but also standard deviations of lnSa. The probability distribu-
tions of the Simulated set are closer to those from the Recorded 2 set than those from the
Recorded 1 set, especially for the upper tail, because the input ground motions from the
simulated ground motions have natural dispersion comparable to that in the Recorded 2 set
and this dispersion in lnSa produces large variation structural responses.
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Table 6.2: Statistics of ductility from SDOF system analyses, as a function of ground
motion set, ductility, and target ε

ε R Median Ductility Dispersion of Ductility
Recorded 1 Recorded 2 Simulated Recorded 1 Recorded 2 Simulated

0 4 3.93 3.76 3.61 0.24 0.31 0.32
8 10.76 9.97 8.48 0.28 0.42 0.47

1 4 3.55 3.35 3.38 0.22 0.33 0.32
8 8.04 8.16 7.58 0.28 0.44 0.45

2 4 3.27 3.04 2.91 0.19 0.28 0.26
8 6.90 7.44 6.12 0.24 0.41 0.38
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Figure 6.5: CDF of ductility of the SDOF system, ε = 0, (a) R=4 on linear axis, (b) R=4
on logarithmic axis, (c) R=8 on linear axis, (d) R=8 on logarithmic axis.
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Figure 6.6: CDF of ductility of the SDOF system, ε = 1, (a) R=4 on linear axis, (b) R=4
on logarithmic axis, (c) R=8 on linear axis, (d) R=8 on logarithmic axis.
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Figure 6.7: CDF of ductility of the SDOF system, ε = 2, (a) R=4 on linear axis, (b) R=4
on logarithmic axis, (c) R=8 on linear axis, (d) R=8 on logarithmic axis.
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6.6 Structural analysis for MDOF system

Here dynamic nonlinear structural analysis for three types of input ground motions are
performed: 1) Recorded 1: recorded ground motions are selected and scaled to match the
mean of the target CMS, 2) Recorded 2: recorded ground motions are selected and scaled
to match the mean and standard deviation of the target CMS, 3) Simulated: simulated
ground motions are selected to match the target Sa(T1). Maximum inter-story drift ratios
(MIDR) and peak floor accelerations (PFA) are computed in each case since they are useful
indicators of structural and non-structural damage, respectively.

6.6.1 MIDR results

The statistical characteristics of MIDR are reported in Table 6.3. In examining these re-
sults, the reader should keep in mind that contrary to SDOF results previously discussed in
which the non-degrading oscillators had lateral strengths proportional to the spectral ordi-
nates (related to ε), for the MDOF structures a given structure (with a fixed strength and
stiffness) was subjected to ground motions with three increasing levels of ground motion
intensity. Therefore, for the MDOF structures, and as expected, median MIDR increases as
ε increases as expected because the input ground motions with large ε have large Sa (see
Figures 6.1, 6.2 and 6.3). In the Recorded 1 and 2 sets, and the Simulated set, the medians
of MIDR are all within a factor of 1.3. The logarithmic standard deviations of MIDR of
the Recorded 2 set are larger than those of the Recorded 1 set because the input ground
motions of the Recorded 2 set are selected considering the mean and logarithmic standard
deviation in their response spectra. The logarithmic standard deviations of MIDR of the
Simulated set are closer to those of the Recorded 2 set than those of the Recorded 1 set be-
cause the input ground motions of the Simulated set naturally satisfy the target dispersion
of response spectra.

Figure 6.8 shows the relationship between Sa(T1) and MIDR of the simulated ground
motions for each ε . The median MIDR is linearly related to Sa(T1). It suggests in many
cases the structures are still in linear status or weakly nonlinear status. However, MIDR
has heavier upper tail on Sa(T1) since some cases appear to be in strong nonlinear status.

The cumulative probabilities of MIDR are shown in Figure 6.9 and 6.10 for the 4-
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and 20-story buildings, respectively. The differences between the results of the Recorded
1 and 2 sets are the largest for ε = 2 because the difference of the input ground motions’
spectra for those cases are the largest. The probability distributions of the Simulated set are
closer to those of the Recorded 2 set than those of the Recorded 1 set because the simulated
ground motions naturally satisfy the dispersion of the target response spectra.
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Table 6.3: MIDR from MDOF system

Building ε
Median MIDR Dispersion of MIDR

Recorded 1 Recorded 2 Simulated Recorded 1 Recorded 2 Simulated
20-story 0 0.0044 0.0043 0.0045 0.18 0.32 0.27
moment 1 0.0096 0.0086 0.0086 0.24 0.29 0.30
frame 2 0.0186 0.0196 0.0164 0.25 0.43 0.39

4-story 0 0.0072 0.0072 0.0070 0.09 0.09 0.11
moment 1 0.0137 0.0139 0.0125 0.26 0.29 0.29
frame 2 0.0279 0.0237 0.0232 0.28 0.46 0.44
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Figure 6.8: Relationship between Sa(T1) and median MIDR.
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Figure 6.9: CDF of maximum inter-story drift ratio for 4-story building (a) ε = 0 on linear
axis, (b) ε = 0 on logarithmic axis, (c) ε = 1 on linear axis, (d) ε = 1 on logarithmic axis,
(e) ε = 2 on linear axis, (f) ε = 2 on logarithmic axis.
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Figure 6.10: CDF of maximum inter-story drift ratio for 20-story building (a) ε = 0 on
linear axis, (b) ε = 0 on logarithmic axis, (c) ε = 1 on linear axis, (d) ε = 1 on logarithmic
axis, (e) ε = 2 on linear axis, (f) ε = 2 on logarithmic axis.

6.6.2 PFA results

The statistical characteristics of PFA are reported in Table 6.4 and the cumulative prob-
abilities of PFA are shown in Figures 6.11 and 6.12 for the 4- and 20-story buildings,
respectively. They indicate the same trend as the MIDR results in the previous section.
The results from the Simulated set are close to those from the Recorded 2 set since the in-
put ground motions of the Simulated set naturally satisfy the target dispersion of response
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spectra.
The difference of the probability distribution of Simulated and the Recorded 2 set in

PFA are smaller than those of MIDR. PFA is controlled primarily by the short period com-
ponents of the ground motions. This suggests that the short period components of the
simulated ground motions are more similar to the recorded ground motions than their long
period components.
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Table 6.4: PFA from MDOF system

Building ε
Median PFA Dispersion of PFA

Recorded 1 Recorded 2 Simulated Recorded 1 Recorded 2 Simulated
20-story 0 0.36 0.33 0.33 0.16 0.39 0.32
moment 1 0.39 0.38 0.37 0.14 0.37 0.32
frame 2 0.46 0.45 0.47 0.14 0.37 0.34

4-story 0 0.40 0.41 0.39 0.13 0.23 0.21
moment 1 0.45 0.50 0.46 0.15 0.25 0.21
frame 2 0.57 0.55 0.53 0.17 0.34 0.26
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Figure 6.11: CDF of peak floor acceleration for 4-story building (a) ε = 0 on linear axis,
(b) ε = 0 on logarithmic axis, (c) ε = 1 on linear axis, (d) ε = 1 on logarithmic axis, (e)
ε = 2 on linear axis, (f) ε = 2 on logarithmic axis.
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Figure 6.12: CDF of peak floor acceleration for 20-story building (a) ε = 0 on linear axis,
(b) ε = 0 on logarithmic axis, (c) ε = 1 on linear axis, (d) ε = 1 on logarithmic axis, (e)
ε = 2 on linear axis, (f) ε = 2 on logarithmic axis.

6.7 Conclusion

Nonlinear dynamic structural analysis was conducted for a single-degree-of-freedom oscil-
lator, and for 4- and 20-story reinforced concrete moment frame buildings. These analyses
were used to evaluate the effect of variations in input ground motions on resulting struc-
tural response metrics. Structural responses were quantified using ductility for the SDOF
system, and maximum inter-story drift ratio (MIDR) and peak floor acceleration (PFA) for
the multistory buildings.

Three types of input ground motions were used for the analysis: 1) recorded ground
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motions that were selected and scaled to match the conditional mean spectrum (CMS), 2)
recorded ground motions that were selected and scaled to match the conditional spectrum
(CS) which includes a mean and standard deviation of logarithmic spectral accelerations,
3) simulated ground motions that were selected to match the target Sa(T1). No criteria were
used for selecting the simulated ground motions other than their match to the target Sa(T1).
The recorded ground motions were selected to try to match appropriate ground motion
properties for high amplitude Sa(T1), using conditional mean concepts; this was needed
because the recorded motions were being scaled and their scaled properties would not nec-
essarily be appropriate. The conditional mean spectrum concepts are believed to represent
the best prediction of the spectra associated with ground motions having a given Sa(T1),
so those ground motions (in particular, set #2) are used as a benchmark for evaluating the
simulated motions.

The results presented in this chapter suggest that the probabilistic characteristics of duc-
tility, MIDR, and PFA produced by the simulated ground motions reasonably match those
of the selected and scaled recorded ground motions if the ground motions are selected and
scaled to match the target mean and standard deviation of lnSa as computed using Con-
ditional Spectrum equations. Additionally, the spectral shapes of the simulated ground
motions selected based on Sa(T1) are in very close agreement with predictions from CMS
equations. This very close agreement arose in spite of some shortcomings in properties
of the simulations at long periods, as was discussed in chapter 4, because discrepancies in
variability and correlations of spectra from the simulations have offsetting effects in terms
of the spectra associated with a a given Sa(T1) value. These analysis results suggest that
the structural responses of the simulated ground motions generated by the proposed method
produce structural responses that are comparable to responses from recorded ground mo-
tions having a given Sa(T1) value.

It should be noted that observations and conclusions are limited to results from only two
multi-degree-of-freedom structures and some analysis of SDOF oscillators, and to only a
limited set of ground motion scenarios. Full validation of these conclusions would require
further testing, but this chapter has nonetheless described a procedure for doing such vali-
dations, and shown that the simulated ground motion results are reasonable in the limited
cases considered.



Chapter 7

Simulation-based probabilistic seismic
demand analysis

7.1 Abstract

The proposed stochastic ground motion model has been shown to produce ground motions
with intensities similar to the ground motion prediction models (as measured using spectral
accelerations, inelastic response spectra, durations, Arias intensities, and mean periods),
and have also been shown to produce the similar probabilistic distributions of structural re-
sponse in nonlinear multi-degree-of-freedom (MDOF) structural models to those produced
by recorded ground motions. These features allow the simulation procedure to be used to
evaluate the reliability of structures under uncertain earthquake shaking in a more direct
manner than has previously been possible using only recorded ground motions. In this
chapter, this direct reliability assessment is explored by simulating a large suite of potential
ground motions as discussed in Chapter 5, and then using these simulations as inputs for
nonlinear dynamic analysis a structure. The probability of the structure experiencing a drift
or acceleration greater than some threshold can then be directly computed as the fraction
of simulated ground motions that cause exceedance of this threshold.

Current approaches to estimate this structural reliability metric rely on more indirect
methods, because fast and realistic simulation methods are not widely available, and be-
cause there aren’t a sufficient number of recorded ground motions to enable construction

193
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of large suites of all potential ground motions. Instead, the current methods generally
use small sets of scaled recorded ground motions, with the response results weighted by
a hazard curve for the site, but that approach requires a variety of assumptions regarding
important properties of ground motions and the impacts of ground motion scaling. The ap-
proach proposed here facilitates examination of those assumptions and provides a variety
of other relevant information not available from that traditional approach. In this chapter
the proposed direct analysis approach will be described, utilized for a variety of example
assessments, and the examples used to demonstrate the additional insights available from
this approach. While the direct estimation approach may not be suitable for implementa-
tion in design practice due to the large number of required structural analyses, the insights it
provides are valuable for understanding whether current procedures using recorded ground
motions are appropriate (for example, questions as to whether the Conditional Mean Spec-
trum is an appropriate target for ground motion selection can be addressed more directly
here than has previously been possible). This approach also provides a benchmark reli-
ability result that can be used to evaluate whether current practices using much smaller
numbers of ground motions are effective in accurately assessing the reliability of structures
subject to earthquake shaking.

7.2 Introduction

Performance based earthquake engineering assessments potentially require a large number
of input ground motions to evaluate the probability distributions of structural response en-
gineering demand parameters (EDP). The number of recorded ground motions may not be
sufficient to compute these probability distributions directly, so ground motion scaling and
spectrum matching are widely used recently to overcome the shortage of the number of
ground motion recordings. Simulated ground motions generated by the proposed stochas-
tic model can be used for this problem since the characteristics of the simulated ground
motions are consistent with those predicted by various types of GMPM (Chapter 4) and the
structural responses produced by the simulated ground motions are consistent with those
from the recorded ground motions in terms of ductility, maximum inter-story drift ratio
(MIDR), and peak floor acceleration (PFA) (Chapter 6).
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In this chapter, the probabilistic seismic demand analysis using the simulated ground
motions (termed “simulation-based PSDA”) is proposed to directly compute the hazard
curves of EDP. In the simulation-based PSDA, the hazard curve of any EDP can be com-
puted by nonlinear dynamic structural response analysis using the simulated ground mo-
tions produced using Monte Carlo simulation (a procedure described in Chapter 5). Since
only a few ground motions produce the large EDP values observed with the low exceedance
rate, crude Monte Carlo simulation can be inefficient and so importance sampling is also
employed to produce the simulated ground motions.

Simulation-based PSDA in general requires more structural response analyses than cur-
rent procedures to compute the hazard curves for EDP (Bazzurro 1998, Shome et al. 1998).
However, the simulation-based PSDA does not require the use of a ground motion intensity
measure, scaling of ground motions, or assumptions regarding functional forms and proba-
bility distributions of EDP values. Also we can perform a deaggregation-like computation
to determine the characteristics of the simulated ground motions that produce a given level
of EDP, giving insights into ground motion properties that influence structural behavior
and thus potentially informing procedures for selecting and scaling recorded ground mo-
tions. Thus, despite the procedure’s computational expense, it serves as a potentially useful
alternate method of evaluating structural reliability.

Further, simulation-based PSDA can be extended to compute the rate of jointly exceed-
ing specified thresholds for two or more EDP parameters–a calculation which is difficult
to perform using recorded ground motions. To demonstrate, joint hazard contours (as op-
posed to hazard curves for a single parameter) of maximum inter-story drift ratio (MIDR)
and peak floor acceleration (PFA) are produced. Various points on these contours are deag-
gregated to identify response spectra associated with each, and the relationship between
spectral shape, MIDR and PFA are discussed.
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7.3 Simulation-based probabilistic seismic demand analy-
sis

In the simulation-based PSDA, the mean annual rate of some EDP exceeding z, denoted
νEDP(z) is computed using Monte Carlo simulation and Importance Sampling as follows:

νEDP(z) = ∑
i
νi
1
n

n

∑
j=1

I(EDPj > z)
fi(mj)

ki(mj)
(7.1)

I(EDPj > z) =

{

1 EDPj > z
0 otherwise

(7.2)

where n is a number of simulated ground motions, EDPj is the jth realization of the engi-
neering demand parameter value, I is as indicator function, fi(mj) is a probability density
function of magnitudes for source i evaluated at magnitude mj, and the subscript j is the
index indicating the simulated ground motion. The function ki(mj) is a sampling distribu-
tion and fi(mj) is a target distribution for importance sampling. This equation is the same
as equation 5.11 except using EDP instead of Sd .

Here we employ maximum inter-story drift ratio (MIDR) and peak floor acceleration
(PFA) as EDP, and compute νEDP for the example site described in Chapter 5. This site has
a single nearby vertical strike-slip fault, with a characteristic distribution of magnitudes,
hypocentral distance and rupture distance of 10km, and VS30 = 400m/s. Ten thousand
simulated ground motions are sampled with uniformly distributed magnitude (i.e., using
importance sampling) and Equation 7.1 is applied to correct for this importance sampling
using the characteristic distribution as the target distribution fi(mj).

The above equations produce EDP hazard curves, and those curves can also be deag-
gregated to identify the distribution of ground motion parameters that produce a given EDP
value. For example, we can compute a distribution of earthquake magnitudes associated
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with occurrence of a given EDP level as follows:

P(M = m|EDP= z) =
∑nj=1 I(EDPj = z,Mj = m) fi(m)

ki(m)

∑nj=1 I(EDPj = z) fi(mj)
ki(mj)

(7.3)

I(EDPj = z) =

{

1 EDPj = z
0 otherwise

(7.4)

I(EDPj = z,Mj = m) =

{

1 EDPj = z,Mj = m
0 otherwise

(7.5)

Below we will also compute deaggregation results for Arias intensity, significant duration,
and mean period by substituting any of these parameters for magnitude in the above equa-
tion.

7.4 Probabilistic seismic demand analysis

The EDP hazard curves for the 4- and 20-story buildings described in Section 6.3 are com-
puted using equation 7.1 for the example site described above. The hazard curves for MIDR
and PFA are shown in Figures 7.1 and 7.2, respectively. The hazard curve for PGA is also
shown in Figure 7.2. The annual exceedance rates for a given MIDR are higher for the
4-story building than for the 20-story building, and the horizontal tails are associated with
the probabilities of collapse. The rates of exceedance of a given PFA are also higher for
the 4-story building than for the 20-story building. The hazard curves for PFA of both
buildings are higher than that for PGA of high annual rates of exceedance (> 10% in 50
years). As low annual rates of exceedance (≤ 10% in 50 years), the hazard curves of both
buildings are close to that of PGA, since PFAs occur on the first floor and are close to PGA
when the building experiences strong nonlinear behavior Aslani and Miranda (2005).
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Figure 7.1: Hazard curves for MIDR using simulated ground motions, for the example site
and the two example buildings.
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7.4.1 Hazard curve of PFA
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Figure 7.2: Hazard curves for PFA using simulated ground motions, for the example site
and the two example buildings.

7.5 Drift hazard deaggregation results

7.5.1 Moment magnitude given MIDR or PFA

Figures 7.3 and 7.4 show the deaggregation of mganitude given MIDR for the 4- and 20-
story buildings, respectively, and Figures 7.5 and 7.6 show the deaggregation of M given
PFA for the 4- and 20-story buildings respectively. The deaggregations are computed for
two exceedance probabilities: 10% in 50 years, and 2% in 50 years.

The magnitudes clearly vary somewhat depending upon the EDP parameter of interest
and the response level associated with the target probability of exceedance. The MIDRs
and PFAs with lower exceedance probabilities tend to be caused by ground motions with
larger magnitudes.
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In all of these figures, the histograms indicate low-resolution predictions at low mag-
nitudes. This is most evident in Figures 7.4(b) and 7.5(b) where there are large spikes in
probability at some low magnitudes. It is also apparent to a lesser degree in Figure 7.3(a).
This low resolution is an artifact of the Importance Sampling approach used here. Rather
than use a crude Monte Carlo simulation of the ground motions (which would have pro-
duced many small-magnitude motions), a uniform Importance Sampling distribution was
used (which produced relatively more large-magnitude motions) and the simulations were
then weighted to readjust for this sampling distribution, as discussed earlier. This approach
produces much better resolution in predictions of the rate of exceeding large EDP val-
ues (since the suite of simulated motions contains more large-magnitude motions), but at
the expense of having few small-magnitude motions. Further, the few small-magnitude
motions receive large weights in equations 7.1 and 7.3, so in the few cases that a small-
magnitude motion produces a large MIDR or PFA, it shows up as a large probability spike
in the figures below. These spikes would be smoothed out if a larger set of simulated mo-
tions was used, or if the importance sampling distribution was adjusted. This low resolution
result suggests that further work could be done to refine the simulation procedure (using
either more simulations or a different sampling distribution) if deaggregation results are of
interest.
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Figure 7.3: Probability distribution of M given MIDR with a specified probability of ex-
ceedance for the 4-story building at the example site (a) MIDR with 10% probability of
exceedance in 50 years, (b) MIDR with 2% probability of exceedance in 50 years. Mean
values of the magnitude distributions are noted in text in each subfigure.
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Figure 7.4: Probability distribution of M given MIDR with a specified probability of ex-
ceedance for the 20-story building at the example site (a) MIDR with 10% probability of
exceedance in 50 years, (b) MIDR with 2% probability of exceedance in 50 years. Mean
values of the magnitude distributions are noted in text in each subfigure.
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Figure 7.5: Probability distribution of M given PFA with a specified probability of ex-
ceedance for the 4-story building at the example site (a) PFA with 10% probability of
exceedance in 50 years, (b) PFA with 2% probability of exceedance in 50 years. Mean
values of the magnitude distributions are noted in text in each subfigure.
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Figure 7.6: Probability distribution of M given PFA with a specified probability of ex-
ceedance for the 20-story building at the example site (a) PFA with 10% probability of
exceedance in 50 years, (b) PFA with 2% probability of exceedance in 50 years. Mean
values of the magnitude distributions are noted in text in each subfigure.

Figures 7.7 and 7.8 show the mean values of the conditional M distributions as a func-
tion of MIDR or PFA level. In both cases the conditional mean magnitudes is strongly
dependent on the response level of interest, with the small frequent EDP occurrences being
caused primarily by the frequent small-magnitude earthquakes, and occurrences of large
EDP values being caused only by the large-magnitude earthquake ground motions. The
maximum magnitudes for both buildings saturate at the maximum possible magnitude of
earthquakes possible at the site (7.9 in this example). The trends for both buildings are
similar, and this trend is consistent with widely observed general trends in magnitude deag-
gregation from ground motion hazard analysis (comparable results for drift hazard analysis
are not widely reported since this is a difficult result to obtain when using recorded ground
motions, but the observed trend is not surprising).
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Figure 7.7: Mean M from deaggregations on MIDR for the two buildings at the example
site.
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Figure 7.8: MeanM from deaggregations on PFA for the two buildings at the example site.
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7.5.2 Arias intensity

Next deaggregation results for Arias intensity are computed. The Arias intensity for a given
ground motion (Ia, Arias 1970) is defined as follows:

Ia =
π
2g

∫ ∞

0
{x(t)}2 (7.6)

where x(t) is the ground motion’s acceleration time series and g is acceleration of gravity
981cm/s2. This is one potential measure of total input energy in a ground motion. The
deaggregation result is computed using Equation 7.3, but substituting Ia for M in those
equations. Figures 7.9 and 7.10 show the mean values of the conditional Ia distributions as
a function of MIDR or PFA level. The Ia saturates for both buildings at the maximum Ia
observed in any of the input ground motions.
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Figure 7.9: Mean Arias intensity from deaggregations on MIDR for the two buildings at
the example site.
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Figure 7.10: Mean Arias intensity from deaggregations on MIDR for the two buildings at
the example site.

7.5.3 Significant duration

The 5−95% significant duration (Trifunac and Brady 1975), denoted t95−5, is the duration
of the ground motion that contains 90% of its total energy. It is defined by the upper limit
of the first integral in the following equations:

∫ t5+t95−5
t5 |x(t)|2 dt

Eacc
= 0.9,

∫ t5
0 |x(t)|2 dt
Eacc

= 0.05 (7.7)

where Eacc is the total energy of the time series and x(t) is the ground motion’s acceleration
time series.

Figures 7.11 and 7.12 show mean values of t95−5 from deaggregations given a specified
MIDR or PFA. The mean values of t95−5 givenMIDR are increasing with increasingMIDR,
suggesting that there is a duration dependence of the structural responses (i.e., large MIDR
is more likely to be caused by input ground motions with long duration). PFA shows no
dependence on t95−5 in small PFA; however, it shows a litlle dependence in large PFA.

Ground motion duration is correlated with the causal earthquake magnitude, however,
so another potential explanation is that the trend in duration given MIDR is reflecting the
trend in magnitude deaggregation given MIDR, and the magnitude dependence indicates
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either a relationship with overall ground motion intensity, or a relationship with response
spectral shape.
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Figure 7.11: Mean significant duration intensity given MIDR for an example site.
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Figure 7.12: Mean significant duration intensity given PFA for an example site.
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7.5.4 Mean period

Mean period (Tm) is defined by Rathje et al. (2004) as follows:

Tm =
∑i

C2i
fi

∑iC2i
(7.8)

where fi is frequency i, Ci is the Fourier amplitude of the ground motion at that frequency
and 0.25 ≤ fi ≤ 20Hz with Δ f ≤ 0.05Hz. This parameter is of potential interest here
because Rathje et al. (2004) found it to influence site response and Kumar et al. (2011)
found that it influences MIDR in structural analysis.

Figures 7.13 and 7.14 show mean values of the deaggregation distributions of Tm for a
given MIDR or PFA level and for a given structure. The mean values of Tm given MIDR
monotonically increase with MIDR for both structures. This is because for both structures
typical Tm values are shorter than the first mode periods (T1) of the structures, so as Tm gets
larger the energy in the ground motion is more centered near T1 and larger MIDR values
tend to result. The mean value of Tm given PFA varies with PFA because of the same reason
as Tm given MIDR. This trend stops when PFA is greater than 0.3g, however, because PFAs
of buildings with strong nonlinear behavior are close to PGA regardless of the value of Tm.
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Figure 7.13: Mean period intensity given MIDR for an example site.
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Figure 7.14: Mean period intensity given PFA for an example site.

7.5.5 Response spectra for a given MIDR

In addition to measuring the properties of a single ground motion parameter conditioned
on a given EDP level, it is possible to study patterns in overall response spectra from the
ground motions that produce a given EDP level. Response spectra conditioned on a given
MIDR are shown in Figures 7.15, 7.16, 7.17, and 7.18, for exceedance probabilities of 10%
and 2% in 50 years, and for the 4- and 20-story buildings, respectively. The spectra of all
ground motions producing the target MIDR are plotted, along with the median and median
+/- one standard deviation of the spectra. The modal periods of the buildings are also noted
on each figure, along with two periods longer than the first model period that will serve as
useful references.

We can study these figures to identify the properties of these response spectra that seem
to be predictive of the resulting MIDR. For the 4-story building with 10% in 50 years
MIDR (Figure 7.15), the variation in response spectra is lowest for periods between T1 to
2T1. Response spectra at T1 are known to be good predictors of resulting MIDR in first-
mode dominated structures such as this four-story structure. The spectra at longer periods
show small variability also, presumably because the structure is responding nonlinearly
and its “effective period” has lengthened somewhat, making spectra at these longer periods
also useful predictors of structural response. The spectra conditioned on MIDR with 2%
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probability of exceedance in 50 years (Figure 7.16) show similar patterns, although the
pinched spectra now extend from T1 out to 3T1, likely due to additional period lengthening
at this higher response level. In both of these figures the response spectra are widely varying
at the 2nd and 3rd model periods (denoted T2 and T3 in the figures), even though the MIDR
level is nearly identical in each case. This suggests that higher mode excitations are not
significantly influencing MIDR values, consistent with our expectation that MIDR values
in this structure are first-mode dominated.

As we make these observations, and other similar observations below, it is worth re-
calling that no assumptions were made a priori regarding the properties of ground motions
influencing structural response, because no ground motions were pre-selected or scaled
to match target intensity measure values. We simply analyze the large suite of simulated
ground motions and study the properties of whatever simulated motions happened to pro-
duce large EDP values. The lack of required prior assumptions makes these results unique
and interesting.
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Figure 7.15: Response spectra of ground motions causing an MIDR in the 4-story building
that has a 10% probability of exceedance in 50 years. Vertical lines on the plot indicate
several periods of interest, denoted as follows: T1 = first mode period 0.94s, T2 = second
mode period 0.3s, T3 = third mode period 0.17s.
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Figure 7.16: Response spectra of ground motions causing an MIDR in the 4-story building
that has a 2% probability of exceedance in 50 years. Vertical lines on the plot indicate
several periods of interest, denoted as follows: T1 = first mode period 0.94s, T2 = second
mode period 0.3s, T3 = third mode period 0.17s.

Looking at similar results for the 20-story building in Figures 7.17 and 7.18, in the
case of the lower MIDR (that associated with 10% in 50 years exceedance probability), the
associated response spectra are narrowest around T1. But both longer and shorter periods
are also slightly pinched, indicating some effect of both nonlinear period lengthening and
the contribution of the higher modes. For the MIDR associated with 2% probability of
exceedance in 50 years, the response spectra are relatively narrower between T1 and 3T1
because of increased nonlinearity in these responses.
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Figure 7.17: Response spectra of ground motions causing anMIDR in the 20-story building
that has a 10% probability of exceedance in 50 years. Vertical lines on the plot indicate
several periods of interest, denoted as follows: T1 = first mode period 2.63s, T2 = second
mode period 0.85s, T3 = third mode period 0.46s.
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Figure 7.18: Response spectra of ground motions causing anMIDR in the 20-story building
that has a 5% probability of exceedance in 50 years. Vertical lines on the plot indicate
several periods of interest, denoted as follows: T1 = first mode period 2.63s, T2 = second
mode period 0.85s, T3 = third mode period 0.46s.

7.5.6 Response spectra for a given PFA

Response spectra associated with a given PFA are shown in Figures 7.19, 7.20, 7.21,
and 7.22, for 10% and 2% probabilities of exceedance in 50 years for the 4-story build-
ing and 10% and 2% probabilities of exceedance in 50 years for the 20-story building,
respectively.

These figures look remarkably different from the figures in the prior section that were
conditioned on MIDR. In every case, the variability in response spectra is very small at
short periods, and quite large at longer periods. This suggests that Sa at short periods
(or PGA) is the strongest predictor of PFA values (Taghavi and Miranda 2003) and the
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influence of higher mode is relatively larger than those in MIDR. This is expected from
other studies of peak floor accelerations in buildings, but these results are a useful check of
that intuition using the newly proposed approach.

Figure 7.22 shows a few simulated ground motions with small Sa at T > T3; however,
these ground motions have relatively larger Sa at T < T3 where the relationship with PFA
is strongest, and so the resulting PFA is the same as for the other simulated ground motions
in this figure.
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Figure 7.19: Response spectra of ground motions causing an PFA in the 4-story building
that has a 10% probability of exceedance in 50 years. Vertical lines on the plot indicate
several periods of interest, denoted as follows: T1 = first mode period 0.94s, T2 = second
mode period 0.3s, T3 = third mode period 0.17s.
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Figure 7.20: Response spectra of ground motions causing an PFA in the 4-story building
that has a 2% probability of exceedance in 50 years. Vertical lines on the plot indicate
several periods of interest, denoted as follows: T1 = first mode period 0.94s, T2 = second
mode period 0.3s, T3 = third mode period 0.17s.
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Figure 7.21: Response spectra of ground motions causing an PFA in the 20-story building
that has a 10% probability of exceedance in 50 years. Vertical lines on the plot indicate
several periods of interest, denoted as follows: T1 = first mode period 2.63s, T2 = second
mode period 0.85s, T3 = third mode period 0.46s.
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Figure 7.22: Response spectra of ground motions causing an PFA in the 20-story building
that has a 2% probability of exceedance in 50 years. Vertical lines on the plot indicate
several periods of interest, denoted as follows: T1 = first mode period 2.63s, T2 = second
mode period 0.85s, T3 = third mode period 0.46s.

7.6 Hazard analysis for joint exceedances of multiple EDP
parameters

To assess the performance of a structure while considering impacts of both MIDR and
PFA (or any other vector of EDP parameters), it may be of interest to compute the joint
behavior of these vectors of parameters, for instance by computing the rate of simulta-
neously exceeding both a given MIDR and a given PFA. Since simulation-based PSDA
implicitly maintains the relationship between any EDPs of interest via the large set of sim-
ulated responses, joint hazard analysis for multiple EDPs can also be computed using this
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simulation-based method. This section will demonstrate these calculations for MIDR and
PFA. Also, the properties of ground motions that produce large values of both EDP param-
eters will be studied. The joint hazard computation is performed as follows:

νEDP1,EDP2(z1,z2) = ∑
i
νi
1
n

n

∑
j=1

I(EDPj,1 > z1,EDPj,2 > z2)
fi(mj)

ki(mj)
(7.9)

I(EDPj,1 > z1,EDPj,2 > z2) =

{

1 EDPj,1 > z1,EDPj,2 > z2
0 otherwise

(7.10)

And the deaggregation computation is performed as follows:

P(M = m | EDP1 = z1,EDP2 = z2)

=
∑nj=1 I(EDPj,1 = z1,EDPj,2 = z2,Mj = m) fi(m)

ki(m)

∑nj=1 I(EDPj,1 = z1,EDPj,2 = z2)
fi(mj)
ki(mj)

(7.11)

I(EDPj,1 = z1,EDPj,2 = z2) =

{

1 EDPj,1 = z1,EDPj,2 = z2
0 otherwise

(7.12)

I(EDPj,1 = z1,EDPj,2 = z2,Mj = m) =

{

1 EDPj,1 = z1,EDPj,2 = z2,Mj = m
0 otherwise

(7.13)

These are very similar to the equations introduced earlier in these chapters, but replace
the previous indicator functions with indicator functions that check multiple EDP parame-
ters. Using these equations, we will perform several example calculations in the following
subsections.

Figures 7.23 and 7.24 show contours of rates of simultaneous exceedance of MIDR and
PFA for the 4- and 20-story buildings, respectively. Points on the plot indicate results from
individual ground motions, and the lines indicate contours of constant joint exceedance
rate. Exceedance rates corresponding to 2% and 10% probabilities of exceedance in 50
years are highlighted. We see from the scatter plots of analysis results that the MIDR and
PFA values from a given ground motion are correlated, but not perfectly correlated.
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Figure 7.23 indicates the saturation of PFA in high MIDR since MIDR increases to in-
finity when the structure collapses (Figure 7.1), while PFA saturates to PGA (Figure 7.2)
under strong nonlinear behavior. For the 4-story building, the PFA is observed to be trun-
cated at some lower bound. This is caused by the 4-story building that have little higher
mode contribution. For 20-story building, there is no sharp lower bound on the PFAs for a
given MIDR. For both buildings, the correlation between PFA and MIDR is changed where
MIDR is around 0.007 because these buildings yield at approximately this point.
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Figure 7.23: Hazard contours for joint EDP (MIDR and PFA) for 4-story building.
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Figure 7.24: Hazard contour of joint EDP (MIDR and PFA) for 20-story building.

Figures 7.25, 7.26, 7.27, and 7.28 show probability distributions for the magnitudes,
Arias intensities, significant durations, and mean periods that produce specific EDP values
in the 20-story building. The EDP values of interest are combinations of MIDR and PFA
that are jointly exceeded with 10% probability in 50 years. There are multiple combina-
tions of MIDR and PFA that satisfy this criteria, so we examine three combinations (which
are noted in the figures): the PFA that is exceeded with 10% probability in 50 years, plus
whatever MIDR is associated with those large PFAs (box a in the figure), the MIDR ex-
ceeded with 10% probability in 50 years, plus whatever PFA is associated with those large
MIDRs (box c in the figures), or combinations of MIDR and PFA that are both large, and
are jointly exceeded with 10% probability in 50 years (box b in the figures).

Figure 7.25 shows the median magnitude associated with large PFA is similar to the re-
sults in Figure 7.8 and those of other cases are similar to the results in Figure 7.7. It suggest
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that magnitude cannot be determined by the only MIDR or PFA. The Arias intensities have
the same trend as the magnitudes. However, the significant durations and the mean periods
have the trends different from the magnitudes and Arias intensities. They vary only with
MIDR, because MIDR has stronger correlation with the significant durations and the mean
periods than PFA.

Looking at these four figures, we see two overall trends. First, the large MIDRs are
caused by ground motions with large magnitude, long duration, and long mean period.
Second, the large PFAs are caused by ground motions with relatively smaller magnitude,
shorter duration, and smaller mean period. The Arias intensity distributions do not seem
to vary significantly depending upon the EDP case. These variations in properties exist
even though every case is conditioned on EDP values with 10% exceedance probability in
50 years. This suggests that there isn’t a ground motion type that will universally produce
all EDP values with a target exceedance probability, but rather that the important ground
motion properties depend on the EDP parameters of interest (Taghavi and Miranda 2003).
These types of comparisons are readily performed using this simulation-based PSDA ap-
proach, facilitating the study of questions such as this that are difficult to consider when
using limited sets of recorded ground motions that require scaling.
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Figure 7.25: Probability distributions of magnitude given MIDR and PFA with 10% ex-
ceedance probability in 50 years for the 20-story building (a) MIDR=0.002 and PFA=0.51g,
(b) MIDR=0.008 and PFA=0.41g, (c) MIDR=0.012 and PFA=0.24g, and (d) joint hazard
contour of MIDR and PFA indicating the regions being studied.
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Figure 7.26: Probability distributions of Arias intensity given MIDR and PFA with 10% ex-
ceedance probability in 50 years for the 20-story building (a) MIDR=0.002 and PFA=0.51g,
(b) MIDR=0.008 and PFA=0.41g, (c) MIDR=0.012 and PFA=0.24g, and (d) joint hazard
contour of MIDR and PFA indicating the regions being studied.
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Figure 7.27: Probability distributions of significant duration given MIDR and PFA with
10% exceedance probability in 50 years for the 20-story building (a) MIDR=0.002 and
PFA=0.51g, (b) MIDR=0.008 and PFA=0.41g, (c) MIDR=0.012 and PFA=0.24g, and (d)
joint hazard contour of MIDR and PFA indicating the regions being studied.
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Figure 7.28: Probability distributions of mean period given MIDR and PFA with 10% ex-
ceedance probability in 50 years for the 20-story building (a) MIDR=0.002 and PFA=0.51g,
(b) MIDR=0.008 and PFA=0.41g, (c) MIDR=0.012 and PFA=0.24g, and (d) joint hazard
contour of MIDR and PFA indicating the regions being studied.

Figures 7.29 and 7.30 show the response spectra of ground motions producing target
MIDR and PFA levels in the 20-story building. The same three MIDR and PFA values with
10% joint exceedance probability in 50 years are considered. Subfigures a, b and c show
spectra for boxes a, b and c in the previous figures. Figures 7.29d shows the medians of the
spectra in these three cases, along with the 10% in 50 years Uniform Hazard Spectrum for
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the example site, and Figure 7.30 shows the standard deviations of the logarithms of these
three sets of spectra.

Several observations can be made from these figures. The dominant period of the spec-
tra depends on whether the ground motions were selected because they produced a large
PFA, produced a large MIDR or produced a combination of the two. The median Sa in
Figures 7.29(a) has the shortest dominant period, Figures 7.29(c) has the longest dominant
period, and Figures 7.29(b) is in between those two. This is consistent with the probability
distributions of mean period in Figure 7.28. The 10% in 50 years uniform hazard spectrum
(UHS), which is computed using the ground motions only and does not utilize information
about the structural responses, envelopes all three median spectra, although the median
spectra get very close to the UHS at some periods. It is notable that these median spectra
are comparable in shape to Conditional Mean Spectra, even though no analysis related to
Conditional Mean Spectra are used to produce any of the results in this chapter.

The logarithmic standard deviations of Sa (σlnSa) are relatively smaller at period ranges
where the ground motions’ spectra are good predictors of the EDP of interest. The spectra
for cases a and b have small σlnSa at short periods, because these short period spectra are
correlated with the PFA value used for conditioning. In cases b and c, the spectra have the
smallest σlnSa at long periods, because spectra at those periods are highly correlated with
the MIDR value used for conditioning. These results suggest the distribution of response
spectra associated with ground motions producing an “X% probability of exceedance EDP”
are not uniquely defined, but rather depend on the EDP parameter(s) of interest and what
properties of ground motions they are most highly correlated with.
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Figure 7.29: Response spectra of ground motions producing MIDR and PFA levels jointly
exceeded with 10% probability in 50 years in the 20-story building (a) Spectra of ground
motions producing MIDR=0.002 and PFA=0.51, (b) Spectra of ground motions producing
MIDR=0.008 and PFA=0.41, (c) Spectra of ground motions producing MIDR=0.012 and
PFA=0.24, and (d) median spectra of (a),(b), and (c).
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Figure 7.30: Logarithmic standard deviation of the response spectra shown in Figure 7.29a-
c (a) Spectra of ground motions producing MIDR=0.002 and PFA=0.51, (b) Spectra of
ground motions producing MIDR=0.008 and PFA=0.41, and (c) Spectra of ground motions
producing MIDR=0.012 and PFA=0.24.

7.7 Conclusions

Simulation-based probabilistic seismic demand analysis has been introduced and computed
using the simulated ground motions generated by the proposed stochastic ground motion
model. Example PSDA hazard curves were produced for MIDR and PFA of 4- and 20-story
buildings. The annual exceedance rates for a givenMIDR are higher for the 4-story building
than for the 20-story building, and the horizontal tails are associated with the probabilities
of collapse. The rates of exceedance of a given PFA are also higher for the 4-story building
than for the 20-story building. The hazard curves for PFA of both buildings are higher
than that for PGA of high annual rates of exceedance (> 10% in 50 years). As low annual
rates of exceedance (≤ 10% in 50 years), the hazard curves of both buildings are close to
that of PGA, since PFAs occur on the first floor and are close to PGA when the building
experiences strong nonlinear behavior Aslani and Miranda (2005). Deaggregation results
for M, Ia, t95−5, and Tm by MIDR and PFA are computed. These parameters are correlated
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to MIDR and PFA and their trends are similar except t95−5. The significant duration t95−5
is strongly correlated to MIDR, however, it is less correlation with PFA. It suggests that
ground motion with long t95−5 is likely to cause large MIDR but less likely to cause large
PFA. Also, deaggregation results for Sa conditioned by MIDR and PFA are computed. The
results showed that for the example cases considered, MIDR is correlated with Sa from
T1 and longer for the 4-story building and T2 and longer for the 20-story building. Peak
floor accelerations were seen to be correlated with Sa at short periods. These period ranges
were explained intuitively based on the expected contributions of nonlinear responses and
higher-mode contributions to the EDP parameters of interest at the varying amplitudes
considered.

Further, joint hazard contours for MIDR and PFA were computed for the 4- and 20-
story buildings. For both buildings, MIDR and PFA are strongly correlated, however, the
correlation is changed where MIDR is around 0.007 because, in general, RC building will
yield at approximately this point.

The response spectra associated with ground motions producing various combinations
of MIDR and PFA were studied. The amplitudes and variability of the deaggregated spec-
tra were again intuitively related to the effect of nonlinear responses and higher-mode con-
tributions to the joint EDP parameters of interest. The results show that the distribution
of response spectra associated with ground motions producing an “X% probability of ex-
ceedance EDP” are not uniquely defined, but rather depend on the EDP parameter(s) of
interest and what properties of ground motions they are most highly correlated with.

These analyses are only example applications of simulation-based PSHA and PSDA.
Further study of these ground motion properties producing a given target EDP (or vector
or EDPs) will likely produce further insights of use when selecting and scaling recorded
ground motions for structural analysis.



Chapter 8

Conclusions

This dissertation focuses on constructing a stochastic ground motion model with time-
frequency nonstationarity and on applications for probabilistic assessment of seismic per-
formance of structures using the resulting simulated ground motions. Simulation-based
probabilistic assessments of seismic structural performance require simulated ground mo-
tions whose characteristics are consistent with those of real ground motions, as well as
procedures to ground motion hazard and structural response hazard. Contributions have
been made in both of these areas. The following subsections briefly summarize the impor-
tant findings of this work, the limitations of this work, and suggested future work related to
this dissertation.

8.1 Contributions and practical implications

8.1.1 Stochastic ground motion model with time-frequency nonsta-
tionarity

Several stochastic ground motion models with time-frequency nonstationarity have been
proposed previously. In Chapter 2 of this dissertation, the difference between past mod-
els and the proposed model is discussed. The proposed model is based on Thráinsson
and Kiremidjian (2002), which used Fourier amplitudes and phase differences to simulate
ground motions and attenuation models to predict the model parameters. We extend their

232
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model using the wavelet packet transform since it can control the time and frequency char-
acteristic of time series. This model employs wavelet packets as a tractable representation
of evolutionary power spectral density (EPSD) in the time and frequency domain and uses
regression analysis to predict the 13 required model parameters as a function of earthquake
magnitude, distance and site condition. The model has the following advantages: a) the
temporal and the spectral nonstationarity can be fully controlled by adjusting the model
parameters, b) the model is empirically calibrated and produces motions that are consis-
tent in their important characteristics with observed ground motion recordings, and c) the
procedure is computationally inexpensive (1000 simulations per hour can be produced on
a standard desktop PC), so obtaining large numbers of ground motions is relatively fast.

8.1.2 Consistency of characteristics of simulated ground motions with
ground motion prediction models

The 13 model parameters are connected to magnitude, hypocentral distance, rupture dis-
tance, and site condition using two-stage regression analysis in Chapter 3. The characteris-
tics of the resulting simulated ground motions were examined in Chapter 4 by comparing
observed values of spectral acceleration, inelastic response spectra, Arias intensity, signifi-
cant duration, and mean period with comparable predictions from ground motion prediction
models (GMPMs) (Thráinsson and Kiremidjian 2002).

These properties are predicted directly by the GMPM regression models. However,
these properties from the simulated ground motions are not directly connected to our re-
gression models because these parameters are computed by evaluating time series data
generated by the proposed stochastic ground motion model and regression model. For ex-
ample, the GMPM predictions for spectral acceleration (Sa) are constructed independently
for each period, with different subsets of the recorded ground motion database used at
each period. Sa predictions from the simulated ground motions, however, are computed
from the simulated time series with predicted parameters from regression model using one
database. The comparisons of these properties from simulated ground motions with those
from GMPM was thus ambitious, but was necessary for comprehensive validation of the
proposed stochastic model and regression analysis.
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The parameters computed from the simulated ground motions were observed to be gen-
erally consistent with those from the GMPMs under the following conditions: 6≤M ≤ 8,
220 ≤ VS30 ≤ 760(m/s), 1 ≤ Rrup ≤ 100(km), 0.01 ≤ T ≤ 3(s), and vertical strike-slip
rupture mechanism.

Furthermore, the characteristics of the prediction errors of Sa (i.e., ε) were examined.
The characteristics of ε are related to the probabilistic characteristics of the spectral shape
of ground motions. The prediction errors ε were seen to be normally distributed (as is also
the case with recorded ground motions) and have correlations that are consistent with an
existing empirical model calibrated from recordings (Baker and Jayaram 2008).

Additionally the magnitude scaling, distance scaling, and duration scaling apparent in
the acceleration, velocity, and displacement time series are consistent with expectations
based on theory and observed trends in recorded motions.

8.1.3 Consistency of structural responses from simulated ground mo-
tions with those from recorded ground motions

In Chapter 6, the characteristics of the simulated ground motions were examined in terms of
structural responses they produced. Nonlinear dynamic structural analyses were conducted
for 4- and 20-story reinforced concrete moment frame buildings. Input ground motions
were selected using the following three procedures: 1) recorded ground motions were se-
lected and scaled to match the median of the target conditional mean spectrum (CMS), 2)
recorded ground motions were selected and scaled to match the target conditional mean
spectrum as well as its corresponding logarithmic standard deviation, 3) simulated ground
motions were selected to match the target Sa(T1). The probabilistic characteristics of the
structural responses obtained using the simulated ground motions were compared with
those using recorded ground motions in terms of ductility, maximum inter-story drift ratio
(MIDR), and peak floor acceleration (PFA). The probabilistic characteristics of the duc-
tility, MIDR, and PFA using the simulated ground motions were observed to match those
using the recorded ground motions selected and scaled to match the median and standard
deviations of the target CMS.
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8.1.4 Probabilistic assessment of the seismic performance of struc-
tures

In chapters 5 and 7, simulation-based probabilistic seismic hazard analysis (PSHA) and
simulation-based probabilistic seismic demand analysis (PSDA) were proposed. These
procedures compute the rates of exceeding a ground motion intensity measure or structural
engineering demand parameter, respectively, using the simulated ground motions generated
by the proposed stochastic ground motion model.

Spectral displacement ground motion hazard curves for an example site, for three pe-
riods, were studied and observed to be equivalent to those from traditional probabilistic
seismic hazard analysis (PSHA). This was expected, since the characteristics of the sim-
ulated ground motions were consistent with those from the spectral acceleration ground
motion prediction model (Chapter 4), and the same earthquake source model is used in
both cases. Magnitude deaggregation results were also observed to be consistent in both
cases.

The hazard curves of spectral displacement and their deaggregation for magnitude are
consistent with those from GMPM. Additionally, the simulation-based hazard curves were
deaggregated to identify the Arias intensity, significant duration, mean period, and spec-
tral acceleration associated with occurrence of a given MIDR or PFA were. Studies of the
response spectral properties associated with a given level of structural response are infor-
mative, as they indicate properties of ground motions critical to structural response (in a
clearer manner than can be done with recorded ground motions whose properties cannot
be controlled). MIDR was observed to be frequently controlled by spectral acceleration at
periods from T1 to 3T1 for the 4-story building and T2 to 3T1 for 20-story building (because
of nonlinear effects and higher mode responses), while PFA is more closely related to Sa at
short periods.

Further, the joint hazard contours (indicating rates of simultaneously exceeding a given
MIDR and PFA) were computed for the 4- and 20-story buildings. The response spectra
associated with ground motions causing both a large MIDR and a large PFA were observed
to have relatively smaller standard deviations from the periods T2 to 2T1 than those given
only one of those EDP (since PFA and MIDR are sensitive to different period ranges in
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the response spectra). Also the deaggregations for moment magnitude, Arias intensity,
significant duration, mean period, and spectral acceleration were computed conditioned by
both MIDR and PFA. These deaggregation analyses are currently only possible to perform
by using simulation-based PSDA.

These assorted analyses demonstrate that using the proposed simulated ground motions
allows one to explore and directly understand seismic hazard in unique ways, and also
provides a great deal of flexibility in studying the probabilistic characteristics of structural
responses and the deaggregation of any type of ground motion characteristics associated
with those structural responses.

8.1.5 Validation of ground motion simulations for engineering use

This dissertation presented a variety of techniques for validating simulated ground motions,
in terms of comparisons with ground motion prediction models, comparison of structural
responses to comparable responses from recorded ground motions, and comparison of full
drift hazard curves. This suite of tests used here is believed to be more comprehensive than
has been performed for other ground motion simulation efforts, and was utilized specifi-
cally for evaluating whether a ground motion simulation procedure is appropriate for use
in a performance based seismic reliability analysis. The proposed tests may thus be useful
for evaluating other types of simulated ground motions, such as physics-based simulations.
Validation of simulations in general is topic of active discussion among researchers at the
seismology/engineering interface, and so the development and documentation of these pro-
cedures is a relevant contribution to that discussion. The philosophy used here is that
the ground motion simulations are appropriate for engineering applications if the ground
motion intensity measures and structural response properties are consistent with our best
understanding of what those values should look like (as determined from comparable ob-
servations of real ground motions). This does not ensure that a simulation approach will
produce good results in terms of waveform properties or inversion to source parameters,
but focusing on properties most relevant to engineering calculations is important when
considering engineering applications for use of simulations, and these tests are useful com-
plements to other validation techniques in widespread use in the earth science community
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for validating waveform time histories and other properties.
Further, the calibrated wavelet packet model developed here is in itself a potentially

useful tool for validating physics-based ground motion simulations. Those physics-based
simulations could be analyzed using the wavelet-packet decomposition, and if the proper-
ties of the wavelet packet coefficients differed significantly from predictions of those prop-
erties provided by this model, then that might indicate some property of the simulations
that was potentially inconsistent with recorded motions. This comparison need not be done
on a record-by-record basis, given the regression model that was developed here. Instead,
for example, simulations could be produced for a variety of earthquake magnitudes (even
extending past the magnitude range considered here), and the scaling of the nonstationarity
parameters or the duration parameters in the simulations could be studied to see if they
scale with magnitude in a manner similar to that predicted by the model proposed here.
This type of validation would provide different information from validation computations
in use today, so it may prove to be a useful additional check.

8.1.6 Software

The stochastic model described in this dissertation has been implemented in the Matlab
programming environment using the Matlab Wavelet Toolbox. To supplement the docu-
mentation provided by this dissertation, simulation source code is available at our website
(www.stanford.edu/~bakerjw/gm_simulation.html). The web site also contains fur-
ther detailed documentation such as regression coefficients, a table of earthquake ground
motions used in regression analysis, and other relevant information for the validation of the
model. The current software produces 1000 simulations per hour on a desktop computer
(Dell Optiplex 740 with AMD Athlon 64 dual core and 2GB of RAM).

www.stanford.edu/~bakerjw/gm_simulation.html
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8.2 Limitations and future work

8.2.1 Range of seismological conditions for which simulations can be
produced

The simulated ground motions were validated by comparison with ground motion predic-
tion models in Chapter 4 and by comparing structural responses from recorded and simu-
lated ground motions in Chapter 6. These results suggested that one can use the simulated
ground motions as input ground motions of the performance based earthquake engineering,
but there were limitations on the circumstances under which that observation is valid.

The proposed regression model and the proposed stochastic model were calibrated us-
ing recorded ground motions, and limitations on the ground motion library constrain the
range of conditions over which the simulations are expected to be valid. The following
ranges are proposed for conditions under which the simulations are expected to be con-
sistent with real ground motions: 1) 6 ≤ M ≤ 8, 2) 1 ≤ Rrup ≤ 100km, 3) 220 ≤ VS30 ≤
760m/s, 4) 0.01≤ T ≤ 3s, and 5) vertical strike-slip rupture mechanism.

The upper bound of 3 seconds on the realistic periods is due to the excessive variability
of lnSa at longer periods, especially for small-magnitude motions. This is inherent to the
wavelet transform approach used here, where limited period resolution at long periods is
a consequence of the finite time-domain resolution of this method. This might not be a
significant practical problem in some cases, however, because the problem arises at long
periods and for small-magnitude earthquakes, and under that combination of conditions the
spectral accelerations are generally low enough that they are not of engineering interest.

8.2.2 Modeling issues

While the simulated ground motions were observed to be reasonable over the range of con-
ditions described above, there are some remaining unresolved modeling issues that could
potentially increase the circumstances under which the simulations could be viewed as re-
alistic.

The proposed stochastic model currently randomizes the signs of the wavelet packets
used in the wavelet transform (i.e., the model specifies only the amplitudes of these wavelet
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packets and not their signs). The signs of the wavelet packets do not appear to have a signif-
icant effect on spectral accelerations or other ground motion properties that were studied,
but they may have some other as-yet-unidentified effect and so thus could be studied further
in the future.

The proposed regression model has only four predictors: moment magnitude, hypocen-
tral distance, rupture distance, and VS30. For future improvement, we could consider in-
cluding additional predictors such as rupture mechanism and depth to the bedrock. Initial
regression models considered did not indicate a statistically significant trend with any of
these parameters, but their effectiveness in other ground motion prediction models suggests
that they may be useful predictors.

The functional form used for regression was also kept relatively simple for practical
purposes. For example, the parameter h employed in the proposed regression model con-
trols saturation of each parameter in the near fault because of the area of the fault. In the
current model, h is a constant for a given model parameter, but the model could be modified
so h is a function of magnitude (since h is related to the area of the fault).

The database for regression analysis could also be improved in the future as strong
ground motion libraries continue to improve. New ground motions recorded on modern
instruments have better quality signals at long periods, which may potentially help with the
inaccuracies present at long period in the proposed model. The proposed model could also
be extended to simulate subduction and other non-crustal earthquake motions if appropriate
ground motion libraries were available to develop the needed regression models.

8.2.3 Sensitivity analysis for structural behavior against 13 model pa-
rameters

The proposed model requires 13 model parameters to simulate a ground motion. Since
these parameters are related to characteristics of the time series, we can examine the influ-
ence of each parameter on structural behavior using nonlinear dynamic structural analysis.
By varying the model parameters, one can have any kind of simulated ground motions.

Three parameters are of particular interest for structural behavior: 1) duration, 2) domi-
nant period, 3) time-frequency nonstationarity. In Chapter 7, we observed that the duration
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and dominant period of the simulated motions were related to the MIDR and PFA values
observed in structural analysis. The time-frequency nonstationarity is not a significant pa-
rameter from the deaggregation of the hazard curves of MIDR and PFA because we used
only the short distance (Rrup = 10km) in the probabilistic seismic demand analysis in Chap-
ter 7. However, it can affect results of nonlinear dynamic structural analysis (Conte 1992b)
because the stiffness of structures decreases and the resulting natural periods increase in
general as a structure is driven to nonlinear response over the duration of shaking. These
relationships could be studied more carefully in the future using the proposed simulation
approach, and the results could provide insights for selecting recorded ground motions.

8.2.4 Probabilistic assessment for a portfolio of structures

For the probabilistic assessment of the performance of a portfolio of structures, ground
motion simulations with appropriate coherence are needed. Currently, simulated ground
motions generated by the proposed stochastic model are independent of each other even at
close stations, contrary to real-world observations.

Several coherency models have been proposed in the past research (Vanmarcke 1983,
Zerva 1992). For stationary process, Harichandran et al. (1986), Hao (1986), and Abrahamson
et al. (1991) proposed the empirical lagged coherency. Der Kiureghian (1996) proposed a
theoretical model for the coherency function, including incoherence, wave passage, atten-
uation, and site effects. In this theoretical model, only site effects has been validated with
observations (Der Kiureghian and Keshishian 1996). Deodatis (1996) and Cacciola and De-
odatis (2011) proposed coherency models for fully nonstationary and spectrum-compatible
ground motion time histories. Also a program (SIMQKE-II, Vanmarcke et al. 1997) can
generate fully nonstationary spatially correlated ground motions.

To account for coherency in the proposed ground motion model, the following two types
of coherency would need to be considered. First, coherency of the 13 model parameters
would need to be defined. In the current regression model, the 13 regression equations are
correlated through the correlation of intra- and inter-event residuals. The spatial correlation
of intra-event residuals of each regression equation and cross correlation of 13 regression
equations need to be defined.
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Second, spatial correlation between the other model random variables would need to
be considered. Four types of the random variables are used in the proposed stochastic
model: 1) random variation of wavelet packets in the minor group around their predicted
mean amplitudes, 2) random time-frequency location of the wavelet packets in the major
group, 3) random amplitudes of wavelet packets in major group, and 4) the random signs
of the of wavelet packets. Spatial correlation of those random variables would be needed
in addition to spatial correlation of the 13 model parameters mentioned above. Since the
proposed model uses four types of random variables, the existing coherency models cannot
be applied directly.

Once both types of coherency are defined, we could potentially produce spatially vary-
ing ground motions for probabilistic assessment of portfolio performance.

8.2.5 Three dimensional structural analysis using multi-component
simulated ground motions

The current proposed stochastic ground motion model only produces single-component
motions in the fault-normal direction (because fault-normal recordings were used to cal-
ibrate the model). While the proposed approach demonstrates a general procedure that
could be extended to fault-parallel components also in order to obtain multi-component
models, one change in the procedure may be needed.

The fault parallel ground motions in near field may have another effect called fling step.
The fling step is the permanent residual displacement of the site due to fault deformation.
To account for the fling step in the proposed model, we need to employ the wavelet packets
in the lowest frequency in velocity. This lowest level of wavelet packets has a functional
form that can produce residual displacements and so would be needed to capture this effect
(currently this level is omitted from calibration and simulations because no residual dis-
placements are needed). Vertical components also can be modeled by the same procedure
of the fault normal and the fault parallel components.

In addition to calibrating additional models for each ground motion component, correla-
tion between parameters for each component would need to be considered. So in addition
to correlations between the 13 parameters for a given component, it would be necessary
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to compute the cross-correlations between the fault-normal and fault-parallel parameters.
Such a model has been developed by Rezaeian (2010).

8.2.6 Vector-valued structural response hazard analysis

In this dissertation, the joint structural response hazard analysis was computed for a two-
parameter vector MIDR and PFA. Using the simulation-based PSDA, we can increase the
dimension of this type of analysis. For example, we can compute the joint hazard for inter-
story drift ratio and peak floor acceleration at each story, and ductility of each element
of interest. Also we can compute the deaggregation for any characteristics of the time
series. In particular, we can explore the spectral shape of ground motions causing a given
set of structural responses. These types of calculations may provide interesting insights
into the characteristics of input ground motions that are most important to the response
of structures. Only preliminary results of this type were considered here, and much more
could presumably be learned by performing more in depth analyses of this type.

8.3 Concluding remarks

This dissertation documented the construction of a stochastic ground motion model with
time-frequency nonstationarity using the wavelet packet transform. The time- and frequency-
varying properties of real ground motions are modeled using wavelet packets, and the pro-
posed model requires only 13 model parameters to describe a given ground motion. These
13 model parameters are then related to seismological variables such as earthquake magni-
tude and distance, through regression analysis that captures trends in mean values, variabil-
ities and correlations of these parameters observed in a large database of recorded strong
ground motions.

Using the simulated ground motions obtained using this approach, hazard curves for
ground motions (elastic and inelastic spectral displacement) and structural responses (max-
imum inter-story drift ratio (MIDR) and peak floor acceleration (PFA)) and hazard deaggre-
gation are computed (simulation-based probabilistic seismic hazard analysis (PSHA) and
simulation-based probabilistic seismic demand analysis (PSDA)). Further, hazard analysis
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for joint exceedances of multiple engineering demand parameters is computed for MIDR
and PFA. These results lead us to discussion of the relationship between the ground motion
parameters and multiple EDPs since they all are directly connected though the simulated
ground motions. These types of calculations are readily performed using this simulation-
based PSDA approach, facilitating the study of questions such as this that are difficult to
consider when using limited sets of recorded ground motions that require scaling.

The approach can be extended beyond traditional hazard results as well, to consider
deaggregation of non-standard groundmotion parameters and computation of vector-valued
hazard. Future research appears warranted to refine the proposed model, investigate the re-
lationship between the parameters of the simulated motions and nonlinear dynamic struc-
tural analysis results, compute and evaluate advanced hazard results, and extend the model
to simulate multi-component and spatially coherent motions.



Appendix A

Relationship between wavelet packets in
major group, minor group, and total

Here the relationship of the wavelet packets between in major group and minor group is
described. Since 70% of energy goes to the major group, the total energy is defined as
follows:

Eacc = Eacc,ma j +Eacc,min

E(t) = 0.7E(t)ma j +0.3E(t)min

E( f ) = 0.7E( f )ma j +0.3E( f )min

S2(t) = E(t2)−{E(t)}2

= 0.7S2(t)ma j +0.3S2(t)min
+0.7 ·0.3

{

E(t)ma j−E(t)min
}2

S2( f ) = 0.7S2( f )ma j +0.3S2( f )min
+0.7 ·0.3

{

E( f )ma j−E( f )min
}2
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Cov(t, f ) = E(t, f )−E(t)E( f )

= 0.7Cov(t, f )ma j +0.3Cov(t, f )min
+0.7 ·0.3

{

E(t)ma j−E(t)min
}

×
{

E( f )ma j−E( f )min
}

R(t, f ) =
Cov(t, f )
S(t)S( f )

.

Since we assume that time and frequency positions of wavelet packets in major group
are independent of amplitudes ,mean time, mean frequency, variance of time, variance of
frequency, and covariance of time and frequency only from the time frequency location
of the wavelet packets are unbiased from those parameters with the time and frequency
location and amplitudes of the wavelet packets. Therefore we can control the wavelet
packets in the major group by using the time and frequency locations, and the amplitudes
of the wavelet packets, which are independent each other.

E[E(t)ma j] =
∑i,k E[tk

∣

∣

∣
cij,k,ma j

∣

∣

∣

2
]

Eacc,ma j

=
∑i,k E[tkaij,k,ma j]

∑i,k aij,k,ma j

=
∑i,k E[tk]E[aij,k,ma j]

∑i,k aij,k,ma j

=
∑i,k E[tk]
nma j

= E[
∑i,k tk
nma j

]

= E(E(tk,ma j))
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E[Var(t)ma j] =
∑i,k E[

{

tk−E(tk,ma j)
}2
∣

∣

∣
cij,k,ma j

∣

∣

∣

2
]

Eacc,ma j

=
∑i,k E[

{

tk−E(tk,ma j)
}2 aij,k,ma j]

∑i,k aij,k,ma j

=
∑i,k E[

{

tk−E(tk,ma j)
}2

]E[aij,k,ma j]

∑i,k aij,k,ma j

=
∑i,k E[

{

tk−E(tk,ma j)
}2

]

nma j

= E[
∑i,k

{

tk−E(tk,ma j)
}2

nma j
]

= E[S2(tk,ma j)]

E[Cov(t, f )ma j] =
∑i,k E[

{

tk−E(tk,ma j)
}{

fi−E( fi,ma j)
}

∣

∣

∣
cij,k,ma j

∣

∣

∣

2
]

Eacc,ma j

=
∑i,k E[

{

tk−E(tk,ma j)
}{

fi−E( fi,ma j)
}

aij,k,ma j]

∑i,k aij,k,ma j

=
∑i,k E[

{

tk−E(tk,ma j)
}{

fi−E( fi,ma j)
}

]E[aij,k,ma j]

∑i,k aij,k,ma j

=
∑i,k E[

{

tk−E(tk,ma j)
}{

fi−E( fi,ma j)
}

]

nma j

= E[
∑i,k

{

tk−E(tk,ma j)
}{

fi−E( fi,ma j)
}

nma j
]

= E[Q(tk,ma j, fi,ma j)]



Appendix B

Maximum likelihood estimation of the
model parameters

If the Xi are assumed to be i.i.d., their joint density is the product of the marginal densities,
and the likelihood is

lik(θ) =
n

∏
i=1

f (Xi|θ)

Rather than maximizing the likelihood itself, it is usually easier to maximize its natural
logarithm. For an i.i.d. sample, the log likelihood is

l(θ) =
n

∑
i=1
log[ f (Xi|θ)]

The wavelet packets in the minor group can be defined as following equations:

Xk = ln(tk), Yi = ln( fi) (B.1)

247



APPENDIX B. MLE OF THE MODEL PARAMETERS 248

Cmin(i,k) =
1

2πS(X)S(Y )
√

(1−R(X ,Y )2)

×
1
XkYi

exp
[

−
A2−2R(X ,Y )AB+B2

2{1−R2(X ,Y )}

]

× εk,i (B.2)

A =
Xk−E(X)

S(X)
, B=

Yi−E(Y )

S(Y )
(B.3)

Cmin(i,k) obeys bivariate normal distribution of X andY . Therefore we need to estimate
E(X), E(Y ), S(X), S(Y ), and R(X ,Y ).

First, we estimate E(X) and S(X) by using marginal distribution ofCmin(i,k) about i.

CX(k) =
2 j

∑
i=1

Cmin(i,k) (B.4)

SinceCX(k) is equivalent to frequency of each time and frequency, log likelihood of E(X)

and S(X) is

l[E(X),S(X)|X ] =
n

∑
i=1
log[ f (Xk|E(X),S(X))]

=
2N− j

∑
k=1

CX(k) log





1
√

2πS2(X)exp
{

−Xk−E(X)
2S2(X)

}





[E(X),S(X)]MLE = argmax
E(X),S(X)

l[E(X),S(X)|X ]

Then, we estimate E(Y ) and S(Y ) by using marginal distribution ofCmin(i,k) about k.

CY (i) =
2N− j

∑
k=1

Cmin(i,k) (B.5)
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Since the time series are truncated by the bandpass filters in the frequency domain to re-
move noise, and the filter frequencies differ ground motion to ground motion, we define α
as the highest usable frequency and β as the lowest usable frequency. Then log likelihood
of E(X) and S(X) is

l(E(Y ),S(Y )|Y ) =
n

∑
i=1
log[ f (Yi|E(Y ),S(Y ))]

=
2 j

∑
i=1

CY (i) log











1√
2πS2(Y )exp

{

−Yi−E(Y )

2S2(Y )

}

Φ
(

β−E(Y )
S(Y )

)

−Φ
(

α−E(Y )
S(Y )

)











[E(Y ),S(Y )]MLE = argmax
E(Y ),S(Y )

l[E(Y ),S(Y )|Y ]

Finally, we estimate R(X ,Y ). Then log likelihood of R(X ,Y ) is

l(R(X ,Y )|X ,Y ) =
n

∑
i=1
log[ f (Yi|R(X ,Y ))]

=
2 j

∑
i=1

CY (i) log









1
2πS(X)S(Y )

√
(1−R(X ,Y )2)

1
XkYi exp

{

−A2−2R(X ,Y )AB+B2

2{1−R2(X ,Y )}

}

Φ
(

β−E(Y )
S(Y )

)

−Φ
(

α−E(Y )
S(Y )

)









[R(X ,Y )]MLE = argmax
R(X ,Y )

l[R(X ,Y )|Y ]



Appendix C

Simulated ground motions for the
Chi-Chi earthquake

Using our stochastic ground motion model, 378 ground motion recordings from the 1999
Chi-Chi earthquake (M = 7.6) are considered. We estimated the 13 model parameters for
each of these recordings using the Maximum Likelihood Method (appendix B).
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Figure C.1: Simulation of recorded ground motion of the Chi-Chi earthquake at TCU076
[Rhyp = 17.91km, VS30 = 615m/s] (a) acceleration time series of recorded ground motion,
(b) simulated time series, (c) wavelet packets of recorded ground motion, and (d) wavelet
packets of simulated time series
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Figure C.2: Simulation of recorded ground motion of the Chi-Chi earthquake at TCU015
[Rhyp = 101.93km, VS30 = 473.9m/s] (a) acceleration time series of recorded ground mo-
tion, (b) simulated time series, (c) wavelet packets of recorded ground motion, and (d)
wavelet packets of simulated time series



APPENDIX C. SIMULATION FOR THE CHI-CHI EARTHQUAKE 252

10
-2

10
-1

10
0

10
1

10
0

10
1

10
2

10
3

1

10

10
0

10
00

10
00

0

0.01

0.1

1
10

100

1000

D
isp

la
ce

m
e

n
t(cm

)

P
se

u
d

o
 V

e
lo

ci
ty

(c
m

/s
)

Period(s)

Pseudo Acceleration(cm/s2) h=0.05

Selected simulations

Median of simulations

Sigma of simulations

Observation

Simulations
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Figure C.4: Fourier spectra of simulated and recorded ground motion of the Chi-Chi earth-
quake at TCU076 [Rhyp = 17.91km, VS30 = 615m/s]
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Figure C.5: Fourier spectra of simulated and recorded ground motion of the Chi-Chi earth-
quake at TCU015 [Rhyp = 101.93km, VS30 = 473.9m/s]
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Figure C.6: Cumulative squared acceleration.
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Figure C.7: Simulated and recorded ground motion of the Chi-Chi earthquake at TCU076
[Rhyp = 17.91km, VS30 = 615m/s] (a) and (b) acceleration(g), (c) and (d) velocity (cm/s),
and (e) and (f) displacement (cm) for recorded and simulated ground motion, respectively.
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Figure C.8: Simulated and recorded ground motion of the Chi-Chi earthquake at TCU015
[Rhyp = 101.93km, VS30 = 473.9m/s] (a) and (b) acceleration(g), (c) and (d) velocity
(cm/s), and (e) and (f) displacement (cm) for recorded and simulated ground motion, re-
spectively.
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simulations. (a) Sa at T = 0.2s, (b) Sa at T = 1s, and (c) Sa at T = 3s.
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Figure C.11: Model parameters between from the target time series versus the median of the
corresponding parameter from 300 simulations. (a) temporal centroid, E(t), (b) significant
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Appendix D

Comparison of simulation results with
ground motion prediction models for
rock site

D.1 Comparison with NGA GMPM

Here the median and logarithmic standard deviation of the spectral acceleration for rock
site (VS30 = 760m/s) from the simulated ground motions are compared with those from
NGA GMPM.
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D.1.1 Distance scaling
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Figure D.1: Median of PGA computed from the NGA GMPM and simulations (1≤ RJB ≤
200km, VS30 = 760m/s). (a)M = 5, (b) M = 6, (c) M = 7, and (d)M = 8.



APPENDIX D. COMPARISON WITH GMPM FOR ROCK SITE 262

100 101 102
10−3

10−2

10−1

100

101

Rjb(km)

Sa
(g

)

(a) M=5

100 101 102
10−3

10−2

10−1

100

101

Rjb(km)
Sa

(g
)

(b) M=6

100 101 102
10−3

10−2

10−1

100

101

Rjb(km)

Sa
(g

)

(c) M=7

100 101 102
10−3

10−2

10−1

100

101

Rjb(km)

Sa
(g

)

 

 
(d) M=8

AS08
BA08
CB08
CY08
Simulation

Figure D.2: Median of elastic Sa at T = 0.2s computed from the NGA GMPM and sim-
ulations (1 ≤ RJB ≤ 200km, VS30 = 760m/s). (a) M = 5, (b) M = 6, (c) M = 7, and (d)
M = 8.
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Figure D.3: Median of elastic Sa at T = 1s computed from the NGA GMPM and simu-
lations (1 ≤ RJB ≤ 200km, VS30 = 760m/s). (a) M = 5, (b) M = 6, (c) M = 7, and (d)
M = 8.
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Figure D.4: Median of elastic Sa at T = 3s computed from the NGA GMPM and simula-
tions (VS30 = 760m/s). (a)M = 5, (b) M = 6, (c) M = 7, and (d) M = 8.
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D.1.2 Magnitude scaling
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Figure D.5: Median of PGA and elastic Sa computed from the NGA GMPM and simu-
lations (5 ≤ M ≤ 8, RJB = 10km VS30 = 760m/s). (a) PGA, (b) Sa at T = 0.2s, (c) Sa at
T = 1s, and (d) Sa at T = 3s.
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Figure D.6: Median of PGA and elastic Sa computed from the NGA GMPM and simu-
lations (5 ≤ M ≤ 8, RJB = 30km VS30 = 760m/s). (a) PGA, (b) Sa at T = 0.2s, (c) Sa at
T = 1s, and (d) Sa at T = 3s.
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D.1.3 Response spectra on period axis
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Figure D.7: Median of elastic Sa computed from the NGA GMPM and simulations (RJB =

10km, VS30 = 760m/s). (a)M = 5, (b) M = 6, (c) M = 7, and (d) M = 8.
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Figure D.8: Median of elastic Sa computed from the NGA GMPM and simulations (RJB =

30km, VS30 = 760m/s). (a)M = 5, (b) M = 6, (c) M = 7, and (d) M = 8.
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D.1.4 Comparison of the standard deviation
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Figure D.9: Logarithmic standard deviation of elastic Sa computed from the NGA GMPM
and simulations (RJB = 10km, VS30 = 760m/s). (a) M = 5, (b) M = 6, (c) M = 7, and (d)
M = 8.
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Figure D.10: Logarithmic standard deviation of elastic Sa computed from the NGAGMPM
and simulations (RJB = 30km, VS30 = 760m/s). (a) M = 5, (b) M = 6, (c) M = 7, and (d)
M = 8.
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Figure D.11: Logarithmic standard deviation of elastic Sa computed from the NGAGMPM
and simulations (RJB = 10km, VS30 = 760m/s). (a) M = 5, (b) M = 6, (c) M = 7, and (d)
M = 8.
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Figure D.12: Logarithmic standard deviation of elastic Sa computed from the NGAGMPM
and simulations (RJB = 30km, VS30 = 760m/s). (a) M = 5, (b) M = 6, (c) M = 7, and (d)
M = 8.
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Figure D.13: Logarithmic standard deviation of elastic Sa computed from the NGAGMPM
and simulations (M= 5,VS30 = 760m/s). (a) PGA, (b) T = 0.2s, (c) T = 1s, and (d) T = 3s.



APPENDIX D. COMPARISON WITH GMPM FOR ROCK SITE 274

100 101 102
0

0.5

1

1.5

Rjb(km)

St
an

da
rd

 d
ev

ia
tio

n 
of

 ln
(S

a)

 

 
(a)

PGA

AS08
BA08
CB08
CY08
I08
SIM

100 101 102
0

0.5

1

1.5

Rjb(km)
St

an
da

rd
 d

ev
ia

tio
n 

of
 ln

(S
a)

(b)

T=0.2s

100 101 102
0

0.5

1

1.5

Rjb(km)

St
an

da
rd

 d
ev

ia
tio

n 
of

 ln
(S

a)

(c)

T=1.0s

100 101 102
0

0.5

1

1.5

Rjb(km)

St
an

da
rd

 d
ev

ia
tio

n 
of

 ln
(S

a)

(d)

T=3.0s

Figure D.14: Logarithmic standard deviation of elastic Sa computed from the NGAGMPM
and simulations (M= 6,VS30 = 760m/s). (a) PGA, (b) T = 0.2s, (c) T = 1s, and (d) T = 3s.
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Figure D.15: Logarithmic standard deviation of elastic Sa computed from the NGAGMPM
and simulations (M= 7,VS30 = 760m/s). (a) PGA, (b) T = 0.2s, (c) T = 1s, and (d) T = 3s.
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Figure D.16: Logarithmic standard deviation of elastic Sa computed from the NGAGMPM
and simulations (M= 8,VS30 = 760m/s). (a) PGA, (b) T = 0.2s, (c) T = 1s, and (d) T = 3s.



APPENDIX D. COMPARISON WITH GMPM FOR ROCK SITE 277

D.2 Inelastic response spectra
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Figure D.17: Median and logarithmic standard deviation of inelastic response spectra Fy/W
computed from the GMPM and simulations (M = 6, VS30 = 760m/s, µ = 8). (a) T = 0.2s,
(b) T = 1s, and (c) T = 3s.
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Figure D.18: Median and logarithmic standard deviation of inelastic response spectra Fy/W
computed from the GMPM and simulations (M = 7, VS30 = 760m/s, µ = 8). (a) T = 0.2s,
(b) T = 1s, and (c) T = 3s.
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Figure D.19: Median and logarithmic standard deviation of inelastic response spectra Fy/W
computed from the GMPM and simulations (M = 8, VS30 = 760m/s, µ = 8). (a) T = 0.2s,
(b) T = 1s, and (c) T = 3s.
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D.3 Arias intensity
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Figure D.20: Median and logarithmic standard deviation of IA computed from the NGA
GMPM and simulations (VS30 = 760m/s). (a) M = 6, (b) M = 7, and (c)M = 8.
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D.4 Significant duration
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Figure D.21: Median and logarithmic standard deviation of significant duration computed
from the NGA GMPM and simulations (VS30 = 760m/s). (a) M = 6, (b) M = 7, and (c)
M = 8.
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Figure D.22: Median and logarithmic standard deviation of significant duration computed
from the NGA GMPM and simulations (VS30 = 760m/s). (a) M = 6, (b) M = 7.
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