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Probabilistic structural response assessment using vector-valued
intensity measures
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SUMMARY

Methods for using scalar and vector ground motion intensity parameters to estimate the probabilistic
relationship between ground motion intensity and structural response are described and compared. Options
include using regression analysis on structural analysis results from a set of unscaled (or uniformly scaled)
ground motions, or fitting a probability distribution to the analysis results from scaled ground motions
analysed using incremental dynamic analysis and related methods. Past methods for using scalar ground
motion intensity are reviewed, and methods for utilizing improved vector-valued intensity measures (IMs)
are proposed. ‘Hybrid’ estimation methods that obtain the benefit of vector-valued IMs using simplified
techniques such as careful record selection are also discussed. The results are then combined with models
for ground motion occurrence obtained from probabilistic seismic hazard analysis to compute seismic
reliability, and the results obtained from the various methods are compared. In general, a tradeoff must be
made between the accuracy of the functional relationship between ground motion intensity and structural
response versus the number of structural analyses needed for estimation. Copyright q 2007 John Wiley
& Sons, Ltd.
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INTRODUCTION

Relationships between ground motion intensity and structural response can be combined with
ground motion hazard models to compute the seismic reliability of structures (e.g. [1–3]). With
this approach, the link between ground motion hazard and structural response is often made
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using scalar intensity measures (IMs) such as spectral acceleration at the fundamental period of
the structure, but recently researchers have considered vector-valued IMs consisting of multiple
parameters. Probabilistic predictions of structural response as a function of the IM, obtained using
statistical analysis of nonlinear dynamic analysis results using a set of ground motions, are required
with this approach. A variety of methods for obtaining this prediction using scalar or vector IMs are
described here, and their relative advantages and disadvantages are discussed. Previously developed
methods for using scalar IMs are reviewed, and several new methods for use with vector-valued
IMs are presented and discussed. It is seen that the preferred approach depends on the sample
size used for estimation (i.e. the number of nonlinear dynamic analyses performed), the level of
nonlinearity in the structure, whether the IM is scalar valued or vector valued, and the validity of
several potential functional form approximations. Note that non-IM-based methods for computing
seismic reliability have also been proposed [4–6], but the focus here is on a detailed study of
IM-based approaches.

Following the terminology conventions of the Pacific Earthquake Engineering Research (PEER)
center, the structural response parameter is termed as an Engineering Demand Parameter (EDP)
in the discussion that follows. The focus of this paper is on methods for estimating the probability
distribution of EDP for a given IM (this conditional distribution is denoted as EDP|IM). The
estimate of EDP|IM can then be combined with a ground motion hazard curve to compute the
mean annual rate of exceeding an EDP level y, �EDP(y), using the equation

�EDP(y)=
∫
IM

GEDP|IM(y|im)

∣∣∣∣d�IM(im)

dim

∣∣∣∣dim (1)

where GEDP|IM(y|im) is the complementary cumulative distribution function (CCDF) of EDP|IM
(i.e. the probability that EDP>y, given that IM= im) obtained using the estimation methods
described in this paper. The term �IM(im) is the mean annual rate of exceeding the IM level
im, obtained using Probabilistic Seismic Hazard Analysis, a procedure that is well documented
elsewhere (e.g. [7, 8]). The rate of exceeding a given EDP level, �EDP(y), is the seismic reliability
measure of interest here (e.g. if EDP= y is a response level associated with collapse, then �EDP(y)
is the annual rate of collapse of the structure). This equation can also be generalized to incorporate
vector-valued IMs, as will be seen in the following section.

The needed relationship between EDP and IM is modelled using several methods in the fol-
lowing sections. Both scalar and vector IMs are used, and the results are compared to deter-
mine whether the various estimates of structural response and seismic reliability are equivalent.
Dynamic analysis results from an example structure will be used to illustrate the various scalar-
and vector-IM-based methods. The structure is a 1960s era reinforced-concrete moment-frame
building located on a NEHRP category SD site near Los Angeles, which has been used as a
testbed for a variety of PEER research activities [9]. A nonlinear, stiffness and strength degrading
2D model of the transverse frame is used [10]. This frame of the building has an elastic first-
mode period of 0.8 s. So spectral acceleration at the first-mode period of the building, Sa(T1),
is used to demonstrate the scalar IM approaches; the parameter �, described briefly below, is
combined with Sa(T1) to create an example vector IM. The EDP considered here is the maxi-
mum interstorey drift ratio observed in any storey of a building. These specific parameters are
used only for illustration: the proposed procedures are also applicable for other structures, EDPs,
and IMs.
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MOTIVATION FOR USING VECTOR-VALUED INTENSITY MEASURES

Equation (1) can potentially be improved by increasing the number of parameters in the IM so
that it more completely describes the properties of ground motions. The benefit can be explained
using the following argument, which has also been made by others [11, 12]. Consider an EDP that
is potentially dependent upon two ground motion parameters: IM1 and IM2. The rate of exceeding
a specified value of EDP, y, can be computed using knowledge of the conditional distribution of
EDP given IM1 and IM2, along with knowledge of the joint rates of occurrence of the various
levels of IM1 and IM2. This generalization of Equation (1) can be written as

�EDP(y)=
∫
IM1

∫
IM2

GEDP|IM(y|im1, im2) fIM2|IM1(im2|im1)

∣∣∣∣d�IM(im1)

dim1

∣∣∣∣ dim2dim1 (2)

where GEDP|IM1,IM2(y|im1, im2) denotes the probability that EDP is greater than y, given an earth-
quake ground motion with intensity such that IM1= im1 and IM2= im2. The term fIM2|IM1(im2|im1)

denotes the conditional probability density function of IM2 given IM1, and �IM1(im1) is the
annual rate of IM1 exceeding im1 at the site being considered. The ground motion hazard
( fIM2|IM1(im2|im1) and �IM1(im1)) can be obtained either through vector probabilistic seismic
hazard analysis [12] or, in the case of Sa(T1) and � used below, with standard probabilistic seismic
hazard analysis (PSHA) and disaggregation.

If the ground motion parameter IM2 is ignored, and only IM1 is used for predicting structural
response, then the distribution of EDP will not depend (explicitly) on IM2. In the case where
IM2 actually does not affect structural response (given IM1), GEDP|IM1,IM2(y|im1, im2) is equal to
GEDP|IM1(y|im1), and Equations (1) and (2) are equivalent. This should be intuitive: if the ground
motion parameter IM2 has no effect on structural response, then a calculation which considers
IM2 (Equation (2)) should not produce a different answer than a calculation which does not
(Equation (1)).

If the parameter IM2 does affect response, however, then more care is needed in the reliability
assessment. If one uses only IM1 to estimate structural response in this case, then the estimate
of EDP given IM1 depends implicitly upon the distribution of IM2 values of the ground motion
record set used for analysis. This can be seen by expanding Equation (1) using the total probability
theorem [13] to explicitly note that EDP is a function of both IM1 and IM2:

�EDP(y)=
∫
IM1

∫
IM2

GEDP|IM1,IM2(y|im1, im2) f̃IM2|IM1(im2|im1)

∣∣∣∣d�IM(im1)

dim1

∣∣∣∣ dim2dim1 (3)

This is similar to Equation (2), but with one important difference. The conditional distribution
of IM2 given IM1 occurring at the site, fIM2|IM1(im2|im1), has been replaced by the condi-
tional distribution of IM2 given IM1 within the record set used for analysis, which is denoted as
f̃IM2|IM1(im2|im1).
By comparing Equation (2) to Equation (1) (and its equivalent expanded form in Equation (3)),

one can see that there are two ways to obtain the answer of Equation (2): use a vector IM, or
ensure that the distribution of IM2 given IM1 in the record set ( f̃IM2|IM1(im2|im1)) is equal to the
target distribution obtained from hazard analysis ( fIM2|IM1(im2|im1)). Methods of implementing
these two approaches will be considered in detail below.

A further benefit provided by vector-valued IMs is increased estimation efficiency. If by con-
sidering IM2 one can further explain a ground motion’s effect on a structure, then the remaining
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unexplained statistical variability in EDP will be reduced. This means that fewer nonlinear dy-
namic analyses will be needed to characterize the relationship between structural response and the
IM. An IM that results in small variability of EDP given IM is termed ‘efficient’ by Luco and
Cornell [14]. Several researchers have found that vector-valued IMs can achieve significant gains
in efficiency, so this approach can reduce the number of dynamic analyses that must be performed
to assess a structure’s performance [12, 15–17]. The potential of vector-valued IMs to improve
estimation efficiency and more accurately predict seismic reliability provides the motivation for
using vector IMs to predict EDP in this paper.

EDP ESTIMATION FROM A STATISTICAL INFERENCE PERSPECTIVE

The field of statistical inference is concerned with estimating the properties of a random variable
(in this case, EDP given an IM level) from a finite sample of data. Two classes of statistical
inference approaches will be considered here. Using a parametric approach, one assumes that the
random variable EDP has some probability distribution (e.g. lognormal) that is defined by a few
parameters. One then estimates these parameters to define the distribution [18]. Generally, the
choice of a distribution is made based on past experience, and statistical tests exist to identify
when a data set is not well represented by the specified distribution. Another class of models,
which use a non-parametric approach, do not require assumptions about the distribution of the
data [19]. Non-parametric models have the advantage of being robust when the data do not fit a
specified parametric distribution, but generally require more data for estimation in cases where the
data do fit a parametric distribution.

Complicating the EDP estimation problem relative to simple statistical inference situations is
the fact that the distribution of EDP is a function of IM (i.e. structural response tends to be larger
when the intensity of ground motion is greater). For some applications, the distribution of EDP
is needed over a continuous range of IMs, or at least a somewhat finely discretized set. In other
applications, the distribution of EDP may be needed for only a single IM level. The choice of an
estimation method used will depend on the range of IM levels over which the distribution estimate
is needed. These concepts will help to identify the positive and negative aspects of the various
estimation methods described in the following sections.

ESTIMATION METHODS USING A SCALAR INTENSITY MEASURE

EDP estimation using scalar IMs has been addressed elsewhere [10], but the potential approaches
are briefly reviewed here to facilitate later comparisons with similar approaches using vector IMs.

Regress on response data from unscaled ground motions

With this method, the nonlinear dynamic analysis of a structure is performed using a set of
unscaled ground motion records (or records scaled by a constant factor). The records’ IM values
and associated EDP values obtained from nonlinear dynamic analysis are sometimes referred to
as a ‘cloud,’ because they form a rough ellipse when plotted, as seen in Figure 1(a). Regression
can be used with this cloud of data to compute the conditional mean and standard deviation of
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Figure 1. Illustration of methods for estimating the conditional distribution of ln EDP|IM at
Sa(0.8 s)= 0.5g: (a) a cloud of ln EDP|IM data, the conditional mean value from linear regression,
and a Gaussian CCDF fitted to the mean and standard deviation from the regression; (b) a stripe of
ln EDP data and a Gaussian CCDF based on the sample mean and standard deviation; (c) a stripe of
ln EDP data and its empirical CCDF; and (d) incremental dynamic analysis curves, and a Gaussian
CDF of ln IMCap obtained from the sample mean and standard deviation of the first exceedances of

maximum interstorey drift ratio= 0.01.

EDP given IM. A linear relationship between the logarithms of the two variables often provides a
reasonable estimate of the mean value of ln EDP over a small range, yielding the model

E[ln EDP|IM= im] = �̂0 + �̂1 ln im (4)

where �̂0 and �̂1 are constant coefficients to be estimated from linear regression [20]. Using this
mean prediction, regression residuals are defined as

ei = ln EDPi − ln ED̂Pi (5)

where ln EDPi is the natural logarithm of the EDP associated with record i , and ln ED̂Pi is the
prediction from Equation (4) based on the record’s IM value. The e’s by definition have a mean of
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zero, and if they are assumed to have a constant variance for all IM, then their standard deviation
can be estimated as

�̂e = 1

n − 2

√
n∑
i

(ln EDPi − ln ED̂Pi )2 (6)

where n is the number of records. If ln EDP|IM is further assumed to have a Gaussian distribution,
then the estimated conditional probability of exceeding an EDP level y given IM= im is

GEDP|IM(y|im) = 1 − �

(
ln y − (�̂0 + �̂1 ln im)

�̂e

)
(7)

where GEDP|IM(y|im) is the CCDF of EDP given IM and �(·) is the cumulative distribution
function (CDF) of the standard Gaussian distribution. Example results are shown in Figure 1(a) for
an Sa(0.8 s) level of 0.5g, using regression on structural response results obtained from 60 ground
motions that have been scaled by a factor of two (record details are available in [21, Tables A.1
and A.2]).

This method has more restrictions on the form of the conditional distributions than any other
method to follow. In particular, it requires the relationship between EDP and IM to be linear with
constant variance after transformations (logarithms are typically taken of EDP and IM to obtain
an approximately linear relationship and constant variance). These restrictions may be appropriate
only over a limited range of IM levels, but they have the benefit of reducing the computational
expense of the estimation (few data are needed because there are few parameters to estimate). This
method has the additional advantage of being the only one associated with a closed-form analytic
solution for Equation (1) [22]. For these reasons, it is the preferred approach in many applications
[10, 14, 23–25].

The above assumptions can be relaxed if they are not believed to be valid, although a closed-form
solution to Equation (1) will no longer be available. A linear relationship may not be reasonable
for the entire IM range of interest, and the variance of EDP may not be constant. To address these
problems, the regression should be limited to the IM range where the assumed form is reasonable,
or piecewise linear relationships may be fit (e.g. [26]). Structural collapses are not considered in the
basic model, but can be incorporated by adding a supplemental probability-of-collapse estimation
as a function of IM [27]. With these modifications, the resulting assessment then lies somewhere
between the basic cloud method and the less restrictive methods described below, both in terms
of the required number of analyses and the number of parametric assumptions made.

Scale records to the target IM level and fit a parametric distribution to response results

Rather than using regression analysis with ground motions having a range of IM levels, one can
instead scale the motions so that each has the IM level of interest, and then directly estimate the
distribution of EDP from the resulting structural responses. To estimate a distribution from this
data, one can estimate the mean and standard deviation of the responses and use these values to
fit a distribution. For example, one can fit a normal distribution to ln EDP values, giving a CCDF
defined as

GEDP|IM(y|im) = 1 − �

(
ln y − �̂

�̂

)
(8)
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Figure 2. Multiple stripes of data used to re-estimate distributions at varying IM levels. Records that cause
maximum interstorey drift ratios of larger than 0.1 are displayed with interstorey drift ratios of 0.1.

where �̂ and �̂ are the mean and standard deviation, respectively, of the ln EDP values from a
set of ground motions scaled so that IM= im. Forty records and a fitted CCDF are shown in
Figure 1(b); because the data lie on a straight line, this method is sometimes referred to as the
‘stripe’ method. Note that the 40 records used here and below are a subset of the 60 used for the
cloud method. The number of records was reduced because the use of 60 records at multiple IM
levels would increase computational expense without significantly improving prediction accuracy.
By repeating this procedure for several IM values and interpolating if needed, the EDP distribution
can be obtained as a function of IM. Multiple stripes of data are shown in Figure 2 (using a suite
of 40 ground motions scaled to 10 spectral acceleration levels between 0.1g and 4g). It is visually
apparent that the standard deviation of ln EDP is not constant over the range of IM considered
here. It also appears that the mean value of ln EDP is not a linear function of ln IM. This indicates
that the most basic cloud approach would need to be generalized in order to accurately model
responses over the entire IM range shown here.

This method can easily account for records that cause collapse of the structure. Here collapse
is defined to have occurred if the dynamic analysis algorithm fails to converge or if the drift
ratio at any storey exceeds 10%, although other criteria can be easily adopted. This is done by
first estimating the probability of collapse (denoted C) as the fraction of records in a stripe that
cause collapse, and then fitting a parametric distribution to the non-collapse (C) responses. The
lognormal CCDF is given by

GEDP|IM(y|im) = 1 − P(C |IM= im)�

(
ln y − �̂

�̂

)
(9)

where �̂ and �̂ are the sample mean and standard deviation, respectively, of the non-collapse
responses, and P(C |IM= im) is the counted fraction of records at the IM= im stripe that do not
cause collapse. When estimating the probability of collapse at multiple IM levels, the probability
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can be counted at each IM= im stripe, or a parametric function can be fit over a range of IM
levels [27].

This approach is especially useful if response at only a single IM level is of interest (e.g. in code
methods concerned with response at a target ground motion intensity level). The method potentially
requires more structural analyses than the cloud method, however, if response estimates are needed
at many IM levels. Four hundred dynamic analyses were used to produce Figure 2 for research
purposes, although in practice this number could be reduced significantly. Questions regarding the
validity of record scaling also arise when this method is used. While scaled ground motions differ
from the naturally observed ground motions, empirical studies of peak displacements in frame
structures suggest that if the records are selected carefully then the introduction of bias can be
avoided [28–30].

Scale records to the target IM level and compute an empirical distribution for response

With this non-parametric method, a stripe of data is obtained in the same manner as in the
previous section, but the fitted parametric distribution is replaced by an empirical CCDF [19]. The
probability of exceeding an EDP level y is estimated by simply counting the fraction of records
that cause a response larger than y:

GEDP|IM(y|im) = number of responses>y

total number of records
(10)

An empirical CCDF is superimposed on a stripe in Figure 1(c). With this approach, no assumptions
are needed regarding distributions or functional relationships between EDP and IM. The eliminated
assumptions have a cost, however: more data are needed to characterize the conditional distributions.
Empirical distributions can also have difficulties precisely estimating the probability of exceeding
extreme values [31], which are often of concern for reliability analysis.

Fit a distribution for IM capacity to IDA results

With this method, the distribution of EDP|IM is not estimated directly. Rather, the results from
Incremental Dynamic Analysis (IDA) [32] are used to determine the probability that the IM level
of a ground motion is less than im, given that the ground motion caused a level of response
EDP= y [1, 33, 34]. This can be expressed as

FIMCap|EDP(im|y)= P(IMCap<im|EDP= y) (11)

where IMCap is a random variable representing the distribution of IM values that result in an EDP
level y occurring in the structure (i.e. the ‘capacity’ of the structure to resist a given EDP level,
defined in terms of the IM of the ground motion). Rather than using Equation (1) to compute the
structural response hazard, Equation (11) can be used with the following equation:

�EDP(y)=
∫
IM

FIMCap|EDP(im|y)
∣∣∣∣d�IM(im)

dim

∣∣∣∣dim (12)

An example of IDA results and a fitted distribution for a maximum interstorey drift ratio of
0.01 is shown in Figure 1(d). The IDAs in this figure were obtained by interpolating the stripes
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from Figure 2, but with wise selection of analysis points it is possible to reduce the number of
needed analyses [32]. If one is only interested in a single structural response level y, such as that
associated with a critical performance level, then Equation (11) need only be evaluated at a single
EDP value, further reducing the number of dynamic analyses needed. This method also does not
require a separate treatment of collapse responses, unlike previous methods.

A drawback of this method is that it will likely still require more analyses than a cloud analysis
(although it will provide more accuracy than the cloud method if used over a large range of IMs).
The need to have continuous IDAs also means that one must use the same records for analysis at
all IM levels, rather than re-selecting different records at increasing IM levels in order to reflect the
differing causal earthquake events [35]. One should be aware that the IM value causing EDP= y
may not be unique, because some IDA traces are not always monotonically increasing in some
ranges of IM, as seen in Figure 1(d). This can be addressed by defining IMCap as the smallest
value of IM such that EDP= y.

Comparison of results from alternative methods

The results from Figure 1 can be compared in several ways. The estimated mean and standard devi-
ation of ln EDP|IM from stripe and cloud methods are shown in Figure 3; the values at each stripe
are interpolated linearly to obtain continuous estimates. Only the most basic cloud method is used,
without piecewise linear fits or probability of collapse estimates (to evaluate collapses the cloud
record set would need to be scaled up uniformly, as none of the records in this example caused a col-
lapse). Because a large number of dynamic analyses were performed for the stripes in this example,
the stripe estimate can be reasonably treated as the true answer. For spectral acceleration values of
approximately 1g, the stripe method reveals an increase in mean EDP values as the structure reaches
large levels of nonlinearity. These results are for only the non-collapsing cases, where here collapse
is assumed to occur after exceedance of a 10% maximum interstorey drift ratio. Thus, the stripes
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using the cloud and stripe methods. For the stripe method, the values between stripes are
determined using linear interpolation. Only the IM levels where less than 50% of records cause
collapse are displayed because at levels with higher probability of collapse, the statistics estimated

using only non-collapse responses are less meaningful.
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Figure 4. Comparison of drift hazard results for the example structure using
the four scalar-IM-based estimation methods.

produce a mean estimate that peaks at about 10% for the extremely high ground motion levels
(greater than 2g).

A comparison of the estimated log standard deviations of EDP is shown in Figure 3(b). The
simple cloud method provides a constant estimated standard deviation of ln EDP for all spectral
acceleration levels, but the stripe estimates suggest that log standard deviation is increasing with
increasing IM level. The shortcomings of the cloud method identified here could be addressed
using the generalizations discussed earlier, or by performing the regression over a more narrow
range of IM than was used here, so that the assumptions are more likely to be reasonable.

To evaluate the effect of the complete distributional estimates for all spectral acceleration levels,
the probabilistic estimates of EDP|IM can be combined with an IM hazard curve to compute
an EDP hazard curve, per Equation (1) (and Equation (12) for the capacity formulation). The
IM hazard is computed for the location in Van Nuys, California, where the example structure is
located. Using each of the above methods to estimate EDP|IM, the EDP hazard curve is com-
puted and displayed in Figure 4. Because of the large number of analyses used, the two stripe
methods and the capacity method capture the distribution of EDP|IM well, and the resulting
drift hazard curves show reasonable agreement. The stripe methods and the capacity method
should in general produce equivalent results, given sufficient data for estimation, lognormality
of the conditional distributions, and monotonicity of the IDA traces. The convergence of es-
timates for large sample sizes is termed consistency in statistical inference. Connections and
comparisons between these methods have also been made by others [10, 11, 32]. For this exam-
ple, the cloud method agrees somewhat with the other methods, but functional form constraints
limit its accuracy. With a greater number of analyses and generalizations to remove the basic
assumptions, however, the cloud method could be made to agree more closely with the other
methods.
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ESTIMATION METHODS USING A VECTOR-VALUED INTENSITY MEASURE

Vector-valued IMs have several advantages for estimating seismic reliability, as discussed above.
But comparison of methods for predicting response as a function of the vector IM has received
little or no attention to date. Modifications of the scalar IM methods will be described here, and
their relative merits considered. In the text below, a vector of IM parameters will be denoted IM,
and individual parameters will be denoted IM1, IM2, etc. Several of the methods assume that one
of the parameters, IM1, is the dominant predictor of structural response, and treat it differently
than the others (e.g. by scaling to match IM1 and using regression to account for the effects of
IM2, IM3, etc.).

To illustrate the vector-IM-based approaches, an IM consisting of Sa(0.8 s) and a parameter
denoted � will be used to predict response of the same example structure used earlier. The parameter
�, defined as a measure of the difference between the spectral acceleration of a record and the
mean of a ground motion prediction equation at the given period, has been found to be an effective
predictor of structural response because it is an implicit measure of spectral shape [35, 36]. More
specifically, � (measured at a period T ) tends to indicate whether Sa(T ) is in a peak or a valley of
the response spectrum. Records with positive � values tend to have smaller responses than records
with negative � values, given that they have the same Sa(T1) values. For this example IM, Sa(T1)
is treated as the dominant parameter, with � providing supplementary information. This IM is only
used to illustrate application of the EDP estimation approaches, without further considering its
merits relative to other IMs.

Multiple linear regression with a cloud of ground motions

The cloud method can be easily adapted to vector-valued IMs through the use of multiple linear
regression, which provides a well-developed theory regarding model selection, confidence intervals
for regression coefficients, etc. [20]. A linear functional form (after variable transformations) is
again used to model the relationship between the mean value of EDP and IMs. For example,

E[ln EDP|IM1 = im1, IM2 = im2] = �̂0 + �̂1 ln im1 + �̂2 ln im2 (13)

where �̂0, �̂1, and �̂2 are estimated coefficients obtained using multiple linear regression. An
example prediction is shown in Figure 5(a). Assuming that ln EDP is normally distributed, then
the probability of exceeding an EDP level y given IM= (im1, im2) is

GEDP|IM(y|im) = 1 − �

(
ln y − (�̂0 + �̂1 ln im1 + �̂2 ln im2)

�̂e

)
(14)

where �̂e is estimated from the observed prediction errors, as in Equation (6), but now using
Equation (13) to generate the predictions.

This method has the advantage of easily accommodating many IM parameters by simply adding
additional terms to Equation (13) (e.g. �3 ln IM3). It also requires many fewer parameters to be
estimated than with the other methods, typically allowing estimates to be obtained from fewer
analyses. The model can also be generalized, as in the scalar case, to incorporate features such
as non-constant variance or records that cause collapse. Because of these appealing features, this
was the analysis method of choice for several investigations using vector-valued IMs [11, 17, 37].
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Figure 5. Estimates of mean ln EDP as a function of Sa(0.8 s) and �: (a) estimate
obtained using linear regression on a cloud of data and (b) estimates obtained using

linear regression on � at a series of Sa(0.8 s) stripes.
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One difficulty with this method is that when the parameters IM1 and IM2 are highly correlated,
it is difficult to separate their effects and estimate with confidence the coefficients �̂1 and �̂2
in Equation (13). This condition is referred to as collinearity. A somewhat related problem is
that extrapolation becomes much more common when using regression in higher dimensions.
Although marginally one might have predictor variables that span the IM range of interest, their
joint distribution likely covers a lesser range than expected. This can be seen in Figure 5(a):
although some data take values in the range 2<�<3, and some data take values in the range
0.1g<Sa<0.3g, there are no data with both 2<�<3 and 0.1g<Sa<0.3g. These extrapolations
become more frequent, and harder to detect, as the number of dimensions increases.

A final challenge with this method involves modeling interactions between IM parameters. For
example, if IM1 is spectral acceleration at the first-mode period of the structure and IM2 is spectral
acceleration at a larger period (to account for nonlinear response), then IM2 may have a small
effect on response at low IM1 levels when the structure is linear and a large effect on response at
large IM1 levels when the structure is very nonlinear. This would imply that the �2 coefficient in
Equation (13) should be non-constant. Additional interaction terms (e.g. �3 ln IM1IM2) can help,
but it can be difficult to identify and incorporate an appropriate functional form. Thus, while this
method has several appealing features, it should be verified that assumptions made regarding the
functional form are appropriate for a given application.

Scale records to the target IM1 and regress on additional parameters

With this method, records are scaled to the primary IM parameter before performing structural
analysis, and regression analysis is used on the resulting response data to determine the effect of
the remaining IM parameters. Logistic regression is used to compute the probability of collapse,
and linear regression is used to model the non-collapse responses.

Rather than estimating the probability of collapse as simply the fraction of records at an IM1
stripe that cause collapse, IM2 is used to predict the probability of collapse using logistic regression
[20]. With this procedure each record has a value of IM2, which is used as the predictor variable.
Using the indicator variable C to designate occurrence of collapse (C = 1 if the record causes
collapse and 0 otherwise), the following functional form is fitted

P(C |IM1 = im1, IM2 = im2) = e�̂0+�̂1im2

1 + e�̂0+�̂1im2
(15)

where �̂0 and �̂1 are coefficients estimated from regression on a record set that has been scaled to
IM1 = im1. By repeating this regression for multiple IM1 levels, one can obtain the probability of
collapse as a function of both IM1 and IM2.

For the remaining non-collapse data at an IM1 stripe, the relationship between IM2 and the
mean value of EDP is modelled by a linear function (after transformations). For example,

E[ln EDP|IM1 = im1, IM2 = im2] = �̂2 + �̂3 ln im2 (16)

where �̂2 and �̂3 are constant coefficients estimated using linear regression, and the standard
deviation of the regression residuals, �̂e, is again estimated from the observed prediction errors. In
contrast to the cloud method, these coefficients and the residual standard deviation are re-estimated
at every IM1 stripe. Assuming a Gaussian distribution for the residuals, the probability that EDP
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exceeds y, given IM1 = im1, IM2 = im2, and no collapse (C) is

GEDP|IM(y|im1, im2,C) = 1 − �

(
ln y − (�̂2 + �̂3 ln im2)

�̂e

)
(17)

By repeating this scaling and regression for multiple IM1 levels, one can obtain the distribution
of non-collapse responses as a function of both IM1 and IM2. The mean value of non-collapse
responses as a function of Sa(0.8 s) and � is shown in Figure 5(b).

The collapse and non-collapse cases are combined using the Total Probability Theorem to
compute the conditional probability that EDP exceeds y

GEDP|IM(y|im1, im2) = P̂(C) + (1 − P̂(C))

(
1 − �

(
ln y − (�̂2 + �̂3im2)

�̂e

))
(18)

where

P̂(C) = e�̂0+�̂1im2

1 + e�̂0+�̂1im2

This approach can be used with IM vectors of more than two parameters by adding additional
predictor variables to Equations (15) and (16).

This method has several desirable attributes. Scaling to stripes is already used for scalar IMs,
so the record processing is not new. In fact, the current scalar parametric stripe case is merely
a special case of this method, with the �1 and �3 coefficients omitted from Equation (18). Only
two additional fitted parameters per stripe are used for estimation by moving to a vector, and the
need for these extra parameters should be offset by the increased efficiency (i.e. decreased �̂e)
obtained from the vector. Collinearity and extrapolation problems that arise with the cloud method
are reduced with this approach, and interactions between IM1 and IM2 are captured automatically
because regression coefficients are re-estimated at each IM1 stripe. This approach will, however,
require a greater number of structural analyses than the cloud method.

Fit a conditional distribution for IM1 capacity to IDA results

Here, the IM capacity method presented earlier is generalized to incorporate a vector IM. Although
only a single IM parameter (IM1) is scaled during IDA, it is still possible to determine the effects
of other IM parameters. Here, IDA is first performed by varying IM1 until the EDP value of
interest is obtained. This provides the distribution of IM1Cap values as in the scalar case. Then IDA
curves can be plotted along with IM2, as shown in Figure 6(a). The point where each IDA curve
first reaches the EDP level of interest (max interstorey drift ratio= 0.1 for this example) defines
a set of IM capacity values. These points are plotted in Figure 6(b) for exceedance of EDP= 0.1
maximum interstorey drift ratio (corresponding to the tips of the IDA traces in Figure 6(a)). It is
apparent in Figure 6(b) that in this example IM2 can explain part of the variation of IM1 capacity
(i.e. the IM1Cap values tend to be larger for positive values of IM2). In Figure 6, the conditional
distribution of ln IM1Cap appears to be linearly dependent upon IM2, so linear regression can be
used to find the conditional mean of ln IM1Cap given IM2:

E[ln IM1Cap|IM2 = im2] = �̂0 + �̂1im2 (19)
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Figure 6. (a) Incremental dynamic analysis with two intensity parameters, Sa(0.8 s) and �, used to
determine capacity in terms of the intensity measure and (b) Sa(0.8 s), � pairs corresponding to occurrence

of 0.1 maximum interstorey drift ratio.
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where �̂0 and �̂1 are estimated from linear regression using, e.g. the data points from Figure 6(b).
The conditional standard deviation of ln IM1Cap given IM2, denoted �̂Cap, can be estimated by
computing the standard deviation of the regression residuals. If the conditional distribution of
ln IM1Cap is assumed to be Gaussian, then it can be computed as

P(IM1Cap<im1|EDP= y, IM2 = im2) = �

(
ln im1 − �̂0 + �̂1im2

�̂Cap

)
(20)

The probability density function of this distribution is superimposed on Figure 6(b) for two different
values of IM2. Using Equation (20), the drift hazard can then be computed as

�EDP(y) =
∫
im1

∫
im2

P(IM1Cap<im1|EDP= y, IM2 = im2) fIM2|IM1(im2|im1)

×
∣∣∣∣d�IM(im1)

dim1

∣∣∣∣ dim2 dim1 (21)

where the IM1Cap points were defined as the IM1 level associated with occurrence of the EDP
level y. This procedure can be extended to larger vectors by adding additional IM parameters to
Equations (19)–(21). This approach has previously been used by Vamvatsikos and Cornell [15].

The number of analyses needed for this method will generally be greater than with the cloud
method but less than with the stripes method. Interactions among the IM parameters are captured
because the conditional capacity distribution (as a function of im2) is re-estimated at each EDP
level. Wise selection of IDA analysis points and interpolation is slightly more complicated than
the procedure needed for the stripes method.

Scale records to specified IM levels and calculate an empirical distribution

With this method, records are scaled to target IM1 levels and then bins of records having a specified
range of IM2 values are selected. Within each bin, an empirical CCDF is computed and used as
GEDP|IM(y|im1, im2). This computation is the same as the scalar-IM empirical CCDF approach
earlier, except that with the scalar IM, no distinction is made between records with differing IM2
values. It can be shown that this method is equivalent to fitting a scalar-IM empirical CCDF after
using the re-weighting procedure that will be discussed later. It is simpler to present this method
in the context of re-weighting, so discussion will be reserved for that section.

Process records to match target values of all IM parameters

It may sometimes be possible to process a suite of records to match all parameters specified in
the IM vector, while leaving other record properties random. The conditional distribution of EDP
could then be estimated directly from the modified records. If the same suite of records is used
for a range of IM values by repeatedly re-processing the records, then this can be thought of as a
generalization of IDA, where there are now two or more scaling parameters rather than the single
parameter used in standard IDA.

For example, when the IM consists of spectral acceleration plus a measure of spectral shape
(e.g. [16]), one would scale the record to match the spectral acceleration value, and then use a
spectrum-compatibilization scheme to match the spectral shape [38, 39]. Rather than completely
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Figure 7. Comparison of drift hazard results using a vector-valued intensity
measures consisting of Sa(T1) and �.

smoothing the spectrum, the spectrum roughness should be retained and only the general shape
of the spectrum should be modified, in accordance with the target spectral shape parameter. This
approach is sometimes referred to as a ‘one-pass’ compatibilization, because it requires only a
single iteration of spectrum modification as opposed to the multiple iterations required to create
a smooth spectrum [40]. This approach has been used to create ground motions representative of
Eastern U.S. earthquakes from Western U.S. recordings [41], but it has not yet been used with
vector IMs as described here.

Comparison of results from alternative methods

Mean values of EDP given Sa(0.8 s) and � were shown for the cloud and stripe methods in Figure 5
and seen to match reasonably well, at least for values of Sa(0.8 s) less than 1 or 2g. The EDP
predictions can also be combined with the IM hazard using Equation (2) to predict the mean
annual rate of exceeding various EDP levels. A comparison of this result for each of the methods
is shown in Figure 7. As with the scalar IM approaches, the results are in good agreement except
that the cloud method differs somewhat because the linear functional form is not appropriate over
the large range of fitted IM values. Note that the curves have shifted down slightly with respect to
the corresponding scalar IM curves from Figure 4. This suggests that the example vector IM has
provided more information about structural response and thus affected the estimates of structural
reliability, as examined in detail elsewhere [36].

HYBRID ESTIMATION METHODS

Although vector-valued IMs facilitate improved estimation of EDP distributions, they are somewhat
more complicated to use than scalar IMs. Several methods are described here that can achieve the
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gains of a vector-valued IM while simplifying the analysis procedure. All of these methods mimic
in some way the conditional distribution of IM2|IM1 that is expected at the site in the ground
motion data set used for analysis. In other words, in the context of the vector-IM discussion
above, the goal is to ensure that f̃IM2|IM1(im2|im1) in Equation (3) is equal to fIM2|IM1(im2|im1)

in Equation (2), so that a scalar IM calculation produces the same result as the vector IM
calculation.

Fit a distribution to a stripe of data after re-weighting to match a target distribution of IM2|IM1

Rather than explicitly predicting response as a function of IM2, one could select ground motions
with a range of IM2values and then re-weight the data, after scaling to IM1, so that the re-weighted
data set has the proper distribution of IM2|IM1 at each IM1 level [10, 11]. After discretizing IM2
into a set of ‘bins,’ the weight for a record with an IM2 value in bin j is

weight j =
fIM2|IM1(im2, j |im1)

n j
(22)

where fIM2|IM1(im2, j |im1) is the target probability that IM2 = im2 (in bin j), given IM1 = im1
(obtained from vector-valued PSHA, or disaggregation if IM2 = �), and n j is the number of records
in the record-set with IM2 values falling in bin j . The weighted record-set will have a probability
distribution equal to the target fIM2|IM1(im2|im1). The scalar stripe methods can then be applied
to this weighted data set, and the procedure works as before.

It is necessary to have at least one record in every IM2 bin considered, to avoid having a
denominator of zero in Equation (22). Ensuring that there are records in each IM2 bin requires
either careful record selection or large bin sizes, but large bin sizes may mask the effect of the
underlying IM parameter. In addition, some records may be assigned weights close to zero, meaning
that data are essentially discarded for the purposes of estimation; this is undesirable, given the
expense of obtaining response data. These drawbacks are of some concern when incorporating a
second parameter, but are nearly insurmountable if the vector consists of more than two parameters.
This is because the number of bins increases exponentially with the number of IM parameters, and
thus the average number of records in each bin decreases very quickly to zero even with a large
record set. This so-called curse of dimensionality [42, 43] affects all of the considered methods
to some extent, but is especially problematic here. The method’s ability to use the same set of
records at all IM1 levels is desirable in some situations, such as when one is performing IDA,
but the approach can only be practically used with a two-parameter vector and large bin sizes
(which is perhaps not very restrictive for applications, although it is a shortcoming for exploratory
research).

Scale records to a specified level of IM1, selecting records to match the desired distribution of
secondary parameters

With this approach, ground motions are carefully selected to match the target IM2|IM1 distribution
at each IM1 level. This is done presently, with IM1 as spectral acceleration and IM2 as magni-
tude and/or distance [44]. The target conditional distribution is obtained from disaggregation of
probabilistic seismic hazard analysis results, and ground motions with matching magnitude and
distance values are selected and used for analysis. This method has also been applied in recent
research projects with the � parameter used here [35, 45]. Note that this is a special case of the
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re-weighting method described in the previous section, where each ground motion has an equal
weight because they were carefully selected to match the target distribution.

The conditional distribution of IM2|IM1 often changes as the value of IM1 changes (e.g. large
positive � values become more common as the spectral acceleration level increases), so ground
motions must be re-selected at differing IM1 levels. This adds an extra step in the record-selection
process, and makes IDA methods more complicated because the records change as the IM level
changes. The limited number of available ground motions may also provide a practical impediment
to the adoption of this procedure. Once the selection is complete, however, analysis can be
performed using simple scalar IM procedures.

Comparison of results from hybrid methods

EDP hazard curves are computed using the two hybrid methods and compared to basic scalar and
vector methods in Figure 8. The structural model and record set used in previous examples are
used here, with the exception of the special record-selection scheme, where records are re-selected
at each Sa level to match the � distribution obtained from disaggregation (record-selection details
are given in [21]). All three of the methods that account for the effect of � result in a lowering
of the drift hazard curve. Although the agreement is not perfect, the methods are all capturing
the effect of �. Thus, the hybrid methods based on careful record selection or re-weighting can
achieve similar results to the vector IM method that uses regression on �. This result also shows
that the scalar IM Sa(0.8 s) is biased, or ‘insufficient,’ at large levels of EDP (i.e. incorporating
� in the prediction changes the answer, suggesting that the scalar IM consisting of Sa alone does
not provide complete information about the effect of the ground motions). Further evidence for
this conclusion has been presented elsewhere [35, 36].
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Figure 8. Comparison of drift hazard results using the scalar IM stripes procedure, vector-IM-based
regression procedure, the hybrid special record selection procedure, and the hybrid re-weighting procedure.
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CONCLUSIONS

A variety of methods for obtaining the distribution of structural response (EDP) as a function
of either a scalar or vector IM have been presented and discussed. The possibilities are listed

Table I. Summary of EDP|IM estimation methods.

Ease of generalization
Method Pros Cons to vector IMs

Linear regression on a
cloud

Possible to avoid record
scaling. Generally requires
fewer records than other
methods. Compatible with
closed-form solutions for
drift hazard

Standard assumptions
(linear conditional mean
and constant variance)
are often not appropriate
over large ranges of IM;
relaxation of the ap-
proximations is possible
but removes some of
the advantages of this
choice

Multiple regression
on vector IMs is a
simple extension.
Collinearity among
predictors may be a
problem

Parametric distribu-
tions on IM stripes

Fewer parametric assump-
tions than with clouds. IM
dependence can vary by
IM level

Typically requires more
dynamic analyses than
cloud methods

Regression on stripes
is less restrictive than
regression on all IM
parameters simulta-
neously, while also
limiting the required
number of dynamic
analyses

Empirical CCDF on
IM stripes

No parametric assumptions
about response distribution

Requires a significant num-
ber of records for estima-
tion

Curse of dimensiona-
lity is a significant
problem. Application
to vectors requires
a significant number
of records, carefully
selected

IM capacity from IDAs Requires fewer runs than
IM stripes if IDAs are
formed carefully

Requires a few extra
steps to create IDAs and
interpolate to compute
capacity distributions

Generalization to vec-
tors is straightforward

Hybrid method: Scale
ground motions to
IM1, while re-weight-
ing the data to match
the target distribution
of other IM parameters

Achieves the gains of vec-
tor IM methods. Records
do not need to be re-
selected at each IM1 level

Weights for results from
some records will be
zero or nearly zero, es-
sentially throwing away
data. The curse of dimen-
sionality is a problem for
vectors with many pa-
rameters

Simpler processing
than with explicit
vector procedures

Hybrid method: Scale
ground motions to
IM1, while carefully
selecting the records
to match other IM
parameters

Achieves the gains of vec-
tor IM methods while re-
quiring only the scalar-IM
processing procedure

Requires careful record
selection. Records likely
need to be re-selected at
differing IM1 levels

Simpler processing
than with explicit
vector procedures
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in Table I, along with brief summaries of their positive and negative attributes. In general, one
must make trade-offs between the accuracy of the estimates and the amount of data required for
estimation.

For research activities investigating the effectiveness of a potential vector IM, an effective
approach consists of scaling records to the primary IM parameter (e.g. spectral acceleration at the
first-mode period of the structure), and then using regression analysis to measure the effect of the
additional IM parameters. This method does not severely restrict the functional form of the mean
response versus IM relationship, while also not requiring excessive numbers of structural analyses
to be performed.

Cloud methods, which use multiple linear regression on all IM parameters simultaneously, require
the fewest number of dynamic analyses and most effectively avoid the ‘curse of dimensionality,’
but the model often needs to be limited to a narrow range of IM levels where the linear prediction
model is reasonable, or assumptions of linearity need to be relaxed. The smaller number of
required dynamic analyses has led several researchers to adopt this approach for seismic reliability
computations. At the other extreme, nonparametric methods such as empirical CDFs are potentially
very accurate, but may require a prohibitive number of dynamic analyses, especially for IM vectors
containing many parameters.

Once the relationship between structural response (EDP) and the IM parameters has been de-
termined using one of the above methods, the results can be incorporated with ground motion
hazard curves to obtain explicit estimates of seismic reliability. Computation of ground motion
hazard for scalar IMs is well developed using probabilistic seismic hazard analysis (PSHA) tools.
Vector ground motion hazard for some vector IMs (such as the one consisting of spectral accel-
eration and � considered here) can be obtained from scalar hazard curves combined with standard
deaggregation results. In other cases, such as for IMs consisting of spectral acceleration values
at multiple periods, special vector-valued PSHA computations are needed. While vector-valued
PSHA is not yet common, the needed approaches and software have been developed. As these
tools become more widely available, the methods described above should provide analysts with a
range of options for using vector-valued IMs to predict probabilistic structural response.
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