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Abstract 

A common goal of dynamic structural analysis is to predict the response of a structure subjected to 
ground motions having a specified spectral acceleration at a given period. This is important, for 
example, when coupling ground motion hazard curves from probabilistic seismic hazard analysis 
with results from dynamic structural analysis. The prediction is often obtained by selecting ground 
motions that match a target response spectrum, and using those ground motions as input to dynamic 
analysis. The commonly used Uniform Hazard Spectrum (UHS) is shown here to be an unsuitable 
target for this purpose, as it conservatively implies that large-amplitude spectral values will occur at 
all periods within a single ground motion. An alternative, termed a Conditional Mean Spectrum 
(CMS), is presented here. The CMS provides the expected (i.e., mean) response spectrum, 
conditioned on occurrence of a target spectral acceleration value at the period of interest. It is argued 
that this is the appropriate target response spectrum for the goal described above, and is thus a useful 
tool for selecting ground motions as input to dynamic analysis. The Conditional Mean Spectrum is 
described, its advantages relative to the UHS are explained, and practical guidelines for use in ground 
motion selection are presented. Recent work illustrating the impact of this change in target spectrum 
on resulting structural response is briefly summarized. 
KEY WORDS: ground motions; record selection; uniform hazard spectrum; conditional mean 
spectrum; epsilon  

Introduction 

A common goal of dynamic structural analysis is to predict the response of a structure 
subjected to ground motions having a specified spectral acceleration (Sa)  at a given period. This 
spectral acceleration is often large, as it may correspond to some low probability of exceedance such 
as 10% or 2% in 50 years. Conditioning on Sa at only one period is desirable, because probabilistic 
assessments benefit greatly from having a direct link to a ground motion hazard curve—for spectral 
acceleration at a single period—obtained from Probabilistic Seismic Hazard Analysis (e.g., Bazzurro 
and Cornell 1994; Cornell et al. 2002; Cornell and Krawinkler 2000). The structural response 
prediction is often obtained by selecting ground motions that match some corresponding target 
response spectrum, and using those ground motions as input to dynamic analysis. 

If structural response is to be estimated by selecting ground motions to match a target 
response spectrum, one must find the “typical” response spectrum associated with the specified large-
amplitude Sa value at a single period. This paper describes a procedure for computing this spectrum, 
and illustrates how it can be used for ground motion selection. The paper also discusses why the 
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more-common Uniform Hazard Spectrum is not an appropriate target spectrum for this particular 
response prediction problem. The resulting target spectrum obtained using this approach (the 
“Conditional Mean Spectrum”) maintains the probabilistic rigor of PSHA, so that consistency is 
achieved between the PSHA and the ground motion selection. This enables one to make quantitative 
statements about the probability of observing the structural response levels obtained from dynamic 
analyses that utilize this spectrum; in contrast, the UHS does not allow for such statements. In 
probabilistic engineering assessments, this rigor is a significant benefit that likely justifies the slight 
changes in the analysis approach relative to traditional ground motion selection approaches. 

This spectrum calculation procedure has been proposed previously (Baker and Cornell 
2006b), and several recent publications have studied the impact of this approach on structural 
response results obtained from dynamic analysis. Findings from that work are briefly summarized, 
but the focus of this paper is on providing further suggestions for using this new target spectrum as a 
ground motion selection tool, and discussing insights that have arisen from recent experience using 
this spectrum. 

The Uniform Hazard Spectrum versus real ground motions 

Figure 1a shows the U.S. Geological Survey Uniform Hazard Spectrum (UHS) with a 2% 
probability of exceedance in 50 years design spectrum for a site in Riverside, California 
(latitude/longitude = 33.979/-117.335). This UHS is approximately replicated by the design spectra 
in building codes. To illustrate the similarity, the MCE design spectrum for this site is also shown in 
Figure 1a, as computed using ASCE/SEI 7-05 guidelines (American Society of Civil Engineers 
2005). This site is used for illustration because it has high amplitude design ground motions but does 
not meet the requirements for the code to apply a “deterministic cap,” so the MCE spectrum is 
comparable to a 2% in 50 years probabilistic UHS.  

This Uniform Hazard Spectrum is constructed by enveloping the spectral amplitudes at all 
periods that are exceeded with 2% probability in 50 years, as computed using probabilistic seismic 
hazard analysis (PSHA). PSHA also provides information about the earthquake events most likely to 
cause occurrence of the target spectral amplitude at a given period. Suppose we are analyzing a 
structure with a first-mode period of 1 second, and are thus interested in the 2% in 50 years  Sa(1s) 
value of 0.89g seen in Figure 1a. Figure 2 shows the deaggregation distribution of magnitudes, 
distances, and ’s (“epsilons”) that will cause the occurrence of Sa(1s)=0.89g at this site. (Figure 3 
shows the same result but at periods of 0.2s and 2.0s, illustrating that UHS spectral amplitudes at 
these three periods are caused by somewhat differing earthquake events.) At the 1 second period 
shown in Figure 2, the mean causal magnitude (M) is 7.03, the mean causal distance (R) is 12.2 km 
and the mean causal  is 2.02. The median predicted spectrum associated with an earthquake having 
magnitude 7.03 and distance 12.2 km is shown in Figure 1b (computed using Abrahamson and Silva 
1997). The median Sa(1s) is clearly much smaller than the Sa(1s)=0.89g amplitude associated with 
this deaggregation; the difference can be quantified by the  parameter. This parameter is defined as 
the number of standard deviations by which a given lnSa value differs from the mean predicted lnSa 
value for a given magnitude and distance. Mathematically, this is written 
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where ln ( , , )Sa M R T  and ln ( )Sa T  are the predicted mean and standard deviation, respectively, of 
lnSa at a given period, and ln ( )Sa T  is the log of the spectral acceleration of interest. The first two 
parameters are computed using ground motion models (also sometimes called attenuation models) 
(e.g., Abrahamson and Silva 1997). Note that (T) is formulated in terms of lnSa values because Sa 
values are well represented by lognormal distributions; this formulation results in (T) being a normal 
random variable with zero mean and unit standard deviation (also called a “standard” normal random 
variable). Because of this lognormal distribution, it can also be shown that the exponential of 

ln ( , , )Sa M R T  is the median value of (non-log) Sa. Thus when “median Sa” is used in calculations, 
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that is because it corresponds to the underlying mean of lnSa. The ln ( , , )Sa M R T  term in equation 1 
is often a function of additional parameters such as site conditions and rupture mechanism, but those 
terms are omitted from the notation for brevity (for the computations here, additional required 
parameters can be approximately inferred from knowledge regarding site conditions and regional 
seismicity).  

Coming back to the example, the mean (1s) of 2.02 indicates that the Sa(1s)=0.89g 
amplitude is caused by ground motions that are, on average, approximately two standard deviations 
larger than the median predicted ground motions from the causal earthquake event. This can be seen 
in Figure 1b, where the median + 2σ predicted spectrum is approximately equal to the Sa(1s)=0.89g 
amplitude from the UHS.  

To illustrate that this  variation is a real phenomenon, Figure 4 shows the response spectra 
from 20 real ground motions with approximately M=7 and R=12km (more precisely, 6.7 7.1M   
and 5km 21kmR  ). The median of these spectra are close to the predicted median spectrum, but 
there is significant scatter in the spectra. One of the spectra, plotted using a heavier line, has an 
Sa(1s) approximately equal to the 0.89g of interest here, indicating that is has an (1s) value of 
approximately two. While this spectrum has a large amplitude at 1s, it is not equally large (relative to 
the median) at all periods. This illustrates one reason why a Uniform Hazard Spectrum (which is 
similar to the median + 2σ spectrum, and would be identical if the M=7.03 and R=12.2km earthquake 
was the only earthquake occurring at the site) is not representative of individual ground motion 
spectra: individual spectra are unlikely to be equally above-average at all periods. It is well-
appreciated that a UHS envelopes contributions from multiple magnitude/distance contributors to 
hazard (Figure 3; Bommer et al. 2000; Naeim and Lew 1995; Reiter 1990), but enveloping over ’s 
can be an even more significant effect in many cases (Baker and Cornell 2005a; Baker and Cornell 
2006b).  

Given that the uniform hazard spectrum is thus not representative of the spectra from any 
individual ground motion, it will make an unsatisfactory ground motion selection target in many 
cases. In the following section, we will study more carefully the properties of real spectra, and use 
the results to formulate an alternative target spectrum.  

Characterizing the response spectra of real ground motions 

Consider the example response spectrum highlighted in Figure 4. It is shown again in Figure 
5, along with the median spectrum prediction for ground motions having its particular magnitude and 
distance. (Note that the median spectra in Figures 3 and 4 differ slightly; Figure 4 shows the median 
for the target M and R, while Figure 5 shows the median for the M and R of the example ground 
motion, since  is computed with respect to the latter M and R.) Recall from equation 1 that the  
value for a ground motion at a given period is defined as the number of standard deviations by which 
the log of the ground motion’s spectral value differs from the mean log prediction. We see in Figure 
5 that the example ground motion’s spectrum is slightly more than two standard deviations larger 
than the median prediction at 1s (more precisely, the ground motion’s lnSa is two standard deviations 
larger than the mean lnSa prediction); exact calculations show that (1s)=2.3. Similarly, the spectrum 
has (0.2s)=1.2 and (2s)=1.4, because it is 1.2 and 1.4 standard deviations larger than the median 
predication at 0.2 and 2 seconds, respectively. We can perform this computation for many ground 
motions, to see how their  values  probabilistically relate to each other at various periods.  

Figure 6a illustrates this type of data, obtained from ground motions in the NGA database 
(Chiou et al. 2008). Each point in the figure represents the (1s) and (2s) values observed from a 
single ground motion. The (1s)=2.3 and (2s)=1.4 values are highlighted in the figure, to illustrate 
where the ground motion of Figure 5 is located in Figure 6a. There is a strong correlation between 
these (1s) and (2s) values (ρ = 0.75), but the two are not identical. Figure 6b shows similar data for 
(1s) and (0.2s), illustrating that ’s for those two periods show weaker correlation (ρ = 0.44) than 
the data in Figure 6a. 
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For the example site above, deaggregation showed that the target (1s) value was 
approximately equal to 2. The question is then, what are the associated  values at other periods, 
given that we know (1s)=2? We can then use the data from Figure 6 to determine the distribution of 
(2s) associate with a “2” value at 1s. The distributions highlighted in Figure 6 show that when 
(1s)=2, (0.2s) and (2s) tend to be less than 2, but greater than 0 (the exact method for computing 
these distributions will be explained later). 

To build a target spectrum from this information, we can use the expected (mean) value of  
at other periods, given that we know the value of the original  at the period of interest. Probability 
calculations show that the expected  value at any other period is equal to the original  multiplied by 
the correlation coefficient between the two  values. The empirical correlation coefficients from the 
data in Figure 6a and b are 0.75 and 0.44, respectively. The average (2s) is thus 0.75٠(1s) = 1.5, 
and the average (0.2s) is 0.44٠(1s) = 0.88. These conditional mean values of (2s) and (0.2s), 
given various values of (1s), are plotted in heavy lines in Figure 6; the lines in Figures 5a and 5b 
have slopes of 0.75 and 0.44, respectively.  

We can use these (2s)=1.5 and (0.2s)=0.88 values to compute the associated spectral 
acceleration values at those two periods by solving equation 1 for Sa(T), and can repeat the process at 
all periods to build a full response spectrum. Figure 7 shows this spectrum. It has a peak near 1s 
because the  values are highly correlated at closely spaced periods, and decays towards the median 
spectrum (=0) at large and small periods as the correlation of the  values with (1s) decreases. 
Reassuringly, this peaked spectrum roughly matches the response spectrum of the example ground 
motion that naturally had the M, R and  Sa(1s) amplitude of interest. This new response spectrum is 
termed the “Conditional Mean Spectrum” (or CMS), as it consists of the mean values of the spectrum 
at all periods, conditional on an Sa value at a single period.  

A simple procedure for computing the Conditional Mean Spectrum 

The calculations involved in obtaining the Conditional Mean Spectrum are not difficult. To 
summarize the approach in an easily reproducible format, a step-by-step calculation procedure is 
presented in this section. 

Step 1: Determine the target Sa at a given period, and the associated M, R and  

To begin this computation, we identify a target Sa value at a period of interest. Let us denote the 
initial period of interest T* (it is often equal to the first-mode period of the structure of interest, but it 
could be any other period of interest). In the example calculation above, T* was 1s. It is also 
necessary to determine the magnitude, distance and (T*) values associated with the target Sa(T*). If 
the target Sa(T*) is obtained from PSHA, then the M, R and (T*) values can be taken as the mean M, 
R and (T*) from deaggregation (this information provided by the U.S. Geological Survey, as seen in 
Figure 2). In the case where one would like to perform this calculation for a scenario M, R and Sa, 
the associated  would simply be the number of standard deviations by which the target Sa is larger 
than the median prediction given the M and R (often  =1 in deterministic evaluations of this type, 
corresponding to the “median + 1σ Sa”).  

Step 2: Compute the mean and standard deviation of the response spectrum, given M and R 

Next, we compute the mean and standard deviation of log spectral acceleration values at all periods, 
for the target M, R, etc. 
 ln ( , , )Sa M R T  (2) 

 ln ( )Sa T  (3) 

where ln ( , , )Sa M R T  and ln ( )Sa T  are the predicted mean and standard deviation, respectively, of 
lnSa at period T, as defined previously in equation 1. These terms can be computed using existing 
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ground motion models, and several online calculation tools exist to aid in obtaining these values 
(e.g., http://www.opensha.org and http://peer.berkeley.edu/products/rep_nga_models.html). For the 
calculations above, an example of this mean and standard deviation was shown graphically in Figure 
5. 

Step 3: Compute   at other periods, given (T*) 

In this step we compute the “conditional mean”  as illustrated in Figure 6, but for many periods. The 
conditional mean  at other periods can be shown to equal (T*), multiplied by the correlation 
coefficient between the  values at the two periods  
 ( )| ( *) ( , *) ( *)

iT T iT T T     (4) 

where ( )| ( *)iT T   denotes the mean value of (Ti), given (T*). Predictions of the required correlation 

coefficient, ( , *)iT T , have been pre-calculated in previous studies, so users of this procedure can 
obtain the needed correlations using a simple predictive equation. One prediction, valid for periods 
between 0.05 and 5 seconds, is  
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where  min 0.189TI


 is an indicator function equal to 1 if min 0.189T  s and equal to 0 otherwise, and 

where Tmin and Tmax denote the smaller and larger of the two periods of interest, respectively (Baker 
and Cornell 2006a). A more refined (but more complicated) correlation model, valid over the wider 
period range of 0.01 to 10 seconds, is also available (Baker and Jayaram 2008), but equation 5 is 
nearly equivalent if only periods between 0.05 and 5 seconds are of interest (the Baker and Jayaram 
model was used to produce the figures above, so that spectra could be computed at periods as short as 
0.01s, but equation 5 is shown here because of its greater simplicity).  

Step 4: compute Conditional Mean Spectrum 

The CMS can now be computed using the mean and standard deviation from Step 2 and the 
conditional mean  values from Step 3. Substituting the mean value of (Ti) from equation 4 into 
equation 1 and solving for lnSa(T) produces the corresponding conditional mean value of lnSa(Ti), 
given lnSa(T*) 
 ln ( )|ln ( *) ln ln( , , ) ( , *) ( *) ( )

iSa T Sa T Sa i i Sa iM R T T T T T       (6) 

where ln ( , , )Sa iM R T  and ln ( )Sa iT  were obtained using equations 2 and 3, ( , *)iT T  was obtained 

using equation 5, and M, R and (T*) were identified in Step 1. The exponential of these 

ln ( )|ln ( *)iSa T Sa T   values gives the CMS, as plotted in Figure 7. 

In conclusion, the Conditional Mean Spectrum calculation requires only existing ground 
motion models and PSHA results, plus two additional simple formulas (equations 5 and 6). The 
ground motion predictions from Step 2 are typically cumbersome to compute by hand, but they can 
easily be incorporated into a simple computer program to perform the complete calculation 
procedure. While this procedure is not as widely implemented as UHS calculations, it is simpler to 
compute a CMS than a UHS.  

Ground motion selection  

Once the CMS is computed, it can be used to select ground motions for use in dynamic analysis of 
structures. The CMS tells us the mean spectral shape associated with the Sa(T*) target, so ground 
motions that match that target spectral shape can be treated as representative of ground motions that 
naturally have the target Sa(T*) value.   
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To find ground motions matching a target CMS, one must first identify the period range over 
which the CMS should be matched. This period range would ideally include all periods to which the 
structural response is sensitive. The period range may include the periods of higher modes of 
vibration (e.g., typically in frame buildings, 2 1 / 3T T  and 3 1 / 5T T , where Ti is the period of the ith 
mode of vibration) as well as longer periods that are seen to affect a nonlinear structure whose first 
mode period has effectively lengthened. A period range from 0.2T1 to 2T1 is often effective for mid-
rise buildings. This 0.2T1 to 2T1 range is similar to the 0.2T1 to 1.5T1 range specified by ASCE 7-05, 
but statistical studies suggest that nonlinear buildings are often sensitive to response spectra at 
periods longer than 1.5T1 (Baker and Cornell 2008; Cordova et al. 2001; Haselton and Baker 2006; 
Vamvatsikos and Cornell 2005).  

Measuring match with the target spectrum 

Once a period range of interest has been identified, a library of ground motions can be examined to 
identify those that most closely match the target CMS. One effective criterion for determining the 
similarity between a ground motion and the CMS is the sum of squared errors (SSE) between the 
logarithms of the ground motion’s spectrum and the target spectrum 

  2

1

ln ( ) ln ( )
n

j CMS j
j

SSE Sa T Sa T


   (7) 

where lnSa(Tj) is the log spectral acceleration of the ground motion at period Tj, and lnSaCMS(Tj) is 
the log CMS value at period Tj from equation 6. The periods Tj should cover the period range 
identified in the previous section, and in the author’s experience, 50 Tj values per order of magnitude 
of periods is sufficient to identify ground motions with a reasonably smooth match to the target 
spectrum. For example, if periods from 0.2T1 to 2T1 are considered, then the periods span one order 
of magnitude and thus at least 50 periods within this range should be considered in equation 7. The 
difference of the logarithms of Sa values is used in equation 7 because earlier calculations of the 
target spectrum use lnSa, but if the sum of squared errors of (non-log) Sa values is used instead, there 
will not be a significant impact on the ground motions identified as providing the best match. 

To select ground motions, equation 7 can be evaluated for each ground motion under 
consideration, and the ground motions with the smallest SSE values selected. This approach is more 
effective if we also allow for scaling of the ground motions. Scaling can be used to make the ground 
motion spectral amplitudes approximately equal the target amplitude, and then equation 7 can be 
used to identify which of the scaled ground motions most closely match the target. In this case, Sa(Tj) 
in equation 7 would denote the spectral acceleration of the scaled ground motion at period Tj.  

The scale factor for a given ground motion can be chosen in several ways. The simplest 
method is to scale each ground motion so that its Sa(T*) matches the target Sa(T*) from the CMS. In 
this case, the scale factor would simply be the ratio between the target Sa(T*) and the unscaled 
ground motion’s Sa(T*) 

 
( *)

scale factor
( *)

CMSSa T

Sa T
  (8) 

This approach is simple, and produces ground motions whose Sa(T*) values exactly match the target 
value upon which all CMS calculations are based. An alternative approach is to scale each ground 
motion so that the average response spectrum over the periods of interest is equal to the average of 
the target spectrum over the same periods. In this case, a given ground motion’s scale factor is  
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Figure 8 shows example ground motions selected to match a target CMS, using these two scaling 
methods. Figures 7a and 7b show ground motions selected to match the CMS, after scaling using 
equations 8 and 9, respectively. Figure 8a shows spectra having a characteristic “pinch” at T* 
because the scaling ensures that they are all equal at that point, but otherwise the spectra in the two 
sub-figures are comparable. Because the scaling using equation 8 is slightly simpler, produces 
ground motions exactly matching the target Sa(T*), and does not significantly reduce the match to 
the target spectrum at other periods, it is the recommended scaling procedure for use with this 
approach. 

The basic premise of ground motion scaling is sometimes questioned, as it is a modification 
of ground motions with no obvious physical justification. Empirically, however, it has been observed 
that ground motions selected and scaled to match the CMS produce displacements in buildings that 
are comparable to displacements produced by unscaled ground motions, unlike ground motions 
scaled using some other common approaches (Baker and Cornell 2005b; Goulet et al. 2008; Luco and 
Bazzurro 2007). This suggests that the scaling procedures outlined here will likely not impact the 
resulting structural responses.  

Extensions of the basic selection procedure 

One potential modification to the above selection and scaling procedure is to weight 
mismatches of Sa values at certain periods more than others in the calculation of equation 7. This 
could be done if one knew that the structure was more sensitive to spectral values at certain periods, 
but it therefore requires more in-depth knowledge of the structure’s behavior than is typically known 
prior to performing dynamic analysis. Further, unless the weights for the various periods vary 
dramatically, weighting typically has little impact on the ground motions selected for use. Given the 
small impact on the ground motions selected, and the additional information required, this 
modification is unlikely to be useful for most applications. 

It is a simple matter to exclude ground motions that are deemed undesirable for other reasons 
(e.g., they have magnitudes or distances that are grossly different than the corresponding targets, very 
large required scale factors, or inappropriate spectral values at periods other than those considered 
explicitly in the matching procedure). One can either exclude such ground motions prior to 
computing matches using equation 7, or one can evaluate all available ground motions using equation 
7 and then remove undesirable ground motions from the small set identified as closely matching the 
CMS. These secondary ground motion properties are often less important to structural response than 
the spectral values considered in equation 7, but they can easily be considered in this manner as long 
as they do not restrict the pool of potential ground motions so severely that the only remaining 
ground motions have a poor match to the CMS.  

When selecting multi-component ground motions, one can perform this procedure by 
defining the Sa in the above equations as the geometric mean of the two horizontal components, and 
computing the target CMS and individual ground motion spectra using this geometric mean Sa. The 
correlations between  values at multiple periods have been found to be identical for both single-
component Sa values and geometric mean Sa values, so equation 6 is valid in either case (Baker and 
Jayaram 2008). Additionally, correlations between vertical and horizontal Sa values are available in 
Baker and Cornell (2006a), so it is also possible to compute conditional mean values of vertical Sa 
amplitudes, given some target horizontal Sa(T*), using the same procedure. Ground motions can then 
be selected based on the match between the ground motions’ geometric mean Sa values and the target 
geometric mean CMS, as well as between the ground motion and target vertical Sa values if desired. 

Choice of T* for conditioning  

The entire CMS procedure starts from a design Sa value at the specified period T*, and the remaining 
spectrum is computed conditioned on that Sa(T*). This creates a potential challenge: the conditioning 
creates Sa values at other periods that are always less “extreme” than Sa(T*). If the structural 
response parameter of interest is driven primarily by excitation at a period other than T*, ground 
motions selected to match a CMS conditioned at T* may produce inappropriately low responses. 
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Typically, probabilistic performance-based assessments choose T* as the first-mode period of the 
structure for predicting peak displacements of first-mode dominated structures (e.g., Bazzurro and 
Cornell 1994; Cornell et al. 2002), but this choice of T* is not always appropriate. For example, floor 
accelerations and upper-story shear forces may be more sensitive to higher-mode excitation than to 
first-mode excitation.  

If one is interested in multiple structural response parameters, driven by excitation at 
differing periods, or if one is unsure of the period of excitation most important to a particular 
structural response parameter, it may be useful to construct conditional mean spectra conditioned on 
Sa values at multiple periods. For each CMS, a separate set of ground motions would be selected and 
used for analysis. The resulting sets of analyses could be inspected to identify which T* was most 
important, by identifying which corresponding CMS produced the largest values of a given structural 
response parameter. These response values associated with the most important T* would then be used 
as design values. The design values for differing response parameters may thus not come from the 
same CMS. Figure 9 shows conditional mean spectra computed using three T* values; used together 
to select multiple sets of ground motions, these spectra might serve as a replacement for a UHS over 
the period range covered by the T* values.  One other potential CMS that could be included in this 
approach is a CMS conditioned on exceedance of Sa values averaged over some period range; this 
computation is not significantly more complicated than the one above, and is described by Baker and 
Cornell (2006b).  

There is an important implication underlying this multiple-spectrum approach: it is not 
possible to select a single set of ground motions that represents an equivalent hazard level for all 
periods, while also maintaining a spectral shape representative of spectra from real ground motions. 
As seen in Figure 4, the ground motion with the largest Sa at 1s is not the ground motion with the 
largest Sa at 0.2s or 2s. Different ground motions will be responsible for high amplitudes at varying 
periods, so it is helpful to have some information about the periods of interest if one would like to 
efficiently select ground motions using this approach. This poses obvious practical problems when 
one would like to select ground motions prior to having a structural design completed, or if one 
would like to use a fixed set of ground motions for analyzing several sets of structures. The Uniform 
Hazard Spectrum may be a desirable tool in those cases because it is invariant to the periods being 
considered, with the tradeoff that it is conservative in enveloping design Sa values at all periods. 
Analysts are thus faced with a tradeoff between the convenient but conservative results obtained 
using the UHS, or the elimination of conservatism at the expense of additional required analyses 
when using multiple Conditional Mean Spectra.  

The motivation for using multiple Conditional Mean Spectra is similar to the motivation for 
more general load-combination rules in structural analysis. Using ground motions matched to the 
Uniform Hazard Spectrum, which considers peak spectral amplitudes at all periods simultaneously, is 
analogous to simultaneously applying peak wind loads, peak snow loads and peak live loads 
simultaneously. Using multiple Conditional Mean Spectra is analogous to considering each peak load 
type individually, while applying (relatively smaller) values of the other loads types that are likely to 
been seen at the same point in time. There are rigorous structural reliability justifications for most 
load combination rules, however, and a comparably rigorous derivation for CMS combinations is still 
in development. 

Impact of the CMS on structural response 

Before using the CMS as a target spectrum, it is important to consider its practical impact relative to 
the UHS or other targets. Several recent studies have investigated the extent to which this impact is 
important when trying to predict response of structures. The studies vary somewhat in the way that 
they treat the issue—by varying the shape of the target response spectrum directly, or studying it 
indirectly via (T*), which was seen above to indicate the resulting spectral shape. The studies 
suggest that the impact of using the CMS (instead of the UHS or other similar spectrum) varies 
depending upon the characteristics of the structure being analyzed, the seismicity of the region 
considered, and the probability level associated with the target Sa(T*). 
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The dynamic characteristics of a structure are important because they will affect the extent to 
which the structure is influenced by variations in spectral values at a range of periods. The peak 
responses of an elastic single-degree-of-freedom oscillator with period T* will be identical whether 
subjected to UHS-matched ground motions or CMS-matched ground motions, provided the Sa(T*) 
values are equal in both cases (because by definition their response will be proportional to Sa(T*)). 
On the other hand, nonlinear multi-degree of freedom systems may be sensitive to excitation at a 
wide range of periods and thus will be sensitive to the target response spectrum used for selecting 
ground motions. It has been empirically confirmed that ductile and higher-mode-sensitive structures 
are more sensitive to consideration of the CMS (Applied Technology Council 2008; Haselton 2006). 

The seismicity of the region considered and the ground motion probability level of interest 
jointly affect the impact of the CMS. The important factor is the probability of earthquake 
occurrence relative to the probability level associated with the target ground motion Sa. If 
exceedance of the target Sa(T*) is roughly as probable as occurrence of the dominant earthquake 
(i.e., the earthquake M/R that contributes most significantly to exceedance of the target Sa), then the 
design Sa(T*) will be comparable to the median predicted Sa associated with the dominant 
earthquake. This means that (T*) will be approximately equal to zero, and equation 4 thus suggests 
that  values at all periods will approximately equal zero; that is, the CMS will approximately equal 
the median spectrum, rather than having the “peak” at T* seen in Figure 7. If, however, the 
probability level considered for design is much smaller than the probability of the dominant 
earthquake in the region, then by definition the design Sa is “rare” relative to the median Sa from the 
dominant earthquake, and the CMS will take the peaked shape of the example shown in Figure 7. 
More concretely, in high seismic regions such as coastal California, it is not unreasonable for the 2% 
in 50 year Sa(T*) level to be caused by earthquakes with a 20% probability of occurrence in 50 years. 
The factor-of-ten reduction in probability between the Sa exceedance and the earthquake occurrence 
means that the Sa amplitude has only a 10% probability of exceedance, given occurrence of the 
earthquake. A 10% probability of exceedance corresponds to an  of approximately 1.3, because  
has a standard normal distribution. This highly seismic case is similar to the example above, where 
the mean  was 2. Conversely, in low-seismicity regions such as parts of the Eastern United States, it 
is possible that the 2% in 50 year Sa(T*) level is caused by an earthquake with a 2% probability of 
occurrence in 50 years, and thus the CMS would not differ significantly from the median spectrum. 
Further, if the same earthquake event is the dominant contributor to hazard at all periods, then the 
UHS would also look like the median spectrum for this event. Similarly, if the target probability 
associated with the Sa level is increased, decreasing the target ground motion amplitude, then the 
UHS and CMS will approach each other. Most work to date has focused on the importance of the 
CMS in highly seismic regions and for low probability Sa levels; further work is needed to 
understand the importance of this issue in low-seismicity regions. 

Because the CMS effect is more pronounced for rare ground motions, it is important to 
consider when predicting the safety of buildings against collapse (which is typically caused by very 
high amplitude ground motions). The ATC-63 project, which modeled the collapse safety of 
structures designed to modern building codes, found that accounting for the effect of the CMS 
increased the median spectral acceleration that a building could withstand prior to collapsing (the 
“median collapse capacity”) by up to 60%, relative to analyses with ground motions having response 
spectra similar in shape to the UHS (Applied Technology Council 2008). Other researchers have 
found that varying the target spectral shape from one associated with (T*)=0 to one associated with 
(T*)=2 resulted in a 40% to 80% increase in median collapse capacity (Goulet et al. 2007; Haselton 
and Baker 2006; Liel 2008; Zareian 2006), depending upon the structure considered. Because the rate 
of occurrence of ground motions decreases rapidly as the amplitude of the ground motion increases, 
these increases in collapse capacity translated into an order-of-magnitude reduction in the predicted 
annual probability of collapse. When dealing with non-collapse responses, studies under similar 
conditions observed that neglecting this  effect often results in an overestimation of mean structural 
response by 30% to 60% (Baker and Cornell 2006b; Goulet et al. 2008; Haselton et al. 2008). In all 
cases, consideration of either the CMS target or the target (T*) was found to be important. 
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Variability of structural response 

While the proposed approach has been shown to produce accurate estimates of mean structural 
response given Sa(T*), the variability in response is also of interest in many assessments. For this 
purpose, the above procedure will require some modification. The problem with the above procedure 
is that the CMS is only a mean spectrum, and does not address the variability in the response 
spectrum for a given Sa(T*). This response spectrum variability will in turn affect observed 
variability in structural responses. As seen graphically in Figure 6, the variability in  values at other 
periods is dependent on their correlation with (T*). Probability calculations show that the 
conditional standard deviation of  at some period Ti is related to this correlation through the 
following equation  

 2
( )| ( *) 1 ( , *)

iT T iT T     (10) 

where ( , *)iT T  is defined in equation 5. As an aside, the distributions superimposed on Figure 6 are 
normal distributions with mean values defined by equation 4 and standard deviations defined by 
equation 10; this conditional distribution results from the observation that the  values have a 
bivariate normal distribution (Jayaram and Baker 2008).  

Because (Ti) is the only uncertain parameter in the prediction of the response spectrum 
(when conditioning on Sa(T*), M and R), we can write the standard deviation of lnSa(Ti) as  

 2
ln ( )|ln ( *) ln ( ) 1 ( , *)

i iSa T Sa T Sa T iT T     (11) 

This conditional standard deviation is shown in Figure 10, along with the ground motions selected to 
match the CMS and shown in Figure 8a. If the spectra of the selected ground motions properly 
represented the target conditional standard deviation, approximately 1/3 of them would lie outside of 
the +/-   lines shown on the plot (because the log spectral values are normally distributed), but 
almost no spectral values are observed outside of those lines in Figure 10. The variability in the 
selected ground motions has been artificially suppressed because equation 7 identified ground 
motions whose spectra each closely match the mean spectrum. While in principle one could select 
ground motions to match both the target mean and standard deviation, in practice there are two 
challenges. First, finding ground motions that match the mean spectrum can be accomplished by 
examining each ground motion individually, but the standard deviation of a set of ground motion 
spectra can only be computed by considering the complete set. Because it is often not feasible to 
evaluate every possible combination of ground motions from a large library, the search procedure 
becomes more complex. Second, in order to find an optimal set of ground motions, one must specify 
the relative importance of matching the mean versus matching the standard deviation of the target 
spectrum, but this is difficult to do in a defensible manner without further study to understand the 
effect of mismatch of the mean and standard deviation on resulting structural response estimates.  

A second issue that in principle adds variability to the spectrum at other periods is that these 
predictions were made using only mean values of M/R/ from deaggregation, while Figure 2 
illustrates that in general a variety of magnitudes and distances may contribute to exceedance of the 
Sa(T*) level of interest. The variability in causal M/R/ values will theoretically introduce additional 
variability into the response spectrum prediction, but test calculations suggest that this additional 
variability is likely insignificant in any realistic situation (Baker and Cornell 2005b, Appendix E). A 
related question with these inputs is whether modal (as opposed to mean) M/R/ values should be 
used to compute the CMS; modal values are often used for ground motion selection, and mean values 
may not even correspond to a physically realizable earthquake event (Bazzurro and Cornell 1999). 
The motivation for using mean values in this application is that we are not interested in these values 
directly, but only in their impact on the resulting response spectrum. A Taylor Series expansion can 
be used to show (e.g., Benjamin and Cornell 1970) that the mean value of a function of random 
inputs can be computed by evaluating the function using the mean inputs, so long as the function is 
approximately linear over the range of likely input values (where here the inputs are M/R/ and the 
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function is the ground motion model that predicts Sa). The same property does not hold when using 
modal values of the inputs.  

In the only study to date of the CMS variance and its impact on structural response, it was 
seen that ground motions selected to match only the mean spectrum (using the approach proposed 
here) produced the same mean peak structural displacements response as those selected to match both 
the mean and variability of the target spectrum. Matching only the mean, however, resulted in an 
underestimation of the standard deviation of peak displacements by 30% to 50% (Baker and Cornell 
2005b, Chapter 6). If proper variability in response is desired, the approach proposed here thus 
requires some modification. At present, variability in the spectra of selected ground motions has only 
been obtained through ad hoc modifications of the above selection approach; future research should 
soon provide a rigorous and general solution.  

While the problem of capturing structural response variability is not resolved here, the 
common alternative of matching ground motions to a target UHS also does not satisfactorily capture 
variability in structural response (and it is much less clear how one would do it with the UHS, given 
that there is no analogous conditional standard deviation of Sa values for that case). In addition, the 
(variability suppressing) method proposed here is actually desirable in cases where only the mean 
structural response is of interest, because suppression of response variability makes it possible to 
precisely determine mean response using a smaller number of ground motions.  

Conclusions 

An approach has been described that allows one to compute the expected response spectrum 
associated with a target spectral acceleration (Sa) value at a single period, using knowledge of the 
magnitude, distance and  value that caused occurrence of that target Sa. For large-amplitude (>0) 
Sa levels, this spectrum has a peak at the period used for conditioning (T*), and decays to relatively 
lower amplitudes at periods that differ greatly from the conditioning period. The result, termed a 
Conditional Mean Spectrum (CMS), can be used as a target spectrum for ground motion selection 
when performing dynamic analysis of structures. A step-by-step procedure was presented for 
computing this spectrum, and for selecting and scaling ground motions to match this spectrum. The 
level of effort required to implement this procedure is comparable to the effort required to obtain 
ground motions that match a Uniform Hazard Spectrum, and no significant new procedures are 
required beyond those needed to compute the Uniform Hazard Spectrum.  

Several arguments were presented regarding why the CMS is a useful target for ground 
motion selection. The alternative Uniform Hazard Spectrum is significantly conservative for some 
purposes: the stated probability level associated with a UHS is the probability of exceeding any 
single spectral value, but the probability of simultaneously exceeding all spectral values from a UHS 
is much smaller (and is also unknown). The structural responses from ground motions matching the 
more probabilistically consistent CMS are thus significantly smaller than the responses from ground 
motions matching the UHS and having the same Sa(T*) level. Unlike results obtained using a UHS, 
ground motions selected and scaled to match the CMS produce structural responses comparable to 
unscaled ground motions that naturally have the target Sa(T*).  

Some challenges still remain for implementing this approach, relating to implementation for 
structures sensitive to excitation at multiple periods and accurate quantification of variability in 
response. Work is in progress to more completely address those challenges, but recent experience 
with this approach suggests that even in its current form it is a useful tool with several advantages 
relative to the alternative UHS. 

Notation 

The following symbols are used in this paper: 
  = normalized residual from a ground motion model prediction 
   = correlation coefficient 

 ln Sa  = predicted (by a ground motion model) mean value of log spectral acceleration 
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 ln Sa  = predicted (by a ground motion model) standard deviation of log spectral 
acceleration 

 M = earthquake magnitude 
 R = distance from earthquake source to the site of interest 
 Sa = spectral acceleration 
 T* = primary period of interest for computing the CMS 
 Ti = ith fundamental period of vibration of a structure 
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Figure 1. (a) Building code MCE design spectrum and probabilistic Uniform Hazard Spectrum for a 
site in Riverside, California. (b) Probabilistic Uniform Hazard Spectrum for Riverside, along with the 
predicted median spectrum and median + 2σ spectrum associated with an M=7.03, R=12.2 km event 
(Abrahamson and Silva 1997). 

 
Figure 2. PSHA deaggregation for Riverside, given Sa(1s)>0.89g. (Figure from USGS Custom 
Mapping and Analysis Tools, http://earthquake.usgs.gov/research/hazmaps/interactive/, 2008. 
Emphasis on mean deaggregation values added by the author.) 
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(a)  

(b)  
Figure 3. PSHA deaggregation for Riverside, given exceedance of the Sa values with 2475 year return 
periods (a) at a period of 0.2s, (b) at a period of 2.0s. (Figure from USGS Custom Mapping and 
Analysis Tools, http://earthquake.usgs.gov/research/hazmaps/interactive/, 2008.)
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Figure 4. Response spectra from real ground motions having approximately magnitude = 7 and 
distance = 12 km.  The example spectrum shown with a heavier line is the Castaic Old Ridge Route 
recording from the M = 6.7 Northridge earthquake, recorded on a Class C site with a closest distance 
to the fault rupture of 20 km. 

 

 
Figure 5. Response spectra from the example Castaic Old Ridge Route ground motion, used to 
illustrate calculation of  values at three periods. Note that the +/- σ bands are not symmetric around 
the median because they are +/- σ values of lnSa, rather than (non-log) Sa. 



 17

 
Figure 6. Scatter plots of  values from a large suite of ground motions. The points associated with the 
ground motion in Figure 5 are highlighted. (a) (1s) versus (2s). (b) (1s) versus (0.2s). 

 

 
Figure 7. Conditional mean values of spectral acceleration at all periods, given Sa(1s), and the 
example Castaic Old Ridge Route ground motion.  
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Figure 8. Conditional mean spectrum for the Riverside example site (with T*=1s), and response 
spectra from ground motions selected to match this target spectrum. (a) Ground motions selected after 
scaling spectra to match the target Sa(T*). (b) Ground motions selected after scaling spectra to match 
the CMS over the entire period range considered. 

 

 
Figure 9. Conditional Mean Spectra, conditioned on Sa values at several periods, but having an equal 
probability of exceedance. 
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Figure 10. CMS (with T*=1s), the CMS +/- the conditional standard deviation from equation 11, and 
the response spectra from ground motions selected previously to match the CMS.  

 
 


