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1
Introduction

The goal of many earthquake engineering analyses is to ensure that a
structure can withstand a given level of ground shaking while main-
taining a desired level of performance. But what level of ground
shaking should be used to perform this analysis? There is a great
deal of uncertainty about the location, size, and resulting shaking in-
tensity of future earthquakes. Probabilistic Seismic Hazard Analysis
(PSHA) aims to quantify these uncertainties, and combine them to
produce an explicit description of the distribution of future shaking
that may occur at a site.

In order to assess risk to a structure from earthquake shaking,
we must first determine the annual probability (or rate) of exceed-
ing some level of earthquake ground shaking at a site, for a range
of intensity levels. Information of this type could be summarized
as shown in Figure 1.1, which shows that low levels of intensity
are exceeded relatively often, while high intensities are rare. If one
was willing to observe earthquake shaking at a site for thousands
of years, it would be possible to obtain this entire curve experimen-
tally. That is the approach often used for assessing flood risk, but
for seismic risk this is not possible because we do not have enough
observations to extrapolate to the low rates of interest. In addition,
we have to consider uncertainties in the size, location, and resulting
shaking intensity caused by an earthquake, unlike the case of floods
where we typically only worry about the size of the flood event. Be-
cause of these challenges, our seismic hazard data must be obtained
by mathematically combining models for the location and size of
potential future earthquakes with predictions of the potential shak-
ing intensity caused by these future earthquakes. The mathematical
approach for performing this calculation is known as Probabilistic
Seismic Hazard Analysis, or PSHA.

The purpose of this document is to discuss the calculations in-
volved in PSHA, and the motivation for using this approach. Because
many models and data sources are combined to create results like
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those shown in Figure 1.1, the PSHA approach can seem opaque. But
when examined more carefully, the approach is actually rather intu-
itive. Once understood and properly implemented, PSHA is flexible
enough to accommodate a variety of users’ needs, and quantitative
so that it can incorporate all knowledge about seismic activity and
resulting ground shaking at a site.
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Figure 1.1: Quantification of the pos-
sibility of intense ground shaking at a
site.

Probability calculations are a critical part of the procedures de-
scribed here, so a basic knowledge of probability and its associated
notation is required to study this topic. A review of the concepts and
notation used in this document is provided for interested readers in
Appendix A.



2
An overview of PSHA

2.1 Deterministic versus probabilistic approaches

The somewhat complicated probabilistic evaluation could be avoided
if it was possible to identify a “worst-case” ground motion and eval-
uate the facility of interest under that ground motion. This line of
thinking motivates an approach known as deterministic hazard anal-
ysis, but we will see that conceptual problems arise quickly and are
difficult to overcome.

2.1.1 Variability in the design event

A designer looking to choose a worst-case ground motion would
first want to look for the maximum magnitude event that could oc-
cur on the closest possible fault. This is simple to state in theory, but
several difficulties arise in practice. Consider first the hypothetical
site shown in Figure 2.1a, which is located 10 km from a fault capa-
ble of producing an earthquake with a maximum magnitude of 6.5.
It is also located 30 km from a fault capable of producing a magni-
tude 7.5 earthquake. The median predicted response spectra from
those two events are shown in Figure 2.1b. As seen in that figure, the
small-magnitude nearby event produces larger spectral acceleration
amplitudes at short periods, but the larger-magnitude event produces
larger amplitudes at long periods. So, while one could take the en-
velope of the two spectra, there is not a single “worst-case” event
that produces the maximum spectral acceleration amplitudes at all
periods.

While the site shown in Figure 2.1a produces some challenges in
terms of identifying a worst-case event, an even greater challenges
arise when faults near a site are not obvious and so the seismic
source is quantified as an areal source capable of producing earth-
quakes at any location, as shown in Figure 2.2. In this case, the
worst-case event has to be the one with the maximum conceivable
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Figure 2.1: (a) Map view of an illus-
trative site, with two nearby sources
capable of producing earthquakes. (b)
Predicted median response spectra from
the two earthquake events, illustrating
that the event producing the maximum
response spectra may vary depending
upon the period of interest (prediction
obtained from the model of Campbell &
Bozorgnia (2008).

magnitude, at a location directly below the site of interest (i.e., with a
distance of 0 km). This is clearly the maximum event, no matter how
unlikely its occurrence may be. For example, in parts of the Eastern
United States, especially near the past Charleston or New Madrid
earthquakes, one can quite feasibly hypothesize the occurrence of
magnitude 7.5 or 8 earthquakes immediately below a site, although
that event may occur very rarely.

Source

Site

Figure 2.2: Example site at the cen-
ter of an area source, with potential
earthquakes at zero distance from the
site.

2.1.2 Variability of ground motion intensity

While the choice of a “worst-case” earthquake can be difficult and
subjective, as discussed in the previous section, an even greater prob-
lem with deterministic hazard analysis is the choice of worst-case
ground motion intensity associated with that earthquake. The re-
sponse spectra plotted in Figure 2.1 are the median 1 spectra pre-

1 There is considerable opportunity
for confusion when referring to means
and medians of predicted ground
motion intensity. Ground motion
predictions models, such as the one
used to make Figure 2.3, provide
the mean and standard deviation
of the natural logarithm of spectral
acceleration (lnSA) or peak ground
acceleration (lnPGA). These lnSA
values are normally distributed, which
means that the non-logarithmic SA
values are lognormally distributed.
The exponential of the mean lnSa value
can be shown to equal the median SA
value. It is easiest to work with lnSA
values in the calculations that follow, so
this text will often refer to mean lnSA
values rather than median SA values.
Plots such as Figure 2.3 will show non-
logarithmic SA, because the units are
more intuitive, but the axis will always
be in logarithmic scale so that the visual
effect is identical to if one was viewing
a plot of lnSA.

dicted by empirical models calibrated to recorded ground motions.
But recorded ground motions show a very large amount of scatter
around those median predictions. By definition, the median predic-
tions shown in Figure 2.1b are exceeded in 50% of observed ground
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motions having the given magnitudes and distances.
An example of the large scatter around those ground motion pre-

diction models is seen in Figure 2.3, which shows spectral acceler-
ation values at 1 second that were observed in a past earthquake
(1999 Chi-Chi, Taiwan), plotted versus the closest distance from the
earthquake rupture to the recording site. Note that observations at
distances between 1 and 3 km vary between 0.15g and more than
1g—nearly an order of magnitude. Also plotted are the mean pre-
dicted lnSA values, along with bounds illustrating one standard
deviation above and below that mean. The scatter of the log of spec-
tral accelerations around the mean prediction is well-represented by a
normal distribution (leading to symmetric scatter in Figure 2.3, which
is plotted in logarithmic scale).

The one-standard-deviation bounds should enclose about 2/3 of
the observed values if the variations are normally distributed, and
that is the case here. To account for this scatter, deterministic hazard
analyses sometimes specify a “mean plus one standard deviation”
response spectra, but even that will be exceeded 16% of the time2. 2 This number comes from consider-

ing normally-distributed residuals.
The probability of a normal random
variable being more than one standard
deviation greater than its mean (i.e., 1 -
Φ(2.1) ) is 0.16.

The normal distribution for scatter implies that there is no theoreti-
cal upper bound on the amplitude of ground motion that might be
produced at a given magnitude and distance3.

3 There is some true physical upper
bound on ground motion intensity
caused by an inability of the earth
to carry more intense seismic waves
without shattering or otherwise failing.
Current research suggests that this
limit may be important to structures
designed for extremely intense ground
motions, such as nuclear waste repos-
itories, but has no practical impact on
more common structures such as build-
ings or bridges, which are analyzed
for ground motion intensities that are
exceeded once every few thousand
years. Thus, the assumption of no the-
oretical upper bound is reasonable and
appropriate in most cases.
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Figure 2.3: Observed spectral accel-
eration values from the 1999 Chi-Chi,
Taiwan earthquake, illustrating vari-
ability in ground motion intensity. The
predicted distribution comes from the
model of Campbell & Bozorgnia (2008)
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2.1.3 Can we use a deterministic approach, given these uncertainties?

Given these challenges, it is clear that whatever deterministic design
earthquake and ground motion intensity is eventually selected, it is
not a true “worst-case” event, as a larger earthquake or ground mo-
tion can always plausibly be proposed. Without a true worst-case
event to consider, we are left to identify a “reasonably large” event.
That is often done by choosing a nearby large-magnitude event, and
then identifying some level of reasonable intensity associated with
this event. While it is possible to proceed using this type of approach,
two issues should be made clear. 1) The resulting ground motion is
not a “worst-case” ground motion. 2) The result may be very sensi-
tive to decisions made with regard to the chosen scenario magnitude
and ground motion intensity. An event chosen in this manner was
historically described as a “Maximum Credible Earthquake,” or
MCE. More recently, however, the acronym has been retained but
taken to mean “Maximum Considered Earthquake,” in recognition
of the fact that larger earthquakes (and larger ground motion intensi-
ties) are likely to be credible as well. This “worst-case” thinking will
be abandoned for the remainder of the document, although the prob-
lems identified here will serve as a useful motivation for thinking
about probability-based alternatives.

2.2 Probabilistic seismic hazard analysis calculations

In this section, we will describe a probability-based framework capa-
ble of addressing the concerns identified above. Rather than ignoring
the uncertainties present in the problem, this approach incorporates
them into calculations of potential ground motion intensity. While
incorporation of uncertainties adds some complexity to the proce-
dure, the resulting calculations are much more defensible for use in
engineering decision-making for reducing risks.

With PSHA, we are no longer searching for an elusive worst-case
ground motion intensity. Rather, we will consider all possible earth-
quake events and resulting ground motions, along with their associ-
ated probabilities of occurrence, in order to find the level of ground
motion intensity exceeded with some tolerably low rate. At its most
basic level, PSHA is composed of five steps.

1. Identify all earthquake sources capable of producing damaging
ground motions.

2. Characterize the distribution of earthquake magnitudes (the rates
at which earthquakes of various magnitudes are expected to oc-
cur).
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3. Characterize the distribution of source-to-site distances associated
with potential earthquakes.

4. Predict the resulting distribution of ground motion intensity as a
function of earthquake magnitude, distance, etc.

5. Combine uncertainties in earthquake size, location and ground
motion intensity, using a calculation known as the total probability
theorem.

These steps will be explained in more detail below.
The end result of these calculations will be a full distribution of

levels of ground shaking intensity, and their associated rates of ex-
ceedance. The illusion of a worst-case ground motion will be re-
moved, and replaced by identification of occurrence frequencies for
the full range of ground motion intensities of potential interest. These
results can then be used to identify a ground motion intensity having
an acceptably small probability of being exceeded.

2.2.1 Identify earthquake sources

In contrast to the deterministic thinking above, which focused only
on the largest possible earthquake event, here we are interested in all
earthquake sources capable of producing damaging ground motions
at a site. These sources could be faults, which are typically planar
surfaces identified through various means such as observations of
past earthquake locations and geological evidence. If individual
faults are not identifiable (as in the less seismically active regions of
the eastern United States), then earthquake sources may be described
by areal regions in which earthquakes may occur anywhere. Once
all possible sources are identified, we can identify the distribution of
magnitudes and source-to-site distances associated with earthquakes
from each source.

2.2.2 Identify earthquake magnitudes

Tectonic faults are capable of producing earthquakes of various sizes
(i.e., magnitudes). Gutenberg & Richter (1944) first studied obser-
vations of earthquake magnitudes, and noted that the number of
earthquakes in a region greater than a given size generally follows a
particular distribution

log10 λm = a− bm (2.1)

where λm is the rate of earthquakes with magnitudes greater than
m, and a and b are constants. This equation is called the Gutenberg-
Richter recurrence law. Figure 2.5 illustrates typical observations from
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Figure 2.4: Schematic illustration of
the basic five steps in probabilistic
seismic hazard analysis. (a) Identify
earthquake sources. (b) Characterize the
distribution of earthquake magnitudes
from each source. (c) Characterize the
distribution of source-to-site distances
from each source. (d) Predict the
resulting distribution of ground motion
intensity. (e) Combine information from
parts a-d to compute the annual rate
of exceeding a given ground motion
intensity.
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a fault or region, along with the Gutenberg-Richter recurrence law
given by equation 2.1.

The a and b constants from equation 2.1 are estimated using statis-
tical analysis of historical observations, with additional constraining
data provided by other types of geological evidence4. The a value 4 Note that some care is needed during

this process to ensure that no problems
are caused by using historical data
that underestimates the rate of small
earthquakes due to the use of less
sensitive instruments in the past.
Methods have been developed to
address this issue (e.g. Weichert, 1980),
but are not considered further in this
document.

indicates the overall rate of earthquakes in a region, and the b value
indicates the relative ratio of small and large magnitudes (typical b
values are approximately equal to 1).

Equation 2.1 can also be used to compute a cumulative distri-
bution function5 (CDF) for the magnitudes of earthquakes that are

5 Probability tools such as cumulative
distribution functions and probability
density functions are necessary for
much of the analysis that follows.
See Appendix A for a review of this
material.

larger than some minimum magnitude mmin (this conditioning is
used because earthquakes smaller than mmin will be ignored in later
calculations due to their lack of engineering importance).

FM(m) = P(M ≤ m|M > mmin)

=
Rate of earthquakes with mmin < M ≤ m

Rate of earthquakes with mmin < M

=
λmmin − λm

λmmin

=
10a−bmmin − 10a−bm

10a−bmmin

= 1− 10−b(m−mmin), m > mmin (2.2)

where FM(m) denotes the cumulative distribution function for M.
One can compute the probability density function (PDF) for M by
taking the derivative of the CDF

fM(m) =
d

dm
FM(m)

=
d

dm

[
1− 10−b(m−mmin)

]
= b ln(10)10−b(m−mmin), m > mmin (2.3)

where fM(m) denotes the probability density function for M.
Note that the PDF given in equation 2.3 relies on the Gutenberg-

Richter law of equation 2.1, which theoretically predicts magnitudes
with no upper limit, although physical constraints make this unreal-
istic. There is generally some limit on the upper bound of earthquake
magnitudes in a region, due to the finite size of the source faults
(earthquake magnitude is related to the area of the seismic rupture).
If a maximum magnitude can be determined, then equation 2.2 be-
comes

FM(m) =
1− 10−b(m−mmin)

1− 10−b(mmax−mmin)
, mmin < m < mmax (2.4)
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and equation 2.3 becomes

fM(m) =
b ln(2.10)10−b(m−mmin)

1− 10−b(mmax−mmin)
, mmin < m < mmax (2.5)

where mmax is the maximum earthquake that a given source can
produce. This limited magnitude distribution is termed a bounded
Gutenberg-Richter recurrence law. Example observations of earthquake
magnitudes are shown in Figure 2.5, along with Gutenberg-Richter
and bounded Gutenberg-Richter recurrence laws fit to the data.
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Figure 2.5: Typical distribution of
observed earthquake magnitudes, along
with Gutenberg-Richter and bounded
Gutenberg-Richter recurrence laws fit to
the observations.

For our later PSHA equations, we will convert the continuous dis-
tribution of magnitudes into a discrete set of magnitudes. For exam-
ple, consider a source with a minimum considered magnitude of 5,
a maximum magnitude of 8, and a b parameter equal to 1. Table 2.1
lists probabilities of interest for this example source. The first column
lists 13 magnitude values between 5 and 8. The second column lists
the cumulative distribution function, as computed using equation 2.4.
The third column lists probabilities of occurrence of these discrete set
of magnitudes, assuming that they are the only possible magnitudes;
they are computed as follows

P(M = mj) = FM(mj+1)− FM(mj) (2.6)

where mj are the discrete set of magnitudes, ordered so that mj <

mj+1. This calculation assigns the probabibilities associated with all
magnitudes between mj and mj+1 to the discrete value mj. As long
as the discrete magnitudes are closely spaced, the approximation will
not affect numerical results. Magnitudes are spaced at intervals of
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0.25 for illustration in Table 2.1 so that the table is not too lengthy,
but a practical PSHA analysis might use a magnitude spacing of 0.1
or less.

mj FM(mj) P(M = mj)

5.00 0.0000 0.4381

5.25 0.4381 0.2464

5.50 0.6845 0.1385

5.75 0.8230 0.0779

6.00 0.9009 0.0438

6.25 0.9447 0.0246

6.50 0.9693 0.0139

6.75 0.9832 0.0078

7.00 0.9910 0.0044

7.25 0.9954 0.0024

7.50 0.9978 0.0014

7.75 0.9992 0.0008

8.00 1.0000 0.0000

Table 2.1: Magnitude probabilities for
a source with a truncated Gutenberg-
Richter distribution, a minimum con-
sidered magnitude of 5, a maximum
magnitude of 8, and a b parameter
of 1. The numbers in this table were
computed using equations 2.4 and 2.6.
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Figure 2.6: Illustration of discretization
of a continuous magnitude distri-
bution for a source with a truncated
Gutenberg-Richter distribution, a min-
imum considered magnitude of 5, a
maximum magnitude of 8, and a b pa-
rameter of 1. (a) Continuous probability
density function from equation 2.5. (b)
Discrete probabilities from equation 2.6.

An aside: The Gutenberg-Richter models above are not the only
models proposed for describing the distribution of earthquake mag-
nitudes. One common alternative is the Characteristic Earthquake
model, which proposes that some faults have repeated occurrences of
a characteristic earthquake with a reasonably consistent magnitude
(Schwartz & Coppersmith, 1984). This characteristic magnitude oc-
curs more often than predicted by the Gutenberg-Richter models pro-
posed above. All that is required to adopt an alternative recurrence
model is to replace equation 2.5 with a suitably modified probabil-
ity density function (e.g. Lomnitz-Adler & Lomnitz, 1979; Youngs &
Coppersmith, 1985). All other PSHA equations remain identical.
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2.2.3 Identify earthquake distances

To predict ground shaking at a site, it is also necessary to model the
distribution of distances from earthquakes to the site of interest. For
a given earthquake source, it is generally assumed that earthquakes
will occur with equal probability at any location on the fault6. Given 6 In a few special cases, analysts use

non-uniform distributions for future
earthquake locations based on models
for stress transfer and time-dependent
earthquake occurence. Those situations
will not be considered here.

that locations are uniformly distributed, it is generally simple to
identify the distribution of source-to-site distances using only the ge-
ometry of the source. Example calculations are shown in this section
for an area source and a line source.

An aside: While “distance” sounds like a well-defined term, there
are in fact several definitions commonly used in PSHA. One can use
distance to the epicenter or hypocenter, distance to the closest point
on the rupture surface, or distance to the closest point on the surface
projection of the rupture. Note that some distance definitions account
for the depth of the rupture, while others consider only distance
from the surface projection of the rupture. Note also that epicenter-
and hypocenter-based definitions need only consider the location of
rupture initiation; some other definitions need to explicitly account
for the fact that ruptures occur over a plane rather than at a single
point in space. The analyst’s choice of distance definition will depend
upon the required input to the ground motion prediction model.
Here we will consider only distance to the epicenter, for simplicity.

Example: Area source

Consider a site located in an area source. The source produces earth-
quakes randomly and with equal likelihood anywhere within 100

km of the site. (In actuality, the source may be larger, but is typically
truncated at some distance beyond which earthquakes are not ex-
pected to cause damage at the site.) Area sources are often used in
practice to account for “background” seismicity, or for earthquakes
that are not associated with any specific fault. The example source is
illustrated in Figure 2.7.

We can easily compute a probabilistic description for the dis-
tances to earthquakes in this case by noting that if the earthquakes
are equally likely to occur anywhere, then the probability of an epi-
center being located at a distance of less than r is equal to the area of
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Source

Site

100 km

Epicenter

r

Figure 2.7: Illustration of an example
area source.

a circle of radius r, divided by the area of the circle of radius 100

FR(r) = P(R ≤ r)

=
area of circle with radius r

area of circle with radius 100

=
πr2

π(100)2

=
r2

10, 000
(2.7)

Equation 2.7 is only valid, however, for distance (r) values between
0 and 100 km. Accounting for other ranges gives the more complete
description

FR(r) =


0 if r < 0

r2

10,000 if 0 ≤ r < 100

1 if r ≥ 100

(2.8)

We can also find the PDF for the distance by taking a derivative of
the CDF

fR(r) =
d
dr

FR(r) =

 r
5000 if 0 ≤ r < 100

0 otherwise
(2.9)

Plots of this PDF and CDF are shown in Figure 2.8. We see that
distances close to 0 km are possible but unlikely, because there are
few locations in the source that are associated with such small dis-
tances. Unlike the deterministic “worst-case” distance of 0 km, the
PSHA calculations below will use these distributions to account for
the differing probabilities of observing earthquakes at various dis-
tances.

Example: Line source

Earthquake sources are also sometimes quantified as line sources7. 7 It is also common to treat the earth’s
structure in three dimensions, meaning
that faults will be represented as planes
rather than lines. The examples in this
document will all be two-dimensional
for simplicity, but the extension to three
dimensions is straightforward.
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Figure 2.8: PDF and CDF of the source-
to-site distance for future earthquakes
from the example area source.

This is particularly appropriate for modeling identified faults that
exist on the boundary of two tectonic plates (as is the case in much of
coastal California).

Site

Fault
Epicenter

10 kmr

50 km 50 km

 2              210r −

Figure 2.9: Illustration of an example
line source.

Consider a 100 km fault, modeled as a line source in Figure 2.9,
with a site located 10 km from the center of the fault. We again as-
sume that earthquake epicenters are equally likely at all locations.
In this case, the probability of observing a distance of less than r is
equal to the fraction of the fault located within a radius of r. Using
the Pythagorean theorem, we can see that the distance from the cen-
ter of the fault to a point a distance r from the site is

√
r2 − 102.

Using this information, we can then compute the CDF of R

FR(r) = P(R ≤ r)

=
length of fault within distance r

total length of fault

=
2
√

r2 − 102

100
(2.10)

but that equation is only true for distances of less than 10 km or
greater than 51 km. Distances outside that range are not possible on
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this fault, so the complete CDF is

FR(r) =


0 if r < 10
2
√

r2−102

100 if 10 ≤ r < 51

1 if r ≥ 51

(2.11)

The PDF can be obtained from the derivative of the CDF

fR(r) =
d
dr

FR(r) =

 r
50
√

r2−100
if 10 ≤ r < 51

0 otherwise
(2.12)

The PDF and CDF are plotted in Figure 2.10.
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Figure 2.10: PDF and CDF of the
source-to-site distance for future earth-
quakes from the example line source.

These two example sources are shown to provide simple examples
of distance distributions. Distributions for more irregular sources
can also be computed in the same manner. These distributions are
important inputs for the calculations that follow.

2.2.4 Ground motion intensity

We have now quantified the distribution of potential earthquake
magnitudes and locations, but we are interested in analyzing ground
motions—not earthquakes. The next step is therefore a ground mo-
tion prediction model8. These models predict the probability distri- 8 These models were called “attenuation

models” or “attenuation relations” until
recently. Those names have fallen out of
favor, however, because the prediction
model accounts for a great number of
effects, of which attenuation is only
one.

bution of ground motion intensity, as a function of many predictor
variables such as the earthquake’s magnitude, distance, faulting
mechanism, the near-surface site conditions, the potential presence of
directivity effects, etc. Because the number of predictor variables is
large, we often write that the model predicts ground motion intensity
given “magnitude, distance, etc.”

Ground motion prediction models are generally developed using
statistical regression on observations from large libraries of observed
ground motion intensities. For example, spectral acceleration (SA)
values at 1 second observed in the 1999 Chi-Chi, Taiwan, earthquake
were shown previously in Figure 2.3, along with lines showing the
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predicted mean (and mean +/- one standard deviation) of the lnSA
values from an example ground motion prediction model (Campbell
& Bozorgnia, 2008). That prediction model, like other modern mod-
els, was fit to thousands of observed intensities from dozens of past
earthquakes.

It is apparent from Figure 2.3 that there is significant scatter in
observed ground motion intensities, even after accounting for the
effect of magnitude, distance, etc. Thus, these predictive models
must provide a probability distribution for intensities, rather than
just a single intensity. This is important, because our later PSHA
calculations need to account for the possibility of unlikely outcomes
such as extreme intensities much larger than the predicted mean
(Bommer & Abrahamson, 2006).

To describe this probability distribution, prediction models take
the following general form:

ln IM = ln IM(M, R, θ) + σ(M, R, θ) · ε (2.13)

where lnIM is the natural log of the ground motion intensity mea-
sure of interest (such as spectral acceleration at a given period); this
lnIM is modeled as a random variable, and has been seen to be well-
represented by a normal distribution. The terms ln IM(M, R, θ) and
σ(M, R, θ) are the outputs of the ground motion prediction model;
they are the predicted mean and standard deviation, respectively, of
lnIM. These terms are both functions of the earthquake’s magnitude
(M), distance (R) and other parameters (generically referred to as
θ). Finally, ε is a standard normal random variable that represents
the observed variability in lnIM. Positive values of ε produce larger-
than-average values of lnIM, while negative values of ε produce
smaller-than-average values of lnIM.

Over decades of development and refinement, the prediction mod-
els for ln IM(M, R, θ) and σ(M, R, θ) have become complex, consist-
ing of many terms and tables containing dozens of coefficients. These
modern models are no longer simple to calculate using pencil and
paper, so here we will use an older and much simpler (but obsolete)
model to illustrate the example calculations. The approach is iden-
tical when using modern prediction models, but this simple model
keeps us from being distracted by tedious arithmetic.

Cornell et al. (1979) proposed the following predictive model for
the mean of log peak ground acceleration (in units of g)

ln PGA = −0.152 + 0.859M− 1.803 ln(R + 25) (2.14)

The standard deviation of lnPGA was 0.57 in this model, and was
constant for all magnitudes and distances. The natural logarithm of
PGA was seen to be normally distributed, so we can compute the
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probability of exceeding any PGA level using knowledge of this mean
and standard deviation

P(PGA > x|m, r) = 1−Φ

(
ln x− ln PGA

σln PGA

)
(2.15)

where Φ () is the standard normal cumulative distribution function,
as shown in Table A.1 on page 71. Modern prediction models also
provide a mean and standard deviation to be used in equation 2.15,
so the general procedure is identical when using newer models; the
equations for predicting the mean and standard deviation are just
more complicated.

Equation 2.15 used the cumulative distribution function to com-
pute P(PGA > x|m, r), but sometimes it may be useful to use an
alternate formulation incorporating the probability density function
for PGA. Noting that the cumulative distribution function is equiva-
lent to an integral of the probability density function (equation A.27),
we can also write

P(PGA > x|m, r) =
∞∫

x

fPGA(u) du (2.16)

where fPGA(u) is the probability density function of PGA, given m
and r. Unlike the cumulative distribution function Φ (), fPGA(u) can
actually be written out analytically. Substituting in this PDF gives

P(PGA > x|m, r) =
∞∫

x

1
σln PGA

√
2π

exp

−1
2

(
ln u− ln PGA

σln PGA

)2
 du

(2.17)
This integral can then be evaluated numerically within the PSHA
software.

To connect these equations to a visual display of ground motion
predictions, consider Figure 2.11, which shows PGA predictions for
a magnitude 6.5 earthquake, as a function of distance. The mean and
the mean +/- one standard deviation of the Cornell et al. prediction
is plotted for distances between 1 and 100 km. At distances of 3, 10

and 30 km, the entire PDF of the predicted normal distribution is also
superimposed. Suppose we were interested in the probability of PGA
>1g. At those three distances, equation 2.14 gives predicted means of
-0.5765, -0.9788 and -1.7937, respectively9. At all three distances, the 9 All of the example calculations will

provide answers with more significant
figures than should reasonably be
used or reported. This is done to allow
readers to reproduce the example
calculations exactly, and because many
answers are intermediate results for
later calculations.

standard deviation of lnPGA is 0.57. So we can use equation 2.15 to
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compute the probabilities of exceedance as

P(PGA > 1|6.5, 3) = 1−Φ
(

ln 1− (−0.5765)
0.57

)
= 0.16 (2.18)

P(PGA > 1|6.5, 10) = 1−Φ
(

ln 1− (−0.9788)
0.57

)
= 0.043 (2.19)

P(PGA > 1|6.5, 30) = 1−Φ
(

ln 1− (−1.7937)
0.57

)
= 0.0008 (2.20)

These probabilities correspond to the fraction of the corresponding
PDFs in Figure 2.11 that are shaded. This visual interpretation may
provide some intuition regarding the previous equations, which
may unfamiliar to readers who do not regularly perform probability
calculations.

1 10 100
0.01

0.1

1

10

Distance (km)

P(PGA >1 | m, r)

PG
A 

(g
)

 

Mean prediction
Mean prediction +/- one standard deviation

Target PGA

Figure 2.11: Graphical depiction of the
example ground motion prediction
model for a magnitude 6.5 earthquake,
and the probability of PGA >1g at
several source-to-site distances.

Let us consider a second example, which will provide interme-
diate results for some calculations that follow. Assume magnitude
5 earthquake has occurred at a distance of 10 km. The Cornell at al.
ground motion prediction model provides a mean lnPGA of -2.2673,
and a standard deviation of 0.57. The first column of Table 2.2 lists
a series of PGA values of potential interest. The second column lists
the probabilities of exceeding those PGA values, using equation 2.15.
The third column lists the probability of equaling those PGA values,
using the same discretization approach we used previously for the
continuous magnitude distribution

P(PGA = xj) = P(PGA > xj)− P(PGA > xj+1) (2.21)
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xj P(PGA > xj) P(PGA = xj)

0.20 0.12418 0.06312

0.25 0.06106 0.03004

0.30 0.03102 0.01471

0.35 0.01631 0.00745

0.40 0.00886 0.00390

0.45 0.00496 0.00211

0.50 0.00285 0.00117

0.55 0.00168 0.00067

0.60 0.00101 0.00039

0.65 0.00062 0.00024

0.70 0.00038 0.00014

0.75 0.00024 0.00009

0.80 0.00015 0.00006

0.85 0.00009 0.00004

0.90 0.00005 0.00002

0.95 0.00003 0.00002

1.00 0.00001 0.00001

Table 2.2: PGA probabilities associated
with a magnitude 5 earthquake at 10

km.

An aside: At first glance, one might wonder whether the large vari-
ability must necessarily be a part of prediction models, or whether it
is a fundamental error caused by over-simplifications or inappropri-
ate mixing of observational data. The uncertainty arises because we
are trying to predict a highly complex phenomenon (ground shaking
intensity at a site) using very simplified predictive parameters (mag-
nitude, distance, and perhaps a few other parameters). Earthquake
rupture is a complex spatial-temporal process, and here we represent
it simply by “magnitude,” which measures the total seismic energy
released in the complex rupture. Similarly, nonlinear wave scatter-
ing and propagation through a complex structure such as the earth
is represented by simply the distance between the source and the
site. It is true that if we had more detailed knowledge of the rupture
and propagation process, we might predict ground shaking inten-
sity with less uncertainty. But we don’t always have detailed models
for rupture and wave propagation from past earthquakes to use in
calibrating predictive models, and even if we were able to develop
complex predictive models, then our predictions of future earthquake
events would have to be much more detailed than simply predicting
their distributions of magnitudes and distances. Ground motion pre-
diction equations of the type used to produce Figure 2.3 have evolved
over a period of 40 years, and are now developed using thousands
of observed ground motions and are constrained using many theo-
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retical and physical insights. This level of refinement suggests that
there is little hope of this scatter being reduced significantly in the
near future. The scatter is best thought of as an inherent variability in
the earthquake hazard environment that must be accounted for when
identifying a design ground motion intensity.

2.2.5 Combine all information

With the above information in place, we can now combine it using
the PSHA equations. We will first consider two intermediate calcula-
tions as we build towards a PSHA equation that considers multiple
sources.

First, let us compute the probability of exceeding an IM inten-
sity level x, given occurrence of a future earthquake from a single
source. The ground motion prediction model of Section 2.2.4 allows
us to compute the probability of exceeding that IM level for a given
magnitude and distance. The magnitude and distance of the fu-
ture earthquake are not yet known, but we can find their probability
distributions using Sections 2.2.2 and 2.2.3. We then combine this
information using the total probability theorem

P(IM > x) =
mmax∫

mmin

rmax∫
0

P(IM > x|m, r) fM(m) fR(r) dr dm (2.22)

where P(IM > x|m, r) comes from the ground motion model, fM(m)

and fR(r) are our PDFs for magnitude and distance, and we integrate
over all considered magnitudes and distances10. The integration op- 10 More generally, we should use a

joint distribution for magnitude and
distance, fM,R(m, r), rather than the
product of their marginal distances
fM(m) fR(r). The above formulation
is correct only if the magnitudes and
distances of events are independent.
The above formulation is helpful,
however, for easily incorporating the
magnitude and distance distributions
computed earlier.

eration adds up the conditional probabilities of exceedance associated
with all possible magnitudes and distances (with the PDFs weight-
ing each conditional exceedance probability by the probability of
occurrence of the associated magnitude and distance).

Equation 2.22 is a probability of exceedance given and earthquake,
and does not include any information about how often earthquakes
occur on the source of interest. We can make a simple modification to
that equation, to compute the rate of IM >x, rather than the probabil-
ity of IM >x given occurrence of an earthquake.

λ(IM > x) = λ(M > mmin)

mmax∫
mmin

rmax∫
0

P(IM > x|m, r) fM(m) fR(r) dr dm

(2.23)
where λ(M > mmin) is the rate of occurrence of earthquakes greater
than mmin from the source, and λ(IM > x) is the rate of IM >x.

To generalize the analysis further, we would like to consider cases
with more than one source. Recognizing that the rate of IM >x when
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considering all sources is simply the sum of the rates of IM > x from
each individual source, we can write

λ(IM > x) =
nsources

∑
i=1

λ(Mi > mmin)

mmax∫
mmin

rmax∫
0

P(IM > x|m, r) fMi (m) fRi (r) dr dm

(2.24)
where nsources is the number of sources considered, and Mi & Ri

denote the magnitude & distance distributions for source i. Since we
will nearly always be performing this calculation on a computer, it is
practical to discretize our continuous distributions for M and R, and
convert the integrals into discrete summations, as follows

λ(IM > x) =
nsources

∑
i=1

λ(Mi > mmin)
nM

∑
j=1

nR

∑
k=1

P(IM > x|mj, rk)P(Mi = mj)P(Ri = rk)

(2.25)
where the range of possible Mi and Ri have been discretized into
nM and nR intervals, respectively, using the discretization technique
discussed earlier.

Equation 2.24 (or, equivalently, 2.25) is the equation most com-
monly associated with PSHA. It has integrated our knowledge about
rates of occurrence of earthquakes, the possible magnitudes and dis-
tances of those earthquakes, and the distribution of ground shaking
intensity due to those earthquakes. Each of those inputs can be deter-
mined through scientific studies of past earthquakes and processing
of observed data. The end result—the rate of exceeding IM levels of
varying intensity—is very useful for engineering decision making,
and can be determined even for rare (low exceedance-rate) intensi-
ties that are not possible to determine through direct observation.
In the next section, we will perform some example calculations to
demonstrate how this equation is used in practice.

2.3 Example PSHA calculations

To illustrate the procedure described in the previous section, several
numerical examples will be performed below, starting from basic cal-
culations and building to more complex cases. These examples will
compute rates of exceeding varying levels of Peak Ground Accelera-
tion, using the procedures described above.

Example: a source with a single magnitude and distance
Fault A
M = 6.5
λ = 0.01

Site

10 km

Figure 2.12: Map view of the example
site, with one earthquake source.

We first start with a simple site shown in Figure 2.3. There is a sin-
gle fault (Fault A) that produces only magnitude 6.5 earthquakes.
We assume that this earthquake will rupture the entire fault, so that
the source-to-site distance is exactly 10 km in every case (that is,
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we will not consider random locations). Assume also that earth-
quakes with this magnitude and distance occur at a rate of λ = 0.01
times per year. Although the magnitudes and distances of all future
earthquakes are fixed at 6.5 and 10 km, respectively, we still expect
variations in observed peak ground accelerations at the site, due to
differences from event to event that are not captured by our simple
measures of magnitude and distance.

Using the Cornell et al. model presented in equation 2.14, we pre-
dict a median PGA of 0.3758g (i.e., a mean lnPGA of -0.979), and log
standard deviation of 0.57. We can easily compute that the probabil-
ity of exceeding 0.3758g given an earthquake is 0.5, since this is the
median predicted value. The annual rate of exceeding 0.3758g is thus
0.5 ∗ 0.01 = 0.005 per year. This quick calculation is done to develop
intuition regarding the calculations, but we can also use the more for-
mal equations presented above. When considering equation 2.25, we
see that P(M = 6.5) = 1, P(R = 10) = 1 and λ(Mi > mmin) = 0.01.
There is only one magnitude, distance and source to consider, so all
of the summations are replaced by a single term. We thus have

λ(PGA > x) = λ(M > mmin)P(PGA > x|6.5, 10)P(M = 6.5)P(R = 10)

= 0.01P(PGA > x|6.5, 10) (2.26)

Next, since we know the mean and standard deviation of lnPGA, we
can compute the probability of exceeding a given PGA value using
equation 2.15

P(PGA > x|6.5, 10) = 1−Φ

(
ln x− ln PGA

σln PGA

)

= 1−Φ
(

ln x− ln(0.3758)
0.57

)
(2.27)

We can use Table A.1 to evaluate the standard normal cumulative
distribution function Φ (). For example, the probability of PGA >1g is

P(PGA > 1g|6.5, 10) = 1−Φ (1.72) = 0.044 (2.28)

Substituting this into equation 2.26, we can find the annual rate of
exceeding 1g

λ(PGA > 1g) = 0.01 P(PGA > 1g|6.5, 10) = 0.00044 (2.29)

By repeating these calculations for many PGA levels, one can con-
struct the curve shown in Figure 2.13. This “ground motion hazard
curve” for PGA summarizes the rates of exceeding a variety of PGA
levels. The two calculations performed explicitly above (for PGA
>0.3758g and PGA >1g) are labeled on this figure as well. Note that
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because both axes often cover several orders of magnitude, and the
y axis contains very small values, one or both axes of ground motion
hazard curves are often plotted in log scale.
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Figure 2.13: PGA hazard curve for the
single-source site.

This example demonstrates the essence of a PSHA calculation. All
that remains to perform a more realistic calculation is to consider a
range of feasible magnitudes and distances, rather than just the single
event in this hypothetical example.

Example: two magnitudes and distances

Before moving to an example with a continuous range of magni-
tudes, let us first try another hypothetical example with only two
possible magnitude/distance combinations. The first source, “Fault
A,” is identical to the source in the immediately preceding example.
The second source, “Fault B,” produces only magnitude 7.5 earth-
quakes at a distance of 20 km. The earthquake on Fault B occurs at
a rate of λ = 0.002 times per year. The map of this example site is
shown in Figure 2.3. We will continue using the Cornell et al. model
presented in equation 2.14 to predict PGA at the site.

Fault B
M = 7.5
λ = 0.002

Fault A
M = 6.5
λ = 0.01

Site

10 km

20 km

Figure 2.14: Map view of an example
site with two earthquake sources.

The previous example to quantified the hazard from Fault A, so
let us focus on calculating the hazard from Fault B. Using the Cornell
et al. ground motion model, we predict a median PGA of 0.5639g if
the earthquake on Fault B occurs, and a log standard deviation of
0.57. Now consider the two PGA values considered in the previous
example. The probability of PGA >0.3758g, given an earthquake on
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Fault B, is

P(PGA > 0.3758g|7.5, 20) = 1−Φ
(

ln(0.3758)− ln(0.5639)
0.57

)
= 1−Φ (−0.71)

= 0.761 (2.30)

We can then multiply this probability by the rate of occurrence of
earthquakes on Fault B (0.02), to get the rate of PGA >0.3758g due
to earthquakes on Fault B. But the PSHA formula of equation 2.25

includes a summation over all sources, so we add these probabilities
to the corresponding probabilities for Fault A to find the overall rate
of PGA >0.3758g

λ(PGA > 0.3758g) =

(Fault A)︷ ︸︸ ︷
0.01 P(PGA > 0.3758|6.5, 10) +

(Fault B)︷ ︸︸ ︷
0.002 P(PGA > 0.3758|7.5, 20)

= 0.01(0.5) + 0.002(0.761)

= 0.00500 + 0.00152

= 0.00652 (2.31)

Similarly, we can compute the probability of PGA >1g, given an
earthquake on Fault B

P(PGA > 1g|7.5, 20) = 1−Φ
(

ln(1)− ln(0.5639)
0.57

)
= 1−Φ (1.01)

= 0.158 (2.32)

and then combine this with our other known information to compute
the overall rate of PGA >1g

λ(PGA > 1g) =

(Fault A)︷ ︸︸ ︷
0.01 P(PGA > 1|6.5, 10) +

(Fault B)︷ ︸︸ ︷
0.002 P(PGA > 1|7.5, 20)

= 0.01(0.043) + 0.002(0.158)

= 0.000430 + 0.000316

= 0.000746 (2.33)

The two rates computed above are plotted in Figure 2.15, along with
rates for all other PGA levels. Also shown in Figure 2.15 are curves
showing the rates of exceedance for the two individual faults. The
intermediate rate calculations shown above (0.005 and 0.00152 for
PGA>0.3758g, and 0.0043 and 0.00316 for PGA>1g) are also noted
with circles on Figure 2.15 for reference. A few observations can
be made regarding this figure and its associated calculations. First,
note that the hazard curve for Fault A in the figure is identical to
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the curve in Figure 2.13. We have simply added the additional rates
of exceedance due to Fault B in order to get the total hazard curve
shown in Figure 2.15. Second, we can note that the relative contribu-
tions of the two faults to the ground motion hazard vary depending
upon the PGA level of interest. At relatively lower PGA values such
as in the calculation of equation 2.31, Fault A contributes much more
to the overall rate of exceedance. This is because it has a higher rate
of earthquakes. At larger PGA levels such as in the calculation of
equation 2.33, the relative contributions of the two faults are close to
equal; this is because the smaller-magnitude earthquakes from Fault
A have a low probability of causing high PGA values, even thought
they are more frequent than the larger-magnitude earthquakes from
Fault B. We see in Figure 2.15 that for PGA values greater than about
1.5g, Fault B actually makes a greater contribution to the hazard than
Fault A, even though its rate of producing earthquakes is only 1/5

of Fault A’s. This is a typical situation for real-life PSHA calculations
as well: low-intensity shaking is generally dominated by frequent
small earthquakes, while high-intensity shaking is caused primarily
by large-magnitude rare earthquakes.
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Figure 2.15: PGA hazard curve for the
example two-source site.

Example: point source with Gutenberg-Richter magnitudes

In this example we will now consider a source that is capable of
producing earthquakes with a variety of magnitudes. The source
produces events with M ≥ 5 at a rate of 0.02 events per year. The
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distribution of those earthquakes follows the bounded Gutenberg-
Richter model, with a maximum magnitude of 8 and “b” value of
1. We will thus use equation 2.5 to describe the PDF of earthquake
magnitudes, with mmin = 5 and mmax = 8. We again assume that
all earthquakes occur at the same distance of 10 km, so that we can
simplify the PSHA summations.

Source with
varying M 

Site

10 km

Figure 2.16: Map view of an example
site with one source producing earth-
quakes having a variety of magnitudes.

We will use equation 2.25 to perform the PSHA calculation for
peak ground acceleration, using the Cornell et al. ground motion
model from the previous examples. Noting that there is only one
source and one distance, and substituting P(R = 10) = 1 and
λ(Mi > mmin) = 0.02, we get

λ(PGA > x) = 0.02
nM

∑
j=1

P(PGA > x|mj, 10)P(M = mj) (2.34)

To compute this rate of exceeding some PGA level, we simply need
to compute the probabilities of observing various earthquake mag-
nitudes, compute the probabilities of exceeding our PGA level given
those magnitudes, and then sum the product of those two terms eval-
uated for the range of feasible magnitudes. Table 2.3 shows those
probabilities for calculations of λ(PGA > 0.2g). The first column lists
the discrete set of magnitudes considered (a magnitude increment
of 0.25 has been used). The second column lists the probabilities of
observing those magnitudes, as computed using equation 2.6 (note
these probabilities are identical to those in Table 2.1, because the as-
sumed magnitude distribution is the same). The third column lists
the probability of PGA >0.2g, given occurrence of an earthquake
having the specified magnitude. This is computed, as was done in
the earlier examples, by evaluating the Cornell et al. ground mo-
tion model using each magnitude value. The fourth column lists
the products of the second and third columns. We see that equa-
tion 2.34 is simply a summation of the terms in the fourth column,
multiplied by the rate of occurrence of earthquakes. The sum of the
fourth column is 0.269, so the rate of PGA>0.2g at the site of interest
is λ(PGA > 0.2) = 0.02(0.269) = 0.0054.

We continue the hazard analysis by repeating the calculations of
Table 2.3 for more PGA values. In Table 2.4, the same calculation is
repeated for PGA >1g. Here we see that the summation of the right-
hand column is 0.0048, so the rate of PGA >1g at the site of interest is
λ(PGA > 1) = 0.02(0.0048) = 9.6 · 10−5.

By repeating this calculation for many more PGA values, we can
create the ground motion hazard curve shown in Figure 2.17. The two
individual rates of exceedance calculated above are labeled on this
curve.

Comparing Table 2.3 to Table 2.4, we can make several observa-
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mj P(M = mj) P(PGA > 0.2|mj, 10)
P(PGA > 0.2|mj, 10)
· P(M = mj)

5.00 0.4381 0.1242 0.0544

5.25 0.2464 0.2185 0.0538

5.50 0.1385 0.3443 0.0477

5.75 0.0779 0.4905 0.0382

6.00 0.0438 0.6379 0.0279

6.25 0.0246 0.7672 0.0189

6.50 0.0139 0.8657 0.0120

6.75 0.0078 0.9310 0.0073

7.00 0.0044 0.9686 0.0042

7.25 0.0025 0.9873 0.0024

7.50 0.0014 0.9955 0.0014

7.75 0.0008 0.9986 0.0008

Sum = 0.269

Table 2.3: Probabilities used to compute
λ(PGA>0.2g).

mj P(M = mj) P(PGA > 1|mj, 10)
P(PGA > 1|mj, 10)
· P(M = mj)

5.00 0.4381 0.0000 0.0000

5.25 0.2464 0.0002 0.0000

5.50 0.1385 0.0006 0.0001

5.75 0.0779 0.0022 0.0002

6.00 0.0438 0.0067 0.0003

6.25 0.0246 0.0181 0.0004

6.50 0.0139 0.0430 0.0006

6.75 0.0078 0.0901 0.0007

7.00 0.0044 0.1676 0.0007

7.25 0.0025 0.2786 0.0007

7.50 0.0014 0.4168 0.0006

7.75 0.0008 0.5662 0.0004

Sum = 0.0048

Table 2.4: Probabilities used to compute
λ(PGA > 1g).
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Figure 2.17: PGA hazard curve for
the example site with one source
and a Gutenberg-Richter magnitude
distribution.

tions. The first two columns of both tables are identical, as they are
only describing the earthquake magnitudes and so are not affected
by changes in the PGA level of interest. We see that all probabilities
in the third column are much larger in Table 2.3 than in Table 2.4: the
PGA threshold was lower in Table 2.3, so the probability of exceeding
the threshold is therefore higher.

In Table 2.4, the probability of PGA > 1g is equal to zero for
the smallest magnitude considered. This means that considering
even smaller magnitudes would have no impact on our final answer,
because smaller magnitude earthquakes have effectively zero prob-
ability of causing a PGA greater than 1g. In Table 2.3, however, we
see that even magnitude 5 earthquakes have a non-zero probability
of causing PGA > 0.2g; this is somewhat worrisome because lower
magnitude earthquakes could also cause PGA > 0.2g, so including
them would have changed our answer. This suggests that the choice
of the minimum considered earthquake can be important in some
cases. We will return to this issue in Section 3.2.

By looking at the right-hand column of these tables, we can also
identify the magnitudes that make the greatest contribution to the
probability of exceeding the PGA level of interest. Each number in
this column is a product of the probability of occurrence of some
magnitude and the probability of exceedance of the PGA given that
magnitude, which is equal to the probability of both events occurring
(given that an earthquake has occurred). In Table 2.3, we see that
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the probabilities are largest for the small magnitudes; this is because
small-magnitude earthquakes are much more likely to occur than
large-magnitude earthquakes (as seen in column 2), and because these
small-magnitude earthquakes have a reasonable probability of caus-
ing PGA > 0.2g. In Table 2.4, on the other hand, these small magni-
tude earthquakes have very small probabilities in the fourth column
because they have a very small probability of causing PGA > 1g.
In Table 2.4, the moderate- to large-magnitude earthquakes have
the highest probabilities in the fourth column, because even though
they are relatively rare, they are the only ones with significant prob-
abilities of causing PGA > 1g. Intuitively, we can imagine that this
information would be useful for identifying the earthquake scenar-
ios most likely to damage a structure at the site of interest. We will
revisit this information in a more quantitative manner in Section 3.1
below.

For more complex sites than the simple cases shown in the above
examples, the PSHA summations can quickly get lengthy. For this
reason, PSHA is performed using computer software in all practical
analysis cases. The software’s purpose is to perform the calculations
shown here, but for more complicated cases involving many earth-
quake sources, while also using modern ground motion prediction
models that are much more complex than the one used here. Note
that in the example above we used a relatively wide magnitude spac-
ing of 0.25 units in our discretization in order to keep the length of
Table 2.3 reasonably short. When performing these calculations in a
computer program, it is also easy to use a fine discretization of the
magnitudes and distances of interest.





3
Extensions of PSHA

The PSHA inputs and primary PSHA calculations were described
in the previous section. To fully utilize the information provided by
those calculations, several extensions are often used. These exten-
sions are described in the following sections.

3.1 Deaggregation

One of the primary advantages of PSHA—that it accounts for all
possible earthquake sources in an area when computing seismic
hazard—is also a disadvantage. Once the PSHA computations are
complete, a natural question to ask is “which earthquake scenario is
most likely to cause PGA>x?” Because we have aggregated all scenar-
ios together in the PSHA calculations, the answer is not immediately
obvious. We saw in the example calculations above, however, that
some of the intermediate calculation results indicated the relative
contribution of different earthquake sources and magnitudes to the
rate of exceedance of a given ground motion intensity. Here we will
formalize those calculations, through a process known as deaggrega-
tion1 (Bazzurro & Cornell, 1999; McGuire, 1995). 1 The calculations shown in this section

are known as both “deaggregation”
and “disaggregation.” No universal
terminology has yet been adopted.
Disaggregation is the only one of the
two words that is found in a dictionary,
but deaggregation is currently used
more often.

Let us start with magnitude deaggregation. In this case, we are
interested in the probability that an earthquake’s magnitude is equal
to m, given that a ground motion of IM >x has occurred. Intuitively,
this is equal to the rate of earthquakes with IM >x and M = m,
divided by the rate of all earthquakes with IM >x

P(M = m|IM > x) =
λ(IM > x, M = m)

λ(IM > x)
(3.1)

This relationship can also be derived more rigorously, as an applica-
tion of Bayes’ rule. The denominator of this equation is exactly what
we have computed previously in equation 2.25 (i.e., our primary
PSHA equation). The numerator is very similar, except that it speci-
fies occurrence of a given causal magnitude, rather than integrating
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over all magnitudes as we did in the previous PSHA equations. To
compute this numerator, we simply omit the summation over M from
equation 2.25

λ(IM > x, M = m) =
nsources

∑
i=1

λ(Mi > mmin)

nRi

∑
k=1

P(IM > x|m, rk)P(Mi = m)P(Ri = rk)

(3.2)

Example 1

To illustrate, let us consider again the example of Section 2.3. This
site had two sources, and we might be interested in the relative con-
tributions of the two sources to exceedance of a given intensity level.
Consider first the case PGA >0.3758g, since we have previously com-
puted some needed probabilities for that PGA value. Looking at
equation 2.31 from that example, we can see that

λ(PGA > 0.3758g, M = 6.5) = 0.01 P(PGA > 0.3758|6.5, 10)

= 0.005 (3.3)

λ(PGA > 0.3758g, M = 7.5) = 0.002 P(PGA > 0.3758|7.5, 20)

= 0.00152 (3.4)

λ(PGA > 0.3758g) = 0.00652 (3.5)

Plugging those three numbers into equation 3.1 gives P(M = 6.5|PGA >

0.3758g) = 0.77 and P(M = 7.5|PGA > 0.3758g) = 0.23. Repeat-
ing the same calculations using the results of equation 2.33 gives
P(M = 6.5|PGA > 1g) = 0.58 and P(M = 7.5|PGA > 1g) = 0.42.
So we see, for the relatively lower PGA value of 0.3758g, that the
smaller and more active fault has a high probability of being the
causal fault. At the larger PGA intensity of 1g, the less active but
larger fault makes a greater contribution to exceedance of the PGA.
This is consistent with the qualitative observations made at the end
of the original example calculation. And note that these quantitative
calculations are actually very simple. The probabilities we have com-
puted are exactly proportional to the rates we previously computed
for λ(IM > x, M = m); all we have done here is normalize those rates
to get probabilities that sum to one.

Example 2

Let us consider the example of Section 2.3 as a slightly more realistic
application of deaggregation. This site had a single source producing
earthquake magnitudes with a Gutenberg-Richter distribution. We
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can use deaggregation to find the probability that some PGA level
was exceeded by an earthquake with a given magnitude. Let us first
consider PGA values greater than 0.2g. Referring to equation 3.1, we
see that we have previously computed λ(PGA > 0.2) = 0.0054.
Further, since this site has only a single source and a single distance,
equation 3.2 simplifies to

λ(IM > x, M = m) = λ(M > mmin)P(IM > x|m, 10)P(M = m) (3.6)

For this example, λ(M > mmin) = 0.02, and the remaining two
terms are provided in Table 1.3 (in fact, their product is given in
the far right column). So we see that all of the needed inputs for
a deaggregation calculation are already computed as part of the
basic PSHA calculation. To demonstrate this calculation, let us find
the probability of a PGA >0.2g ground motion being caused by a
magnitude 5 earthquake.

P(M = 5|PGA > 0.2) =
λ(PGA > 0.2, M = 5)

λ(PGA > 0.2)
=

0.02(0.4381)(0.1242)
0.0054

= 0.20

(3.7)
This deaggregation data is computed for other magnitudes and
summarized in Table 2.1. The first two columns list magnitudes
of interest and their probabilities of occurrence in this example
(and are identical to the probabilities computed earlier in Table
1.1). The third column shows the probability of PGA > 0.2 as-
sociated with each of the magnitudes. The fourth column shows
λ(PGA > 0.2, M = mj), computed using equation 3.2 and noting that
λ(Mi > mmin) = 0.02 for this problem. The fifth column shows the
deaggregation probability, computed using equation 3.1, and noting
that λ(PGA > 0.2) = 0.0054.

mj P(M = mj) P(PGA > 0.2|m, 10) λ(PGA > 0.2,
M = mj)

P(M = mj|PGA > 0.2)

5.00 0.4381 0.1242 0.0011 0.2022

5.25 0.2464 0.2185 0.0011 0.2000

5.50 0.1385 0.3443 0.0010 0.1773

5.75 0.0779 0.4905 0.0008 0.1420

6.00 0.0438 0.6379 0.0006 0.1039

6.25 0.0246 0.7672 0.0004 0.0702

6.50 0.0139 0.8657 0.0002 0.0446

6.75 0.0078 0.9310 0.0001 0.0270

7.00 0.0044 0.9686 0.0001 0.0158

7.25 0.0025 0.9873 0.0000 0.0090

7.50 0.0014 0.9955 0.0000 0.0051

7.75 0.0008 0.9986 0.0000 0.0029

8.00 0.0000 0.9996 0.0000 0.0000

Table 3.1: Deaggregation calculations
for the Section 2.3 example.

The deaggregation values shown in the fifth column of Table 2.1
are plotted in Figure 3.1a. We easily see in this figure that small-
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magnitude events have the highest probability of causing PGA >0.2g
ground motions, matching the intuitive observations that were
made during that example calculation. Figure3.1b shows the same
deaggregation plot, but conditioned on PGA >1g. We see that large-
magnitude events have the highest probability of causing exceedance
of this large amplitude, because the frequent small events have a very
low probability of causing such a large amplitude.
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Figure 3.1: Deaggregation results as-
sociated with the example calculation
of Section 2.3. (a) Magnitude distribu-
tion, given PGA >0.2g. (b) Magnitude
distribution, given PGA >1g.

We see in Figure 3.1 that the deaggregation results vary as the in-
tensity level of interest changes. The deaggregation results will also
vary if one studies a different measure of ground motion intensity.
That is, the events that cause extreme PGA levels will differ from the
events that cause extreme spectral acceleration levels at long periods.
Our intuition in this respect may benefit from reviewing Figure 1.1b,
which shows the median response spectra from two different earth-
quake events. In that figure, the large-magnitude event produces
larger spectral acceleration values at long periods, while the small-
magnitude nearby event produces larger spectral acceleration values
at short periods. This will intuitively lead to different events domi-
nating the deaggregation results at those associated periods, and that
is what we see in practice with real sites as well. Thus, deaggrega-
tion helps us see that there is no single earthquake event that is the
design earthquake for every situation at a given site. The earthquake
of interest will depend upon the ground motion intensity measure of
interest, as well as the intensity level of interest.

The results shown in Figure 3.1 were computed using the same
magnitude bins as were used for the original PSHA calculations, so
that we did not have to re-compute as many probabilities. But this
is not representative of common practice in real calculations. A typ-
ical PSHA calculation will use a finer magnitude discretization for
the basic PSHA summation (perhaps a 0.1 magnitude interval), and
a much coarser discretization for the deaggregation computations
(perhaps a 0.5 magnitude interval). This is because the original sum-
mation is never output, and so can be finely discretized to maximize
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accuracy. The deaggregation output, however, is often presented in
tabular form, and so is more coarsely discretized to minimize the
length of output tables. Keep in mind that here we are deaggregating
on only magnitude, but when deaggregating to find the probabilities
of combinations of various magnitudes, distances, etc., the output
can quickly become much lengthier. To illustrate the use of a more
coarse discretization, and to provide data that will be used later,
Table 2.2 and Figure 3.2 show results identical to Table 2.1 and Fig-
ure 3.1, but with a coarser discretization of magnitudes, into intervals
of width 0.5. The only change needed to produce these calculations
is to modify the P(M = mj) calculation to account for the fact that
a larger interval of magnitudes is being assigned to each discrete
magnitude. By comparing Figure 3.1 and Figure 3.2, we see that the
locations and shapes of these magnitude distributions are still clear
using the coarser discretization. For qualitative evaluations of causal
earthquakes, coarse discretizations are thus useful. For quantitative
calculations that use these results, it is important to consider poten-
tial errors caused by coarsely discretizing the deaggregation results.

mj P(M = mj) P(PGA > 0.2|m, 10) λ(PGA > 0.2,
M = mj)

P(M = mj|PGA > 0.2)

5.0 0.6845 0.1242 0.0017 0.3685

5.5 0.2164 0.3443 0.0015 0.3230

6.0 0.0684 0.6379 0.0009 0.1892

6.5 0.0216 0.8657 0.0004 0.0812

7.0 0.0068 0.9686 0.0001 0.0287

7.5 0.0022 0.9955 0.0000 0.0093

8.0 0.0000 0.9996 0.0000 0.0000

Table 3.2: Deaggregation calculations
for the Section 2.3 example, with
magnitudes discretized into 0.5-unit
intervals.
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Figure 3.2: Deaggregation results as-
sociated with the example calculation
of Section 2.3, with magnitudes dis-
cretized into 0.5-unit intervals. (a)
Magnitude distribution, given PGA
>0.2g. (b) Magnitude distribution, given
PGA >1g.

The above deaggregation results focus solely on the conditional
distribution of magnitude. The same calculation can be done to find
the conditional distribution of distance, by simply modifying equa-
tion 3.2 to have a summation over magnitudes but not over distances.
One can also find the conditional joint distribution of magnitudes and
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distances, using the following equation

P(M = m, R = r|IM > x) =
λ(IM > x, M = m, R = r)

λ(IM > x)
(3.8)

where the numerator of equation 3.8 is computed using the basic
PSHA equation but not summing over either M or R

λ(IM > x, M = m, R = r) =
nsources

∑
i=1

λ(Mi > mmin)P(IM > x|mj, rk)P(Mi = m)P(Ri = r)

(3.9)
An example of this conditional distribution of M and R given IM >x
is shown in Figure 3.3.

These deaggregation calculations are a critical part of many PSHA
analyses, and deaggregation results should be provided as part of
the output from any PSHA calculation. The U.S. Geological Survey,
which performs PSHA for the United States that is incorporated into
building codes, provides deaggregation results alongside the basic
PSHA output (https://geohazards.usgs.gov/deaggint/2008/). An example
is shown on Figure 3.3 for a site in Palo Alto, California.
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Figure 3.3: Example disaggregation for
SA(1.0s) at a site in Palo Alto, California
(USGS, 2008) .

3.2 Bounds on considered magnitudes and distances

For practical reasons, not all earthquake magnitudes are considered
in PSHA calculations. Typically, only earthquakes with magnitudes
greater than approximately 4.5 or 5 are considered. This is chosen as
a conservative value, for which the omitted small-magnitude earth-
quakes are not believed to be capable of damaging structures, and
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thus not relevant for seismic risk calculations. This also reduces the
size of the calculations. The exact magnitude at which an earthquake
is no longer damaging is not obvious, however, and unfortunately
the choice of cutoff magnitude can significantly affect some PSHA
results.

To illustrate, let us consider again the example calculation from
Section 2.3. In this example, there was a point source that produced
magnitudes having a truncated Gutenberg-Richter distribution. In
the original calculation, we assumed a minimum magnitude of 5.0.
But what would happen to our results if we chose a different mini-
mum magnitude? Figure 3.4 shows the hazard curves for that site us-
ing three choices of minimum magnitude2. The case with mmin = 5.0 2 The calculations to produce the three

ground motion hazard curves are
identical to those used in section 2.3.
The only changes needed are to adjust
mmin, and to adjust the corresponding
rate of occurrence of M>mmin. The
appropriate rate of occurrence was
found by using equation 2.1 to find the
a value that gives the specified rate of
M>5, and then using that a value to
solve for the rate of M>mmin using the
alternatemmin choices.

is identical to the result shown in Figure2.17. We see that the ex-
ceedance rates for small PGA values vary dramatically, but the rate
exceedance rates for large PGA values are nearly identical. This is not
surprising, given the deaggregation results of Figure 3.1. In Figure
3.1b, we see that small earthquakes make almost no contribution to
exceedances of 1g, so the minimum considered magnitude will not
impact that calculation. In Figure 3.1a, on the other hand, we see that
small magnitude earthquakes make a significant contribution to ex-
ceedances of 0.2g. Thus, while it might be conceptually reasonable
to omit non-damaging small-magnitude earthquakes from the PSHA
calculation, it is also clear that the results may be sensitive to the
actual choice of minimum magnitude.

An aside: There is typically a restriction placed on the maximum
considered distance in equation 2.24 as well. That choice typically
has no significant impact on the PSHA results, however, as long as
the maximum distance is several hundred kilometers. The choice of
maximum distance will not be considered further here.

3.3 Rates, probabilities and return periods

The text above has focused only on rates of exceeding a given ground
motion intensity. Sometimes, PSHA results are also formulated in
terms of probabilities or return periods of exceedance. The return
period is defined as the reciprocal of the rate of occurrence. For ex-
ample, if a given ground motion intensity has a 0.01 annual rate of
occurrence, then the return period is equal to 1/0.01=100 years. This
does not imply that the ground motion will be exceeded exactly once
every 100 years, but rather that the average (or mean) time between
exceedances is 100 years. For this reason, the reciprocal of the ex-
ceedance rate is more precisely termed the mean return period. While
“mean return period” or simply “return period” are commonly used
names used to refer to the reciprocal of the rate of occurrence, one
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Figure 3.4: Hazard curves computed
for the example site from Section 2.3,
using several choices for the minimum
considered magnitude.

may avoid some confusion regarding the implied time between ex-
ceedances by simply reporting rates rather than return periods.

For a given rate of exceedance, one can also compute a probability
of exceeding a given ground motion intensity within a given window
of time. This calculation requires further information regarding the
probability distribution of time between occurrences of earthquakes.
This distribution is nearly always assumed to be “Poissonian,” for
three reasons: it results in simple mathematical equations, it appears
to match observations in most cases, and more complicated models
typically do not impact the final results significantly. The Poisson
model assumes that occurrences of earthquakes are independent in
time (that is, the probability of an earthquake in a window of time
is related only to the size of the window, and is independent of any-
thing such as the time since the most recent occurrence), and that the
probability of more than one occurrence in a very short interval is
negligible. Under the assumption of Poissonian occurrences, the proba-
bility of observing at least one event in a period of time t is equal to

P(at least one event in time t) = 1− e−λt (3.10)

where λ is the rate of occurrence of events. A plot of this relationship
is shown in Figure 3.5.

If λt is small (less than approximately 0.1), then the probability can
also be approximated by

P(at least one event in time t) = 1− e−λt ∼= λt (3.11)
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This approximation comes from taking the first term of a Taylor
series expansion of 1-e−λt. The accuracy of the approximation can be
seen in Figure 3.5, where the plot follows a straight line with a slope
of 1 for λt values less than 0.1.

Using the above calculations, PSHA results are converted between
rates of exceedance, probabilities of exceedance, and return periods.
There are two important caveats to these conversions that should be
kept in mind:

1. The conversion between rates of exceedance and probabilities
of exceedance is almost always made by assuming a Poissonian
occurrence of earthquakes (whether or not this has been stated
explicitly by the analyst).

2. Probabilities of exceedance and rates of exceedance are only
equivalent if the probability level of interest is small (i.e., less than
0.1).

An Aside: Many proposals have been made to predict the recurrence
of earthquakes using models other than the Poisson model (e.g.,
Anagnos & Kiremidjian, 1984). One summary of the sensitivity of
computed probabilities to the choice of earthquake recurrence model
is given by Cornell & Winterstein (1988), who also describe some
alternative recurrence models. Cornell and Winterstein found that
the Poisson model is accurate for PSHA unless the seismic hazard is
dominated by a single source, the time since that source’s last event
is greater than the average time between events, and the source has
strong “characteristic time” behavior.
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3.4 The uniform hazard spectrum

A common goal of probabilistic seismic hazard analysis is to identify
a design response spectrum to use for structural or geotechnical
analysis. One approach for developing a spectrum is to compute a
uniform hazard spectrum (UHS). This spectrum is developed by first
performing the above PSHA calculations for spectral accelerations at
a range of periods. Then, a target rate of exceedance is chosen, and
for each period the spectral acceleration amplitude corresponding to
that rate is identified. Those spectral acceleration amplitudes are then
plotted versus their periods, as illustrated in Figure 3.6.

This spectrum is called a uniform hazard spectrum because every
ordinate has an equal rate of being exceeded. But it should be clear
that this spectrum is an envelope of separate spectral acceleration
values at different periods, each of which may have come from a dif-
ferent earthquake event3. This mixing of events to create a spectrum 3 For example, consider Figure 2.1b

as an illustration of a case where
high-frequency ground motions may
be caused by one source, and low
frequency ground motions by another.
Even in the case where there is only
a single source, it is not necessary
for extreme (i.e., larger-than-median)
ground motion amplitudes to occur
simultaneously in the same ground
motion.

has sometimes been used to criticize the entire PSHA procedure.
But it is important to recognize that a UHS is merely one way to use
the output of PSHA. None of the calculations prior to this section
required the use of a UHS, and it is quite possible to productively
use PSHA results without ever computing a UHS. In fact, the Com-
mission (1997) relies on the deaggregation results discussed earlier
to identify scenario magnitudes and distances and then computes a
design spectral shape based on those magnitudes and distances. In
that procedure, no uniform hazard spectrum is needed.

Some other design procedures (e.g., for design of buildings) use
the UHS, but in those cases one can simply remember the manner
in which a UHS is computed in order to avoid misinterpreting the
results as the spectrum from some single ground motion. Although
the uniform hazard spectrum is not required for PSHA calculations,
it is a commonly-used procedure. It is also a good example of the
various ways in which PSHA calculations can be adopted for various
uses. For these reasons, it warrants at least a brief mention in any
summary of PSHA.

3.5 Joint distributions of two intensity measures

While the uniform hazard spectrum calculation of the previous sec-
tion provides one way of combining multiple ground motion in-
tensity measures, it is not probabilistically rigorous (i.e., it does not
compute the probability of simultaneous occurrence these parame-
ters). But it is possible to account for joint predictions, and some of
the necessary tools are discussed briefly here.

Logarithms of pairs of spectral acceleration values (and presum-
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Figure 3.6: Combining hazard curves
from individual periods to generate
a uniform hazard spectrum with a
4*10

−4 rate of exceedance for a site
in Los Angeles. (a) Hazard curve for
SA(0.3s), with UHS point identified.
(b) Hazard curve for SA(1s), with
UHS point identified. (c) Uniform
hazard spectrum, based on a series of
calculations like those in (a) and (b).

ably also PGA values) have been shown to have a joint normal distri-
bution (Jayaram & Baker, 2008), so calculations of joint distributions
of two intensity measures becomes reasonably simple in this special
case. In the case of a joint normal distribution, conditional distribu-
tions of one intensity measure parameter, given the other, are also
normally distributed, and can be computed using only a linear cor-
relation coefficient between the two parameters (see Section A.3 for
a few further details, and Benjamin and Cornell, 1970, for a more
complete discussion).

Let us consider joint predictions of PGA and spectral acceleration
at a period of 0.5 seconds (SA(0.5s)), given a magnitude 5 earthquake
at a distance of 10 km. Abrahamson & Silva (1997) provide the fol-
lowing predictions for the mean and standard deviation of lnSA

ln SA = −2.7207 (3.12)

σln SA = 0.80 (3.13)

Note that a few more parameters than just magnitude and distance
are needed to obtain this lnSA prediction; here we have also assumed
a rock site and a strike-slip mechanism for the earthquake. The me-
dian of (non-log) SA is simply the exponential of this number, which
in this case is 0.065 g.
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Looking back to Section 2.2.4, we recall that the mean and stan-
dard deviation of lnPGA for this event was

ln PGA = −2.2673 (3.14)

σln PGA = 0.57 (3.15)

This mean lnPGA translates to a median PGA of 0.104g.
The only thing needed further to compute the joint distribution of

PGA and SA is the correlation coefficient between the two (typically
referred to using the Greek letter ρ). These correlation coefficients
have been determined in a manner similar to the way that ground
motion prediction models are calibrated; several documents provide
these coefficients (e.g., Baker & Cornell, 2006; Baker & Jayaram, 2008),
and estimate a ρ of approximately 0.7 for this case.

Now let us consider a prediction of the distribution of PGA, given
knowledge of the SA(0.5s) value for a ground motion coming from
the specified earthquake event. Because of the joint normality of
lnPGA and lnSA, we can write the conditional mean and standard
deviation of lnPGA as simply

ln(PGA|SA) = ln(PGA) + ρεSAσln PGA (3.16)

σln PGA|SA =
√

1− ρ2σln PGA (3.17)

where all parameters have been defined above except εSA. That pa-
rameter is the number of standard deviations by which a given lnSA
value differs from its mean predicted value. Mathematically, it can be
written

εSA =
ln x− ln(SA)

σln SA
(3.18)

where x is the observed SA value, and the other terms are the mean
and standard deviation from the original ground motion prediction
model.

Now imagine that we have observed an SA value of 0.2g from the
magnitude 5 earthquake at a distance of 10 km. Using equation 3.18,
we find

εSA =
ln x− ln(SA)

σln SA

=
ln 0.2− (−2.7207)

0.8
= 1.4 (3.19)

That is, the observed spectral acceleration is 1.4 standard deviations
larger than the mean predicted value associated with this earthquake.



extensions of psha 55

If SA was larger than its mean, and SA and PGA are correlated,
then knowledge of this large SA value should increase our predic-
tions of PGA for the given ground motion. We make this increased
prediction using equation 3.16

ln(PGA|SA) = ln(PGA) + ρεSAσln PGA

= −2.2673 + 0.7(1.4)(0.57)

= −1.7124 (3.20)

Taking an exponential of this number tells us that the median condi-
tional PGA is 0.18g (a significant increase from the median prediction
of 0.104g we made before we had observed SA=0.2g).

Knowledge of SA should also decrease our uncertainty in PGA,
and this is reflected in equation 3.17

σln PGA|SA =
√

1− ρ2σln PGA

=
√

1− 0.72(0.57)

= 0.41 (3.21)

Using the updated conditional mean and standard deviation of PGA,
we can now predict the probability of exceeding different PGA val-
ues conditional upon SA(0.5s) = 0.2g, by using equation 2.15 with
our updated conditional mean and standard deviation. Some sam-
ple results are summarized in Table 2.3. The first column lists a
series of PGA values of potential interest. The second column lists
the probability of exceeding those PGA values, given a magnitude
5 earthquake at a distance of 10 km, but not yet conditioned on any
observed SA value. That is, the second column was computed us-
ing the original mean and standard deviation from equations 3.14

and 3.15. Note that this calculation is identical to the one from Ta-
ble 1.2. In the third column of Table 2.3, we compute probabilities
of exceeding the same PGA values, but this time conditioned upon
knowledge that SA(0.5s) = 0.2g. That is, we evaluate equation 2.15

with our new conditional mean and standard deviation. Examining
the second and third columns of this table, two interesting features
are apparent. First, the probability of exceeding low PGA values has
increased significantly, because we now know that the correlated pa-
rameter SA(0.5s) is larger than usual for this event. Second, we see
that the probability of exceeding very large PGA values has actually
decreased. The decrease is because knowledge of SA has reduced
our uncertainty in PGA. Although we know that SA is larger than
its mean prediction, we have also eliminated the possibility that SA
is even more extreme than the observed value, so the most extreme
PGA values actually become less likely. Finally, in the fourth column
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of the table, we compute the conditional probability of PGA equaling
the various values of interest, using equation 2.21

xj P(PGA > xj) P(PGA > xj|SA = 0.2) P(PGA = xj|SA = 0.2)

0.05 0.8994 0.9992 0.0727

0.1 0.5247 0.9265 0.5263

0.2 0.1242 0.4002 0.2943

0.3 0.0311 0.1058 0.0806

0.4 0.0089 0.0253 0.0191

0.5 0.0029 0.0061 0.0046

0.6 0.0010 0.0016 0.0011

0.7 0.0004 0.0004 0.0003

0.8 0.0002 0.0001 0.0001

0.9 0.0001 0.0000 0.0000

Table 3.3: PGA probabilities associated
with a magnitude 5 earthquake at 10

km, and an SA(0.5s) value of 0.2g.

To aid in intuitive understanding of these calculations, Figure 3.7
shows a schematic illustration of the joint distribution referred to
above. The horizontal axes represent the range of (log) PGA and SA
values that might result from earthquakes with a given magnitude
and distance. The contour lines illustrate the contours of the joint
distribution of PGA and SA. The centroid and spread of these con-
tours with respect to each horizontal axis are specified by the mean
and standard deviation from ground motion prediction models. The
correlation between the two parameters is reflected by the elliptical
shape of the contours, which means that large values of lnSA are
likely to be associated with large values of lnPGA. What we are inter-
ested in here is the distribution of PGA, given that we have observed
some SA value. This is represented by cuts through the joint distribu-
tion. The conditional distributions at two cuts (i.e., two potential SA
values) are shown on the vertical axis of the figure. The probability of
exceeding some PGA value x1 is represented by the area of the condi-
tional distribution to the right of x1. We see from the two cuts that as
the observed lnSA value gets larger, the probability of exceeding x1

also gets larger. That is the effect we also saw in the third column of
Table 3.3.
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Figure 3.7: Schematic illustration of the
joint distribution of PGA and SA.





4
Conclusions

We have now completed an overview of probabilistic seismic hazard
analysis (PSHA) and several extensions of the basic methodology. Ex-
ample calculations have been presented to illustrate how the compu-
tations are performed in practice. With these tools, one can quantify
the risk of ground motion shaking at a site, given knowledge about
seismic sources surrounding the site.

Having now considered the many sources of uncertainty present
when predicting future shaking at a site, it is hopefully clear to the
reader why deterministic approaches to seismic hazard analysis
can be unsatisfying. It should be clear that there is no such thing as
a deterministic “worst-case” ground motion, and that attempts to
identify an alternate deterministic ground motion necessitate making
decisions that may be arbitrary and hard to justify.

PSHA is fundamentally an accounting method that lets one com-
bine diverse sources of data regarding occurrence rates of earth-
quakes, the size of future earthquakes, and propagation of seismic
shaking through the earth. It would be impossible to model the dis-
tribution of future earthquake shaking at a site through direct ob-
servation, because one would have to wait thousands or millions of
years to collect enough observations to make a reasonable inference
regarding rare ground motions. But, by incorporating many sources
of data into the calculations, it becomes possible to project out to
these low probabilities with scientifically-defensible and reproducible
models.

The basic PSHA calculation, and its required inputs, was discussed
in Section 2. In Section 3, several extensions were presented, such
as deaggregation and uniform hazard spectra. There is also a vast
literature regarding the accurate estimation of the many inputs, such
as occurrence rates of earthquakes and their magnitude distributions,
which was not discussed here. References for further study on these
topics are provided in Appendix B for the interested reader.





A
Review of probability

Probability is so fundamental to probabilistic seismic hazard analysis
that the word appears in its title. The calculations in this document
thus rely heavily on the use of probability concepts and notation.
These probabilistic tools allow us to move through calculations with-
out having to stop and derive intermediate steps. The notational
conventions allow us to easily describe the behavior of uncertain
quantities. It is recognized that these concepts and notations are not
familiar to all readers, however, so this section is intended to provide
a brief overview of the needed material. Readers desiring more de-
tails may benefit from reviewing a textbook dedicated specifically to
practical applications of probability concepts (e.g. Ang & Tang, 2007;
Benjamin & Cornell, 1970; Ross, 2004).

A.1 Random events

The most basic building block of probability calculations is the ran-
dom event: an event having more than one possible outcome. The
sample space (denoted S) is the collection of all possible outcomes of a
random event. Any subset of the sample space is called an event, and
denoted E. Sample spaces and events are often illustrated graphically
using Venn diagrams, as illustrated in Figure A.1.

S

E2
E4

E3

E1

Figure A.1: Venn diagram illustrating a
sample space and events.

For example, the number obtained from rolling of a die is a ran-
dom event. The sample space for this example is S = {1, 2, 3, 4, 5, 6}.
The outcomes in the event that the number is odd are E1 = {1, 3, 5}.
The outcomes in the event that the number is greater than three are
E2 = {4, 5, 6}

We are commonly interested in two operations on events. The first
is the union of E1 and E2, denoted by the symbol ∪. E1 ∪ E2 is the
event that contains all outcomes in either E1 or E2. The second is the
intersection. E1E2 (also denoted E1 ∩ E2) is the event that contains
all outcomes in both E1 and E2. For example, continuing the die
illustration from above, E1 ∪ E2 = {1, 3, 4, 5, 6} and E1 ∩ E2 = {5}.
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Special events
There are a few special terms and special events that are often

useful for probability calculations:
The certain event is an event that contains all possible outcomes in

the sample space. The sample space S is the certain event.
The null event, denoted ϕ, is an event that contains no outcomes.
Events E1 and E2 are mutually exclusive when they have no com-

mon outcomes. E1E2 = ϕif E1 and E2 are mutually exclusive.
Events E1, E2. . . En are collectively exhaustive when their union

contains every possible outcome of the random event (i.e., E1 ∪ E2 ∪
· · · ∪ En = S).

The complementary event, E1, of an event E1, contains all outcomes
in the sample space that are not in event E1. It should be clear that,
by this definition, E1 ∪ E1 = S and E1E1 = φ. That is, E1 and E1 are
mutually exclusive and collectively exhaustive.

Axioms of probability
We will be interested in the probabilities of occurrence of various

events. These probabilities must follow three axioms of probability:

0 ≤ P(E) ≤ 1 (A.1)

P(S) = 1 (A.2)

P(E1 ∪ E2) = P(E1) + P(E2), for mutually exclusive events E1 and
E2(56)

These axioms form the building blocks of all other probability
calculations. It is very easy to derive additional laws using these
axioms, and the previously-defined events. For example,

P(Ē) = 1− P(E) (A.3)

P(φ) = 0 (A.4)

P(E1 ∪ E2) = P(E1) + P(E2)− P(E1E2) (A.5)

A.2 Conditional probabilities

The probability of the event E1 may depend upon the occurrence of
another event E2. The conditional probability P(E1|E2) is defined
as the probability that event E1 has occurred, given that event E2

has occurred. That is, we are computing the probability of E1, if
we restrict our sample space to only those outcomes in event E2.
Figure A.2 may be useful as the reader thinks about this concept.

S

E2 

E1 

Figure A.2: Schematic illustration of the
events E1 and E2. The shaded region
depicts the area corresponding to event
E1E2.
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We can deduce the following from Figure A.2

P(E1|E2) =


P(E1E2)

P(E2)
if P(E2) > 0

0 if P(E2) = 0
(A.6)

Rearranging this equation gives

P(E1E2) = P(E1|E2)P(E2) (A.7)

Independence

Conditional probabilities give rise to the concept of independence.
We say that two events are independent if they are not related proba-
bilistically in any way. More precisely, we say that events E1 and E2

are independent if
P(E1|E2) = P(E1) (A.8)

That is, the probability of E1 is not in any way affected by knowledge
of the occurrence of E2. Substituting equation 62 into equation 61

gives
P(E1E2) = P(E1)P(E2) (A.9)

which is an equivalent way of stating that E1 and E2 are independent.
Note that equations 62 and 63 are true if and only if E1 and E2 are
independent.

Total Probability Theorem

Consider an event A and a set of mutually exclusive, collectively
exhaustive events E1, E2 . . . En. The total probability theorem states
that

P(A) =
n

∑
i=1

P(A|Ei)P(Ei) (A.10)

In words, this tells us that we can compute the probability of Aif
we know the probability of the Ei’s, and know the probability of
A, given each of these Ei’s. The schematic illustration in Figure A.3
may help to understand what is being computed. At first glance, the
utility of this calculation may not be obvious, but it is critical to many
engineering calculations where the probability of A is difficult to
determine directly, but where the problem can be broken down into
several pieces whose probabilities can be computed.

Consider the following example, to illustrate the value of this
calculation. You have been asked to compute the probability that
Building X collapses during the next earthquake in the region. You
do not know with certainty if the next earthquake will be strong,
medium or weak, but seismologists have estimated the following
probabilities:
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P(strong) = 0.01

P(medium) = 0.1 (A.11)

P(weak) = 0.89

Additionally, structural engineers have performed analyses and
estimated the following:

P(collapse|strong) = 0.9

P(collapse|medium) = 0.2 (A.12)

P(collapse|weak) = 0.01

Referring to equation 64, the “A” in that equation is the event that
the building collapses, and the Ei’s are the events that the earthquake
is strong, medium or weak. We can therefore compute the probability
of collapse as

P(collapse) = P(collapse|strong)P(strong)

+ P(collapse|medium)P(medium)

+ P(collapse|weak)P(weak)

= 0.9(0.01) + 0.2(0.1) + 0.01(0.89)

= 0.0379 (A.13)

The total probability theorem allows one to break the problem into
two parts (size of the earthquake and capacity of the building), com-
pute probabilities for those parts, and then re-combine them to an-
swer the original question. This not only facilitates solution of the
problem in pieces, but it allows different specialists (e.g., seismolo-
gists and engineers) to work on different aspects of the problem.

Probabilistic seismic hazard analysis is a direct application of the
total probability theorem (except that it uses random variables, dis-
cussed below, instead of random events). The distribution of earth-
quake magnitudes and distances are studied independently of the
conditional distribution of ground motion intensity, and this prob-
abilistic framework allows us to re-combine the various sources of
information in a rigorous manner.

Bayes’ Rule

Consider an event A and a set of mutually exclusive, collectively
exhaustive events E1, E2 . . . En. From our conditional probability
equations above, we can write

P(AEj) = P(Ej|A)P(A) = P(A|Ej)P(Ej) (A.14)
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En 

Figure A.3: Schematic illustration of the
total probability theorem.

Rearranging the last two terms gives

P(Ej|A) =
P(A|Ej)P(Ej)

P(A)
(A.15)

This equation is known as Bayes’ Rule. An alternate form is based on
substituting equation 64 for the total probability theorem in place of
P(A) in the denominator of equation 67.

P(Ej|A) =
P(A|Ej)P(Ej)

n
∑

i=1
P(A|Ei)P(Ei)

(A.16)

The utility of these equations lies in their ability to compute con-
ditional probabilities, when you only know probabilities related to
conditioning in the reverse order of what is desired. That is, you
would like to compute P(A|B) but only know P(B|A). This is ex-
actly the type of calculation used in the deaggregation calculations of
Section 3.1.

To provide a simple illustration of how this equation works, con-
sider again the example used to illustrate the total probability the-
orem. Suppose you have just learned that an earthquake occurred
and building X collapsed. You don’t yet know the size of the earth-
quake, and would like to compute the probability that it was a strong
earthquake. Using equation 67, you can write

P(strong|collapse) =
P(collapse|strong)P(strong)

P(collapse)
(A.17)

Substituting the numbers from above, you then find that

P(strong|collapse) =
0.9(0.01)

0.0379
= 0.24 (A.18)

It is not obvious intuitively how large that probability would be, be-
cause strong earthquakes have a high probability of causing collapse,
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but they are also extremely unlikely to occur. Like the Total Proba-
bility Theorem, Bayes’ Rule provides a valuable calculation approach
for combining pieces of information to compute a probability that
may be difficult to determine directly.

A.3 Random variables

Here we will introduce an important concept and an associated im-
portant notation. A random variable is a numerical variable whose
specific value cannot be predicted with certainty before the occur-
rence of an “event” (in our context, this might be the magnitude of a
future earthquake). Examples of random variables relevant to PSHA
are the time to the next earthquake in a region, the magnitude of a
future earthquake, the distance form a future earthquake to a site,
ground shaking intensity at a site, etc.

We need a notation to refer to both the random variable itself,
and to refer to specific numerical values which that random variable
might take. Standard convention is to denote a random variable
with an uppercase letter, and denote the values it can take on by
the same letter in lowercase. That is, x1, x2, x3, . . . denote possible
numerical outcomes of the random variable X. We can then talk
about probabilities of the random variable taking those outcomes
(i.e., P(X = x1)).

Discrete and continuous random variables

We can in general treat all random variables using the same tools,
with the exception of distinguishing between discrete and continu-
ous random variables. If the number of values a random variable can
take are countable, the random variable is called discrete. An example
of a discrete random variable is the number of earthquakes occurring
in a region in some specified period of time. The probability distribu-
tion for a discrete random variable can be quantified by a probability
mass function (PMF), defined as

pX(x) = P(X = x) (A.19)

The cumulative distribution function (CDF) is defined as the proba-
bility of the event that the random variable takes a value less than or
equal to the value of the argument

FX(x) = P(X ≤ x) (A.20)

The probability mass function and cumulative distribution function
have a one-to-one relationship

FX(a) = ∑
all xi≤a

pX(xi) (A.21)
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Examples of the PMF and CDF of a discrete random variable are
shown in Figure A.4.
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Figure A.4: Example descriptions of
a discrete random variable. (a) Prob-
ability mass function. (b) Cumulative
distribution function.

In many cases we are interested in the probability of X >x, rather
than the X ≤ x addressed by the CDF. But noting that those two
outcomes are mutually exclusive and collectively exhaustive events,
we can use the previous axioms of probability to see that P(X > x) =
1− P(X ≤ x).

In contrast to discrete random variables, continuous random vari-
ables can take any value on the real axis (although they don’t have
to). Because there are an infinite number of possible realizations, the
probability that a continuous random variable X will take on any
single value x is zero. This forces us to use an alternate approach
for calculating probabilities. We define the probability density function
(PDF) using the following

fX(x) dx = P(x < X ≤ x + dx) (A.22)

where dx is a differential element of infinitesimal length. An illus-
tration of the PDF and related probability calculation is given in
Figure A.5. We can compute the probability that the outcome of X is
between a and b by “summing” (integrating) the probability density
function over the interval of interest

P(a < X ≤ b) =
b∫

a

fX(x) dx (A.23)

Note that in many of the PSHA equations above, we have approx-
imated continuous random variables by discrete random variables,
for ease of numerical integration. In those cases, we have replaced the
infinitesimal dx by a finite ∆x, so that equation A.23 becomes:

pX̃(x) = fX(x)∆x = P(x < X ≤ x + ∆x) (A.24)

where pX̃(x) is the probability mass function for X̃, the discretized
version of the continuous random variable X. Reference to Figure A.5
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Figure A.5: Plot of a continuous proba-
bility density function. The area of the
shaded rectangle, fX(x) dx, represents
the probability of the random variable
X taking values between x and x +
dx.

should help the reader understand that the probabilities of any out-
come between x and x + ∆x have been assigned to the discrete value
x.

Another way to describe a continuous random variable is with a
cumulative distribution function (CDF)

FX(x) = P(X ≤ x) (A.25)

The PDF and CDF are related by the following

FX(x) = P(X ≤ x) =
x∫

−∞

fX(u) du (A.26)

fX(x) =
d

dx
FX(x) (A.27)

Note that the CDF of continuous and discrete random variables has
the same definition. This is because probabilities of outcomes within
an interval are identically defined for discrete and continuous out-
comes. Plots of continuous cumulative distribution functions are seen
in the body of the document (e.g., Figure 2.8b and Figure 2.10b).

Comments on notion
This PMF/PDF/CDF notation allows us to compactly and pre-

cisely describe probabilities of outcomes of random variables. Note
that the following conventions have been used:

1. The initial letter indicates the type of probability being described
(i.e., “p” for PMFs, “ f ” for PDFs, and “F” for CDFs).
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2. The subscript denotes the random variable (e.g., “X”), and thus is
always a capital letter.

3. The argument in parentheses indicates the numerical value being
considered (e.g., “x”), and is thus either a lower-case letter or a
numeric value (e.g., FX(2.2) = P(X ≤ 2)).

It is worth noting that these conventions are not chosen arbitrarily
here or unique to PSHA. They are used almost universally in all
probability papers and books, regardless of the field of application.

Conditional distributions

We are often interested in conditional probability distributions of
random variables. We can adopt all of the results from Section A.2 if
we recognize that the random variable X exceeding some value x is
an event. So we can adapt equation A.7, for example, to write

fX|Y(x|y)dx = P(x < X ≤ x + dx|y < Y ≤ y + dy)

=
P(x < X ≤ x + dx ∩ y < Y ≤ y + dy)

P(y < Y ≤ y + dy)
(A.28)

where the notation fX|Y(x|y) is introduced to denote the conditional
probability density function of X, given that the random variable Y
has taken value y. If we further introduce the following notation for
the joint probability density function of X and Y

fX,Y(x, y) dx dy = P(x < X ≤ x + dx ∩ y < Y ≤ y + dy) (A.29)

then equationA.29 becomes

fX|Y(x|y) = fX,Y(x, y)
fY(y)

(A.30)

Similarly, equation A.10 can be used to show that random variables X
and Y are said to be independent if and only if

fX,Y(x, y) = fX(x) fY(y) (A.31)

Another example is the PSHA equations above that use integrals
over the random variables for magnitude and distance; these are the
random-variable analog of the total probability theorem introduced
earlier for events.

These types of manipulations, which are only briefly introduced
here, are very useful for computing probabilities of outcomes of ran-
dom variables, conditional upon knowledge of other probabilistically-
dependent random variables.
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The normal distribution

One particular type of random variable plays an important role in
the calculations above, so we will treat it carefully here. A random
variable is said to have a “normal” (or “Gaussian”) distribution if it
has the following PDF

fX(x) =
1

σX
√

2π
exp

(
−1

2

(
x− µX

σX

)2
)

(A.32)

where µx and σx denote the mean value and standard deviation,
respectively, of X. This PDF forms the familiar “bell curve” seen
above in Figure A.5. This is one of the most common distributions
in engineering, and has been found to describe very accurately the
distribution of the logarithm of ground motion intensity associated
with a given earthquake magnitude and distance. Because of that, we
often want to find the probability that a normally-distributed random
variable X takes a value less than x. From above, we know that we
can find this probability by integrating the PDF over the region of
interest

P(X ≤ x) =
x∫

−∞

fX(u) du

=

x∫
−∞

1
σX
√

2π
exp

(
−1

2

(
u− µX

σX

)2
)

du (A.33)

Unfortunately, there is no analytic solution to this integral. But be-
cause it is so commonly used, we tabulate its values, as shown in Ta-
ble A.1. To keep this table reasonably small in size, we use two tricks.
First, we summarize values for the “standard” normal distribution,
where standard denotes that the random variable has a mean value
(µx) of 0 and a standard deviation (σx) of 1. So the CDF becomes

P(X ≤ x) =
x∫

−∞

1√
2π

exp
(
−1

2
u2
)

du (A.34)

Because the CDF of the standard normal random variable is so com-
mon, we give it the special notation P(X ≤ x) = Φ(x).

If the random variable of interest, X, is normal but not standard
normal, then we can transform it into a standard normal random
variable as follows

U =
X− µX

σX
(A.35)

where U is a standard normal random variable. This means that we
can use the right-hand side of equation 87 as an argument for the
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standard normal CDF table. That is

P(X ≤ x) = Φ
(

X− µX
σX

)
(A.36)

where Table A.1 provides values of Φ( ).
A second trick used to manage the size of the standard normal

CDF table is to note that the normal PDF is symmetric about zero.
This means that

Φ(−u) = 1−Φ(u) (A.37)

so the CDF value a negative number can be determined from the
CDF value for the corresponding positive number. Thus, the table
is tabulated for only positive values of u. The identity of equation
89 might be intuitively clear if one views the standard normal PDF
illustrated at the top of Table A.1.

u 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214
1.1 0.86433 0.86650 0.86864 0.87076 0.87286 0.87493 0.87698 0.87900 0.88100 0.88298
1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147
1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91309 0.91466 0.91621 0.91774
1.4 0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189

1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408
1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449
1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327
1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062
1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670

2 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.98030 0.98077 0.98124 0.98169
2.1 0.98214 0.98257 0.98300 0.98341 0.98382 0.98422 0.98461 0.98500 0.98537 0.98574
2.2 0.98610 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899
2.3 0.98928 0.98956 0.98983 0.99010 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158
2.4 0.99180 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361

2.5 0.99379 0.99396 0.99413 0.99430 0.99446 0.99461 0.99477 0.99492 0.99506 0.99520
2.6 0.99534 0.99547 0.99560 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643
2.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.99720 0.99728 0.99736
2.8 0.99744 0.99752 0.99760 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807
2.9 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861

3
3.5
4
4.5
5

0.9999966
0.9999997

0.998650
0.999767
0.999968

21
21( ) ( )

2
( ) 1 ( )

u
x

Uu F u e dx

u u
π

−

−∞

Φ = =

Φ − = − Φ

∫

Table A.1: Standard normal cumulative
distribution function.

The normal distribution can be generalized to the case of more
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than one random variable. Two random variables are said to have a
joint normal distribution if they have the following joint PDF

fX,Y(x, y) =
1

2πσXσY
√

1− ρ2
exp

{
− z

2(1− ρ2)

}
(A.38)

where ρ is the correlation coefficient between X and Y, and

z =
(x− µX)

2

σ2
X

− 2ρ(x− µX)(y− µY)

σXσY
+

(y− µY)
2

σ2
Y

(A.39)

A plot of this joint PDF is shown in Figure A.6.

fX,Y (x,y)

y

x

Figure A.6: Joint normal probability
density function.

An important property of random variables having this distribu-
tion is that if X and Y are joint normal, then their marginal distribu-
tions ( fX(x) and fY(y)) are normal, and their conditional distribu-
tions are also normal. Specifically, the distribution of X given Y = y
is normal, with conditional mean

µX|Y=y = µX + ρ · σX

(
y− µY

σY

)
(A.40)

and conditional standard deviation

σX|Y=y = σX

√
1− ρ2 (A.41)

These properties are convenient when computing joint distributions
of ground motion parameters.
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A.4 Expectations and moments

A random variable is completely defined by its PMF or PDF (for dis-
crete and continuous random variables, respectively). Sometimes,
however, it is convenient to use measures that describe general fea-
tures of the distribution, such as its “average” value, breadth of feasi-
ble values, and whether the distribution has a heavier tail to the left
or right. We can measure these properties using moments of a ran-
dom variable, and they are often more convenient to work with for
engineering applications.

The mean is the most common moment, and is used to describe the
central location of a random variable. The mean of X is denoted µX

or E[X]. It can be calculated for a discrete random variable as

µX = ∑
all i

xi pX(xi) (A.42)

and for a continuous random variable as

µX =
∫

all x

x fX(x) dx (A.43)

Note that this is equal to the center of gravity of the PMF or PDF. The
equations may be recognizable to some readers as being very similar
to centroid calculations.

The variation of values to be expected from a random variable can
be measured using the variance, denoted σ2

X or Var[X]. It is calculated
for a discrete random variable as

σ2
X = ∑

all i

(xi − µx)
2 pX(xi) (A.44)

and for a continuous random variable as

σ2
X =

∫
all x

(x − µx)
2 fX(x) dx (A.45)

This the moment of inertia of the PDF (or PMF) about the mean.
The square root of the variance is known as the standard deviation,

and is denoted σX . It is often preferred to the variance when report-
ing a description of a random variable, because it has the same units
as the random variable itself (unlike the variance, whose units are the
original units squared).

Means and variances are special cases of the expectation operation.
The expectation of g(X) is defined for discrete random variables as

E[g(X)] = ∑
all i

g(xi) pX(xi) (A.46)
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and for continuous random variables as

E[g(X)] =
∫

all x

g(x) fX(x) dx (A.47)

The mean value is the special case of expectation where g(X) =

X, and the variance is the special case where g(X) = (X − µX)
2.

These are special cases of what are called moments of random vari-
ables, but we will restrict the discussion here to those two special
cases.

Finally, note that the normal random variable described above uses
the mean and standard deviation explicitly as parameters in its PDF.
So given knowledge of the mean and standard deviation of a normal
random variable, one knows its complete distribution. This is not the
case for random variables in general, but it is one of the reasons why
the normal random variable is convenient to work with.



B
Further study

Below is a list of important papers and summary books that would
be valuable for those interested in further study. References are
grouped by type, with a short description of their scope.

Origins and development of PSHA

• Cornell (1968) wrote the seminal document describing the concept
of PSHA.

• McGuire (2007) wrote history and summary of the early develop-
ment of PSHA.

Books and summary papers

• Kramer (1996) is a geotechnical-engineering focused book, with
chapter 4 devoted exclusively to PSHA. This chapter also contains
many references regarding the development of PSHA, and estima-
tion of the parameters needed as inputs to the calculations.

• McGuire (2004) is a monograph focused on probabilistic estima-
tion of losses from earthquakes, with a significant portion devoted
to PSHA. The monograph provides more information on practical
estimation of the needed input parameters, and discusses several
advanced topics omitted from this report.

• Reiter (1990) is another book describing PSHA. The authors in-
sights are particularly focused on nuclear applications, though
many of the concepts are more general. This book also makes a
significant effort to compare deterministic and probabilistic seis-
mic hazard analysis methods.

• Abrahamson (2006) is a fairly recent summary of current chal-
lenges and opportunities in PSHA.
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