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TECHNICAL NOTE 

Efficient analytical fragility function fitting 
using dynamic structural analysis 
Jack W. Bakera) M.EERI  

Estimation of fragility functions using dynamic structural analysis is an 

important step in a number of seismic assessment procedures. This paper discusses 

the applicability of statistical inference concepts for fragility function estimation, 

describes appropriate fitting approaches for use with various structural analysis 

strategies, and studies how to fit fragility functions while minimizing the required 

number of structural analyses. Illustrative results show that multiple stripe analysis 

produces more efficient fragility estimates than incremental dynamic analysis for a 

given number of structural analyses, provided that some knowledge of the 

building’s capacity is available prior to analysis so that relevant portions of the 

fragility curve can be approximately identified. This finding has other benefits, as 

the multiple stripe analysis approach allows for different ground motions to be used 

for analyses at varying intensity levels, to represent the differing characteristics of 

low intensity and high intensity shaking. The proposed assessment approach also 

provides a framework for evaluating alternate analysis procedures that may arise in 

the future. 

INTRODUCTION 

This paper describes statistical procedures for estimating parameters of fragility functions 

using nonlinear dynamic structural analysis results, and uses those procedures to evaluate 

various strategies for performing dynamic structural analysis to estimate fragility functions. A 

fragility function specifies the probability of collapse, or some other limit state of interest, of a 

structure as a function of some ground motion intensity measure, IM. The parameter IM is often 

quantified by spectral acceleration with a specified period and damping, though any measure 

of ground motion intensity can be used with the procedures below. Collapse fragility functions 

obtained from structural analysis results are increasingly popular in structural assessment 
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procedures (Applied Technology Council 2012, Chapter 6; Federal Emergency Management 

Agency 2009). An estimated fragility function can also be combined with a ground motion 

hazard curve to compute the mean annual rate of structural collapse (e.g., Shome 1999; Ibarra 

and Krawinkler 2005; Haselton and Deierlein 2007; Liel and Deierlein 2008).  

For a given ground motion and dynamic structural analysis result, the occurrence or non-

occurrence of collapse can be defined in a number of ways (Zareian and Krawinkler 2007). In 

this paper it is assumed that this definition is established and that for a given analysis there is 

a criterion to determine whether or not the ground motion caused collapse. The results below 

are not limited to any specific collapse definition, and in fact the performance state of interest 

need not be related to collapse (e.g., it could be exceedance of a some drift threshold), but the 

term “collapse” will be used below given the common use of these procedures with collapse 

assessment.  

There are a number of procedures for performing nonlinear dynamic structural analyses to 

collect the data for estimating a fragility function. One common approach is incremental 

dynamic analysis (IDA), where a suite of ground motions are repeatedly scaled in order to find 

the IM level at which each ground motion causes collapse (Vamvatsikos and Cornell 2002; 

Federal Emergency Management Agency 2009). A second common approach is multiple 

stripes analysis, where analysis is performed at a specified set of IM levels, each of which has 

a unique ground motion set (Jalayer 2003). As the type of data collected in these two cases 

differs, the appropriate approach for estimating fragility functions from the data also differs. 

This paper presents appropriate methods for fitting fragility functions to data from these and 

other related approaches. Given these methods for fragility function fitting, the paper then 

discusses optimal strategies for performing structural analysis in order to obtain an accurate 

fragility estimate with a minimal number of structural analyses. 

Fragility functions are in general derived using a variety of approaches such as field 

observations of damage, static structural analyses, or judgment (e.g., Kennedy and Ravindra 

1984; Kim and Shinozuka 2004; Calvi et al. 2006; Villaverde 2007; Porter et al. 2007; Shafei 

et al. 2011), but here the focus is on so-called analytical fragility functions developed from 

dynamic structural analysis. Unlike some other methods, in the case of analytical fragility 

functions the analyst has control over the data collected, by means of choosing the IM levels 

at which analysis is performed and the number of analyses performed at each level. This 

motivates the investigation below of effective ways to perform that data collection. 
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A lognormal cumulative distribution function is often used to define a fragility function 

  (1) 

 
where  is the probability that a ground motion with IM = x will cause the structure 

to collapse, Φ( ) is the standard normal cumulative distribution function (CDF),  is the 

median of the fragility function (the IM level with 50% probability of collapse) and  is the 

standard deviation of lnIM (sometimes referred to as the dispersion of IM). Equation 1 implies 

that the IM values of ground motions causing collapse of a given structure are lognormally 

distributed; this is a common assumption has been confirmed as reasonable in a number of 

cases (e.g., Ibarra and Krawinkler 2005; Porter et al. 2007; Bradley and Dhakal 2008; Ghafory-

Ashtiany et al. 2010; Eads et al. 2013), but it is not required and alternate assumptions can be 

used with the procedures described below. Calibrating equation 1 for a given structure requires 

estimating   and  from structural analysis results. We will denote estimates of those 

parameters as  and .  

Parameter estimation is the field of statistics associated with estimating values of model 

parameters based on observed data that has a random component (e.g., Rice 1995). In this case, 

our parameters of interest are  and , and we have randomness because record-to-record 

variability causes ground motions with the same IM level to produce different demands on a 

given structure. There are two common statistical approaches for estimating parameters from 

data. The method of moments finds parameters such that the resulting distribution has the same 

moments (e.g., mean and standard deviation) as the sample moments of the observed data. The 

maximum likelihood method finds the parameters such that the resulting distribution has the 

highest likelihood of having produced the observed data. Common desirable properties of the 

estimators are that they be unbiased (the estimators do not systematically overestimate or 

underestimate the true parameter’s value), efficient (the estimators have as small variance) and 

consistent (as the number of data goes to infinity, the estimator converges to the true parameter 

value).  

The use of parameter estimation procedures to estimate fragility functions is discussed in 

the following section. Appropriate estimation procedures are defined and then used to 

investigate approaches for performing structural analysis, to identify approaches that produce 
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accurate fragility function estimates with a minimum number of required structural analyses. 

The findings are then summarized to offer recommendations on structural analysis and 

parameter estimation strategies that produce efficient estimates of collapse fragility functions. 

ESTIMATING FRAGILITY FUNCTION PARAMETERS 

There are a number of ways to estimate parameter values for a fragility function that are 

consistent with observed data, depending upon the procedure used to obtain structural analysis 

data, as discussed in this section. 

INCREMENTAL DYNAMIC ANALYSIS  

Incremental dynamic analysis involves scaling each ground motion in a suite until it causes 

collapse of the structure (Vamvatsikos and Cornell 2002). This process produces a set of IM 

values associated with the onset of collapse for each ground motion, as illustrated in Figure 1a. 

The probability of collapse at a given IM level, x, can then be estimated as the fraction of 

records for which collapse occurs at a level lower than x. A plot of these probabilities is shown 

in Figure 1b, and is referred to as an empirical cumulative distribution function. Fragility 

function parameters can be estimated from this data by taking logarithms of each ground 

motion’s IM value associated with onset of collapse, and computing their mean and standard 

deviation (e.g., Ibarra and Krawinkler 2005).  

  (2) 

  (3) 

where n is the number of ground motions considered, and IMi is the IM value associated with 

onset of collapse for the ith ground motion. This is a method of moments estimator, as  

and  are the mean and standard deviation, respectively, of the normal distribution 

representing the lnIM values. Note that the mean of lnIM is equal to the median of IM in the 

case that IM is lognormally distributed, which is why using the sample mean in this manner 

produces an estimate of . The mean and standard deviation, or moments, of the distribution 

are estimated using the sample moments from a set of data. A fragility function fitted using 

this approach is shown in Figure 1b. 
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This fragility fitting approach has been used widely, and is denoted “Method A” by Porter 

et al. (2007). It has been used to calibrate fragility functions for data other than structural 

collapse (e.g., Aslani and Miranda 2005). A related alternative is to use counted fractiles of the 

IMi values, rather than their moments, to estimate  and  (Vamvatsikos and Cornell 2004).  

 
Figure 1. a) Example incremental dynamic analyses results, used to identify IM values associated with 
collapse for each ground motion. b) Observed fractions of collapse as a function of IM, and a fragility 
function estimated using equations 2 and 3.   

TRUNCATED INCREMENTAL DYNAMIC ANALYSIS  

With incremental dynamic analysis, some ground motions may need to be scaled to large 

IM values in order to produce collapse, which raises several concerns. First, it is 

computationally expensive, as it requires many structural analyses to be performed with 

increasing IM levels, in order to finally observe a collapse. Second, the large-IM results are 

less practically relevant, as the fragility function values at large IM levels are of less interest 

than values at small IM levels, as will be discussed further below. Finally, it is questionable 

whether scaling typical moderate-IM ground motions up to extreme IM levels is an accurate 

way to represent shaking associated with real occurrences of such large IM levels (Baker and 

Cornell 2005a). One potential strategy to address these concerns is to perform incremental 

dynamic analysis only up to some level, IMmax, above which no further analyses are performed. 

Illustrative results from this type of analysis are shown in Figure 2a. If n ground motions are 

used in the analysis, there will in general be m ground motions that caused collapse at IM levels 

less than IMmax, and n-m ground motions that did not cause collapse prior to the analyses being 

stopped.  

q b
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This type of data cannot be used to estimate fragility functions using equations 2 and 3.  

Instead we use the maximum likelihood method to compute the likelihood of observing the 

data that was observed, given a candidate fragility function.  

 
Figure 2. a) Example truncated IDA analysis results. b) Observed fractions of collapse as a function of 
IM, and a fragility function estimated using equation 7.  

For the m ground motions that were observed to cause collapse, their IM values at collapse 

(IMi) are known. The likelihood that an arbitrary ground motion causes collapse at IMi, given 

a fragility function defined by equation 1, is the normal distribution probability density 

function (PDF) 

  (4) 

where  denotes the standard normal distribution PDF. The n-m ground motions that did 

not cause collapse at IMmax are called censored data, as we only know that IMi is greater than 

IMmax (e.g., Klugman et al. 2012, section 15.2.4). The likelihood that a given ground motion 

can be scaled to IMmax without causing collapse is the probability that IMi is greater than IMmax 

  (5) 

Making the reasonable assumption that the IMi value for each ground motion is 

independent, the likelihood of the entire data set being observed is the product of the individual 

likelihoods  

  (6) 
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where  denotes a product over i values from 1 to m (corresponding to the m ground motions 

that caused collapse at IM levels less than IMmax). Using this equation, the fragility function 

parameters are then obtained by varying the parameters until the likelihood function is 

maximized. It is mathematically equivalent and numerically easier to maximize the logarithm 

of the likelihood function, so in general we do that. 

  (7) 

It is simple to perform this maximization using a spreadsheet or simple computer program, as 

will be discussed later. A fragility function obtained using this equation is shown in Figure 2b, 

as obtained using the IMi and IMmax values shown in that figure. 

Note that in the special case where all n ground motions cause collapse at IM values less 

than IMmax, equation 7 has an analytical solution for the values of  and  that maximize the 

equation, and the solution is equivalent to that of equations 2 and 3, except that the “n-1” in 

equation 3 is an “n” in this solution (the difference being due to the common choice in equation 

3 to use an unbiased variance estimator rather than the maximum likelihood estimator). Note 

also that the normal distribution PDF and CDF in equation 7 can be replaced with the PDF and 

CDF of another distribution type, in order to fit a fragility function for some other distribution. 

MULTIPLE STRIPES ANALYSIS  

Rather than using incremental dynamic analysis, structural analyses are sometimes 

performed at a discrete set of IM levels, and different ground motions are used at each IM level. 

This multiple stripes analysis (MSA) approach is common when using the Conditional 

Spectrum or other approaches to select ground motions representative of a specific site and IM 

level, because the target properties of the ground motions change at each IM level and thus so 

do the representative ground motions (e.g., Bradley 2010; Iervolino et al. 2010; Lin et al. 2013). 

With this approach, the analysis need not be performed up to IM amplitudes where all ground 

motions cause collapse. Data of this type is illustrated in Figure 3. Due to the differing ground 

motions used at each IM level, the analyst may not observe strictly increasing fractions of 

collapse with increasing IM, even though it is expected that the true probability of collapse is 

increasing with IM.  

With data of this type, we cannot use the estimation approaches described earlier, because 

we do not have the IMi values associated with the onset of collapse for a given ground motion. 
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Instead, the structural analysis results provide the fraction of ground motions at each IM level 

that cause collapse. The appropriate fitting technique for this type of data is to use the method 

of maximum likelihood, as has been noted by a number of authors (Shinozuka et al. 2000; 

Baker and Cornell 2005b; Straub and Der Kiureghian 2008). The approach is described briefly 

here. 

 
Figure 3. a) Example MSA analysis results. Analyses causing collapse are plotted at Peak Story Drift 
Ratios of greater than 0.08, and are offset from each other to aid in visualizing the number of collapses. 
b) Observed fractions of collapse as a function of IM, and a fragility function estimated using equation 
11.   

At each intensity level IM = xj, the structural analyses produce some number of collapses 

out of a total number of ground motions. Assuming that observation of collapse or no-collapse 

from each ground motion is independent of the observations from other ground motions, the 

probability of observing zj collapses out of nj ground motions with IM = xj is given by the 

binomial distribution 

  (8) 

where pj is the probability that a ground motion with IM = xj will cause collapse of the structure.  

Our goal is to identify the fragility function that will predict pj, and the maximum likelihood 

approach identifies the fragility function that gives the highest probability of having observed 

the collapse data that was obtained from structural analysis. When analysis data is obtained at 

multiple IM levels, we take the product of the binomial probabilities (from equation 8) at each 

IM level to get the likelihood for the entire data set 

  (9) 
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where m is the number of IM levels, and  denotes a product over all levels. We then substitute 

equation 1 for pj, so the fragility parameters are explicit in the likelihood function.  

  (10) 

Estimates of the fragility function parameters are obtained by maximizing this likelihood 

function. It is equivalent and numerically easier to maximize the logarithm of the likelihood 

function, so we do that 

  (11)  

A fragility function obtained using this approach is displayed in Figure 3.  

A few comments can now be made regarding this formulation. First, equation 11 is written 

using a lognormal cumulative distribution function for the fragility function, but other 

functions can be substituted without changing the fitting approach. Second, this formulation 

does not require multiple observations at each IM level of interest (i.e., ni can equal 1). This 

makes it useful, for example, when fitting a fragility function using unscaled ground motions, 

each having unique IM amplitudes. Third, this formulation assumes independence of 

observations, so that the overall likelihood is product of likelihoods at each IM level. This 

independence may not be strictly true if the same ground motion is used for structural analysis 

at multiple xi levels, although quantifying this dependence may be somewhat challenging and 

anecdotal evidence suggests that relaxing the assumption typically makes little numerical 

difference in the estimated parameters. In fact, example analyses appear to indicate that the 

approach produces effective fragility estimates even with IDA data, where identical ground 

motions are used at all IM levels. Straub and Der Kiureghian (2008) discuss a generalization 

of the above approach that allows consideration of dependent samples, though the formulation 

is more complex to implement. 

A numerically equivalent alternative to equation 11 is to use generalized linear regression 

with a Probit link function to predict the probability of collapse as a function of lnIM (Agresti 

2012). Generalized linear regression uses maximum likelihood for estimation and the Probit 

link function is equivalent to using the normal cumulative distribution function as the fragility 

function. Generalized linear regression is available in many statistical software packages (e.g., 

R Team 2012; The Mathworks 2012). Logistic regression has also been used for fragility 
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function calibration using this type of data, and is consistent with maximum likelihood 

principles, though it fits a logistic rather than lognormal distribution for the fragility (e.g., 

Basöz and Kiremidjian 1998; Baker and Cornell 2005a).  

POTENTIAL ALTERNATIVE METHODS FOR MULTIPLE STRIPES ANALYSIS  

One alternative to the use of equation 11 to estimate a fragility function from multiple 

stripes analysis data would be to minimize the sum of squared errors (SSE) between the 

observed fractions of collapse and probabilities of collapse predicted by the fragility function.  

Mathematically, this would be stated 

  (12) 

where all variables are defined earlier. Example results from this approach are shown in Figure 

4. Another alternative would be to fit the function using the “Method B” approach of Porter et 

al. (2007). This method transforms the observed fractions of collapse so that linear regression 

can be used to estimate the fragility function parameters. This approach also minimizes an error 

metric between observations and a fitted function—in this case the sum of squared errors in 

the transformed space. 

 
Figure 4. Observed fractions of collapse from Figure 3, and fitted fragility functions obtained using the 
maximum likelihood approach and two potential alternative methods.  

The fragility functions obtained from equations 11, 12 and Porter et al. Method B will in 

general differ, because the least-squares method ignores a fundamental property of the data: 

the variance of the observed fractions of collapse is non-constant, in violation of the 

requirements of least squares fitting (Agresti 2012). For example, if zero collapses are observed 

at a given IM level and the fitted probability of collapse is 0.1, then this error is much larger 
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than fitting a probability of collapse of 0.6 at an IM level where 50% of motions are observed 

to cause collapse.  

The results from these approaches are shown in Figure 4, where the alternate approaches 

predict relatively higher probabilities of collapse at low IM levels that the data suggests are 

very unlikely to cause collapse. Additionally, the parameter estimates obtained from these 

approaches will be biased, as can be determined using the assessment procedure proposed in 

the following section. These alternate approaches are thus not recommended for use in fitting 

this type of data. They are only mentioned briefly here to illustrate the potential problems with 

seemingly-reasonable alternative approaches. 

EFFICIENT STRATEGIES TO PERFORM STRUCTURAL ANALYSIS FOR 

FRAGILITY FUNCTION FITTING 

For a given set of collapse data obtained from multiple stripes analysis, equation 11 

provides the statistically appropriate approach for fragility estimation. But an engineer also 

needs to choose how to collect structural analysis data for the fragility estimation. There have 

been approaches proposed for efficiently estimating a fragility function from a small number 

of analyses (Bradley 2013; Eads et al. 2013), but none that evaluated the proposed approach 

by studying statistics of the estimated parameters. This section proposes an approach to study 

how to effectively collect structural analysis data for fragility function fitting. 

ANALYSIS APPROACH 

To study potential structural analysis strategies, the following Monte Carlo approach is 

proposed. We first simulate hypothetical structural analysis data from a known fragility 

function, and then re-estimate that fragility function from the data, using the following steps: 

1. Assume a fragility function (i.e., numerical values of  and  for equation 1).  

2.  “Collect data” via Monte Carlo simulation by generating collapses or non-collapses at 

each IM level of interest according to the collapse probability given by the fragility 

function from step 1. After this data is collected, the assumed fragility function is 

treated as unknown. 

3. Using the data from step 2, estimate a fragility function using equation 11. 

4. Repeat steps 2 and 3 many times, to measure how similar the estimated fragility 

functions are to the original assumed fragility function.  

q b
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These steps are illustrated graphically in Figure 5, for an assumed fragility function with  = 

1 and  = 0.4.  

With this approach, the collapse and non-collapse data in step 2 are coming from an 

assumed fragility function rather than from structural analysis results. This has several 

advantages for the purpose of this study. First, because the fragility function producing the data 

is known, we can easily quantify how close the later fragility estimates are to this correct 

answer. Second, because the collapse and non-collapse data is simulated using a random 

number generator, it is very fast to produce and thus facilitates studies of a large number of 

analysis strategies without the computational expense of real structural analysis. Finally, an 

essentially infinite number of data can be produced, while the finite number of available ground 

motions would limit the amount of real data that could be obtained from structural analysis. 

For related reasons, a similar procedure was used recently by Gehl et al. (2013) to quantify the 

accuracy of structural response estimation strategies. 

Once the data have been collected, we must then determine how well the fragility function 

is being estimated. The following metrics are considered here: the  and  parameter 

estimates, and rate-of-collapse estimates, given a ground motion hazard curve and fitted 

fragility function (as defined below). Desirable properties of our estimates of these metrics are 

that they be unbiased and efficient. We measure bias by comparing the mean of repeated 

parameter estimates to the true parameter value being estimated. For example, in Figure 5a, the 

true median of the fragility curve is 1, and the mean of the  estimates in Figure 5d is 

essentially 1, indicating that the estimated  values are correct on average (i.e., unbiased). 

When considering analysis strategies below, any potential case that appears to produce a bias 

is rejected (such cases arise, for example, when one uses only two closely spaced IM levels 

and the resulting data sometimes produces unstable fragility estimates); note that this problem 

can be mitigated by use of larger numbers of ground motions at each IM level, though the 40 

ground motions considered here is already near the upper limit of most industry or research 

efforts to fit fragility functions. We measure efficiency by computing the standard deviation of 

repeated parameter estimates. An efficient data collection strategy will lead to a small standard 

deviation, indicating that parameter estimates will be relatively stable despite the expected 

record-to-record variation in analysis results. For example, the fragility estimates in Figure 5 

were obtained using 40 hypothetical ground motions each at IM = {0.6, 1, 1.5}, and resulted 

in a standard deviation of  of 0.056. If only 20 ground motions are used at the same three IM 
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levels, the standard deviation of  increases to 0.078, indicating the tradeoff between the 

computational expense of doing more analyses and the reduced estimation uncertainty that the 

additional analyses provide. 

  
Figure 5. Illustration of procedure used to evaluate structural analysis strategies. (a) Assumed fragility 
function from step 1. (b) One realization of collapse data at three IM levels from step 2, and 
corresponding estimated fragility function from step 3. (c) Multiple realizations of fitted fragility 
functions, from step 4. (d) Histogram of estimated  values from each fitted fragility function. 

In the example analyses below (and the analyses shown in Figure 5) the assumed fragility 

function has  = 1 and  = 0.4. The x-axis label on figures in this section is IM, but the axis 

could also be interpreted as IM/ , or “fraction of median IM,” for the purposes of translating 

the results to fragility functions with other medians, so long as  is assumed equal to 0.4 (a 

common value for collapse fragility functions).  

For a given fragility curve, we can also compute the annual rate of collapse of the structure 

(λcollapse ) using  
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  (13) 

where  is a ground motion hazard curve, specifying the annual rate of ground motions 

with IM>x, and  is the absolute value of the derivative of the hazard curve. This 

calculation requires a hazard curve to be specified. One real hazard curve for downtown Los 

Angeles is considered here, and is obtained from the  U.S. Geological Survey for IM = one-

second spectral acceleration on a site with Vs30 = 760 m/s (Petersen et al. 2008). To generalize 

the results, idealized power-law hazard curves of the following form are also considered 

  (14) 

The exponent k represents the steepness of the hazard curve. Values of k=2 and k=3 are used 

to represent typical shapes of spectral acceleration hazard curves observed in seismically active 

parts of the United States (Yun et al. 2002). The coefficient k0 scales the overall rate of ground 

motions and thus the rate of collapse. Here k0 = 0.0002 and 0.00012 for the k=2 and 3 cases, 

respectively, are chosen to approximately match the Los Angeles hazard curve, but k0 does not 

affect the relative effectiveness of various structural analysis strategies. The three considered 

hazard curves are shown in Figure 6. For the assumed fragility function considered here, the 

k=2, k=3 and Los Angeles hazard curves produce probabilities of collapse of 0.013, 0.012 and 

0.011 in 50 years, respectively.  

 
Figure 6. Example ground motion hazard curves considered for λcollapse calculations.  
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ANALYSIS RESULTS 

Given the above assumed fragility curves and evaluation metrics, potential structural 

analysis strategies were studied. Forty analyses at each of three IM levels were performed (i.e., 

it was assumed that 40 ground motions at three IM levels would be used when analyzing a real 

structure). The values of the lower and upper IM levels were varied, with the third IM level 

being chosen as the midpoint of the lower and upper value. For each set of potential IM levels, 

1000 sets of data (i.e., 40 collapse or non-collapse realizations at each of the three IM levels) 

were simulated from the assumed fragility curve, and 1000 corresponding fragility functions 

were estimated. The 1000 values of ,  and lcollapse were then studied, to see which choices 

of IM levels produced estimates of those parameters with the smallest standard deviations. If a 

set of candidate IM levels produced biased estimates of any of those metrics, they were 

discarded. Bias was judged to be present if the mean value of the 1000 simulations’ metrics 

differed from the true value by more than 10%. Such cases arose when the IM levels were too 

closely spaced together or extended far into the ranges where 0 or 100% collapses were 

predicted, leading to numerically unstable parameter estimates arising in a significant fraction 

of the 1000 simulations. Of the non-biased IM levels, the levels producing the smallest standard 

deviations for each of the five metrics are shown in Table 1. Figure 7a shows the same values 

from Table 1, but superimposed on the assumed fragility function to aid in illustrating where 

the effective IM levels fall relative to the fragility function. Additionally, to aid interpretation, 

the probabilities of collapse at the optimal upper and lower IM levels are given in Table 1. 

Table 1. Optimal upper and lower IM levels for collecting data using three IM stripes to estimate five 
fragility function-related parameters. 

 Lower IM P(C|lower IM) Upper IM P(C|upper IM) 
θ 0.7 0.2 1.3 0.7 
b 0.7 0.2 2.0 0.96 

lcollapse (k = 2) 0.4 0.02 0.9 0.4 
lcollapse (k = 3) 0.4 0.02 1.0 0.5 
lcollapse (L.A.) 0.4 0.02 0.9 0.4 

 
While these results are specifically relevant only for the number of ground motions and IM 

levels considered here, and to the case where a lognormal fragility function is assumed, a  few 

general observations can be made. When estimating  and , the effective IM values are 

approximately centered around the median of the fragility function. The  parameter is most 

efficiently estimated by considering a relatively wider range of IM, which makes intuitive sense 

q b

q b

b
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given that this parameter quantifies the slope of the fragility function and slopes are well 

estimated using widely spaced data points. The IM levels producing optimal estimates of the 

lcollapse values are located towards the left side (“lower tail”) of the fragility function. This is 

because ground motions with low IM levels occur much more frequently than ground motions 

with high IM levels, and so when quantifying the rate of collapse it is more important to 

accurately estimate the left side of the fragility function than the right side. 

Table 2. Optimal upper and lower IM levels for collecting data using two IM stripes to estimate five 
fragility function-related parameters. 

 Lower IM P(C|lower IM) Upper IM P(C|upper IM) 
θ 0.7 0.2 1.3 0.7 
b 0.6 0.1 1.8 0.9 
lcollapse (k = 2) 0.6 0.1 1.3 0.7 
lcollapse (k = 3) 0.6 0.1 1.6 0.9 
lcollapse (L.A.) 0.6 0.1 1.3 0.7 

 
 

 
 

Figure 7. IM levels for collecting data that most efficiently estimates fragility function-related 
parameters, superimposed on fragility function a) with three IM stripes, b) with two IM stripes. The y-
axis values associated with the optimal IM stripes are arbitrary, and have been offset for each case to 
aid in viewing. 

To study an alternate analysis strategy, the procedure was performed again using only two 

IM levels for data collection rather than three. Again 40 analyses at each IM level were 

considered, and the optimal IM levels with respect to the various parameter values were 

determined. These optimal IM levels are summarized in Table 2 and Figure 7b. Relative to the 

comparable results with three IM levels, several observations can be made. When estimating 

 and , the effective IM upper and lower values are nearly unchanged from the case then q b
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three IM levels are used. For the lcollapse estimates, the optimal upper and lower IM levels shift 

to the right relative to the three-IM case. This is presumably because in the previous case the 

lower IM level produced almost zero probability of collapse; observing zero or very few 

collapses at a given IM level is a good constraint on a fragility function, as long as there are 

two or more other IM levels for which collapses are observed. When only two IM levels are 

considered, however, then if one IM level produces no collapses then there is no unique 

solution for the fragility curve.  

 
Figure 8. a) Collapse deaggregation plot for the Los Angeles hazard curve considered, with the fragility 
function shown for reference. b) Cumulative collapse deaggregation plot, with the fragility function 
shown for reference and the optimal IM levels from above noted on the deaggregation plot. The y-axis 
values associated with the optimal IM stripes are arbitrary, and have been offset for each case to aid in 
viewing. 

Another way to evaluate the results from the λcollapse estimation is to study the collapse 

deaggregation plots, as illustrated in Figure 8. The collapse deaggregation is the probability 

distribution of IM levels contributing to collapse, as computed by 

  (15) 

A cumulative distribution of these deaggregated values can also be obtained by integrating this 

result from 0 to the IM level of interest, and results of this type are shown in Figure 8b. 

Deaggregation is a simple way to identify important IM levels, as the numerator in equation 15 

is large for IM levels where both the probability of collapse and probability of IM occurrence 

is large, and the denominator is simply a normalizing constant. This calculation requires the 

fragility function and a hazard curve, so in Figure 8 results are shown for the Los Angeles 

hazard curve. We see that the highest values of the deaggregation plot are to the left of the 

median, indicating that the most important IM levels (and thus the most important portion of 
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the fragility curve to estimate accurately) fall below the median of the fragility curve. This is 

expected, because the probability of observing a ground motion with a given IM level drops 

quickly as the IM level increases. By comparing these deaggregation plots to the results of 

Table 1 and Table 2, we see that the optimal IM levels for effectively estimating λcollapse 

correspond to IM levels for which the collapse deaggregation is high. This comparison is 

motivated by the work of Eads et al. (2013), who proposed a strategy for choosing IM levels 

for data collection and fragility fitting relative to collapse deaggregation levels. That study 

proposed using two IM levels for collapse deaggregation, corresponding to the estimated 35% 

and 90% points on the cumulative collapse deaggregation plots. Figure 8b indicates that the 

optimal two IM levels for the L.A. hazard curve case fall at approximately the 15% and 80% 

points on the cumulative collapse deaggregation. Similar percentages were observed for the 

other hazard curves as well—10% to 70% and 20% to 90% for the k=2 and k=3 hazard curve 

cases, respectively. When three or more IM levels are considered, the optimal percentage levels 

decrease significantly, as indicated in Figure 8b. 

EVALUATION OF IDA AND MSA ANALYSIS STRATEGIES  

The proposed evaluation approach can also be used to compare the effectiveness of 

incremental dynamic analysis and multiple stripes analysis approaches for collecting data. We 

will consider five strategies, again using an assumed fragility function with  and 

. For each strategy, we perform 1000 Monte Carlo simulations of synthetic structural analysis 

results to obtain 1000 sets of estimated fragility parameters, and then study the variability of 

the metrics resulting from the fitted fragilities.  

The first strategy is to do incremental dynamic analysis with 20 ground motions. The IDA’s 

are assumed to be performed with an IM step size of 0.1 (i.e., “analyses” are performed at IM 

= 0.1, 0.2, etc., until collapse is observed). The true collapse IM level for each ground motion 

is determined using Monte Carlo simulation from a lognormal random variable with  and 

. The observed collapse IM for each IDA analysis is then taken as the midpoint of the 

steps before and after collapse is observed, and equations 2 and 3 are used to estimate the 

fragility function parameters. The second strategy is to do truncated IDA with 20 ground 

motions, and stop performing analyses at the IM level for which half of the ground motions 

have been observed to cause collapse. The true collapse IM for each ground motion is obtained 

using the same Monte Carlo approach, the IDA’s are again assumed to have the same 0.1 step 

size, and equation 7 is used to estimate the fragility function parameters. The final three 

1q = 0.4b =

1q =

0.4b =
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strategies use multiple stripes analysis. Two or three IM levels are considered, and the IM levels 

are chosen to represent the generally effective IM levels identified in Table 1 and Table 2.  

For each of these strategies, 1000 sets of fragilities were estimated, the five metrics of 

interest were computed, and the coefficient of variation (COV) of each metric’s 1000 estimates 

was computed. The results are summarized in Table 3, along with the number of structural 

analyses that each strategy would require. For the two IDA analysis strategies, the number of 

required analyses will vary depending upon the particular IM levels at which a given ground 

motion causes collapse, so the mean number of analyses is reported in Table 3. 

A few observations can be made from the COV values shown in Table 3. The multiple 

stripes strategy with 45 ground motions at three IM levels is most effective with regard to all 

five metrics, as it produces the lowest COV values for all five parameters. This is presumably 

because all of the analyses are focused at IM levels where structural analysis results will 

produce strong constraints on the fragility function, unlike IDA, where a significant number of 

the analyses are performed for IM<0.5, which for this fragility function is very unlikely to 

produce collapses. The number of analyses can be further reduced, by either reducing the 

number of stripes or reducing the number of ground motions, without dramatically increasing 

the COVs of the estimated parameters, as can be seen from the results of the fourth and fifth 

strategy. Truncating the IDA analyses after 50% of the motions cause collapse is not a 

particularly effective strategy, as the number of analyses is reduced by only 20% (since all of 

the ground motions are used for analysis a number of times even if they are not analyzed up to 

their collapse levels), but the uncertainty in the all of the metrics besides  increases 

appreciably.  

Table 3: Computation expense of five analysis strategies and associated standard errors of the five 
metrics considered. For the IDA results, the Number of Analyses is the mean number of required 
analyses.  

IDA with 20 
ground 
motions 

Truncated 
IDA with 20 

motions  

45 motions at 
IM =  

[0.4 0.8 1.2] 

30 motions at 
IM =  

[0.4 0.8 1.2] 

45 motions at 
IM =  

[0.5, 1.2] 

Number of analyses  227 184 135 90 90 
COV of θ 0.09 0.10 0.06 0.08 0.07 
COV of b 0.16 0.26 0.20 0.26 0.40 

COV of lcollapse (k=2) 0.22 0.39 0.15 0.20 0.24 
COV of lcollapse (k=3) 0.38 0.57 0.33 0.55 0.51 
COV of lcollapse (L.A.) 0.29 0.65 0.20 0.27 0.33 

 

q
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From these among these considered options, it appears that an effective strategy for 

fragility fitting is to focus structural analyses at a limited number of IM levels using multiple 

stripes analysis, rather than doing incremental dynamic analysis. This observation is consistent 

with the recommendations of Eads et al. (2013). That strategy also has the benefit of allowing 

the analyst to use different ground motions at each IM level, which allows for more accurate 

representation of ground motion properties (Baker and Cornell 2005a). The results suggest that 

choosing IM levels near the lower tail of the fragility function and up to IM levels slightly 

above the median would be a generally effective strategy. 

The obvious limitation of these results is that the IM levels that provide good constraints 

on the fragility curve are defined relative to the fragility curve itself, but for real structural 

analysis applications the fragility curve is unknown. Nonetheless, an approximate fragility 

function can be predicted prior to analysis and then used with the above results to estimate 

effective IM levels for analysis (Eads et al. 2013). If we make an accurate prediction of the 

fragility then the above results are relevant in indicating effective analysis strategies. But if we 

make a poor prediction of the fragility then we might perform analyses at IM levels that are not 

as informative as other level. It should be noted, however, that multiple stripe analysis 

strategies using slightly higher or lower IM levels than those in Table 3 tend to produce similar 

results, indicating that there is some margin for error in predicting the fragility curve while still 

identifying potentially informative IM levels for analysis. Another effective way to add 

robustness to the strategy in the face of an unknown fragility is to do an initial set of analyses 

at an estimated IM level, use those results to update the estimated fragility and identify the next 

IM level for analysis based on that updated estimate, as proposed by Eads et al. (2013). Another 

effective way to build robustness in the face of an unknown fragility is to spread the analyses 

over a greater number of IM levels; the fourth and fifth cases above indicate that using the same 

number of analyses spread over three instead of two IM levels results in similar statistical 

estimation efficiency but increases the range of levels at which information is gathered. Use of 

more than three IM levels may also be useful in real applications, in order to ensure useful data 

at a number of IM levels in the case where the capacity of the structure is over- or under-

estimated and some IM levels produce 0% or 100% collapses. 

There are obviously many other data collection approaches that could be considered, some 

of which may produce more efficient estimates of fragility functions than the ones discussed 

above, such as using different numbers of ground motions at each IM stripe, or using a hunt-
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and-seek approach with IDA (Vamvatsikos and Cornell 2002). Identifying effective strategies 

requires identifying strategies that are optimal from a statistical inference perspective but also 

practical for an engineer to implement. For example, it is practically easier to select all ground 

motions prior to beginning structural analysis, which is more difficult when IM levels are 

adaptively updated. A similar implementation issue arises with IDA; while the efficient hunt-

and-seek strategy was proposed more than 10 years ago, many users of IDA use the slightly 

simpler but more expensive approach of scaling ground motions up by a fixed IM increment 

until collapse is observed. 

Despite the limitations of the strategies considered here, these results do provide insights 

regarding the characteristics of effective structural analysis strategies. Further, the proposed 

approach provides a framework for quantitatively testing the effectiveness of any potential 

strategy prior to implementing it with a computationally expensive structural analysis model.  

CONCLUSIONS 

This paper discusses the applicability of statistical inference concepts for fragility function 

fitting, identifies appropriate fitting approaches for different data collection strategies, and 

illustrates how one might fit fragility functions using an approach that minimizes the required 

number of structural analyses. First, incremental dynamic analysis and multiple stripe analysis 

approaches for data collection were discussed, and corresponding statistically appropriate 

methods for fragility function fitting were described. Next, an approach was proposed to 

evaluate the efficiency of those analysis approaches for estimating a fragility function. The 

proposed approach involved repeatedly simulating synthetic structural analysis data that was 

consistent with an assumed fragility function, and then studying fragility functions estimated 

from the simulated data. Unlike most previous studies of fragility function fitting, which used 

real data from dynamic structural analysis, this study used synthetic data simulated from 

assumed distributions. This approach is useful, as the true fragility function from which the 

data came is known, and so strategies can be evaluated to verify that they efficiently produce 

fragility estimates close to the true answer. The use of synthetic data also allows for much 

greater numbers of results to be produced, so that more extensive statistical studies can be 

performed. 

This study then compared the efficiency of collapse fragilities obtained from incremental 

dynamic analysis and multiple stripes analysis. Multiple stripes analysis is seen to be more 
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efficient than incremental dynamic analysis, because analyses can be targeted at a limited 

number of important IM levels, rather than requiring analysis at high or low IM levels 

associated with collapse for some ground motions but not as critical for constraining the 

fragility function. This finding is useful from a statistical perspective, but also beneficial from 

a structural modeling perspective because multiple stripes analysis allows for ground motions 

selected using the Conditional Spectrum and other approaches that require different ground 

motions at each IM level. The results also indicated that fragility functions may be efficiently 

estimated by focusing on IM levels at which there are lower probabilities of collapse, saving 

analysis time and focusing the fitting on the region of the fragility most important for risk 

assessments.  

These results provide guidance to efficiently estimate fragility functions from a small 

number of ground motions and structural analyses. The fitting procedures are easy to 

implement, and several simple software tools have been provided to facilitate their use. 

SOFTWARE TOOLS 

To facilitate adoption of the parameter estimation approaches described above, simple 

software tools have been created to demonstrate the calculations. The user needs only provide 

observed data, and the software tools will numerically estimate fragility function parameters 

using the approaches described in this paper. The procedures have been implemented in both 

Excel and Matlab, and are available at http://purl.stanford.edu/sw589ts9300.  
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