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Summary

Ground shaking intensity varies spatially in earthquakes, and many studies have
estimated correlations of intensity from past earthquake data. This paper presents
a framework for quantifying uncertainty in the estimation of correlations, and true
variability in correlations from earthquake to earthquake. A procedure for evaluat-
ing estimation uncertainty is proposed and used to evaluate several methods that
have been used in past studies to estimate correlations. The results indicate that a
weighted-least-squares algorithm is most effective in estimating spatial correlation
models, and that earthquakeswith at least 100 recordings are needed to produce infor-
mative earthquake-specific estimates of spatial correlations. The proposed procedure
is also used to distinguish between estimation uncertainty and the true variability
in model parameters that exist in a given data set. The estimation uncertainty is
seen to vary between well-recorded and poorly recorded earthquakes, while the true
variability is more stable.
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1 INTRODUCTION

Spatial correlations in ground motion intensities have been studied for nearly two decades e.g., 1,2,3,4,5,6,7. These studies calibrate
models using statistical analysis of recorded data from past earthquakes, in a manner similar to groundmotion prediction models.
The resulting models are important for estimating risks to distributed systems such as portfolios of insured properties and
distributed infrastructure systemse.g., 8,9,10,11,12.
As our library of recorded ground motions grows over time, spatial correlation studies have grown in refinement, with several

studies exploring factors that may cause spatial correlation to vary from one earthquake to another. Goda and Hong13 report
differences in correlations between California and Taiwan ground motions, but no effect of earthquake magnitude. Jayaram and
Baker14 and Sokolov et al.15 speculate that soil condition heterogeneity may influence spatial correlation. Goda5 and Heresi and
Miranda16 report that spatial correlations vary from individual earthquake to earthquake, but find no earthquake characteristic
that clearly predicts this variation. Schiappapietra and Douglas17 report high variability in correlations amongst a sequence of
earthquakes in Central Italy, and list local site effects or path and azimuthal effects as possible causes, noting Sokolov et al.’s15
similar speculation. Other studies note a possible trend with earthquake magnitude18,19 or variation regionally20. Other studies
group data from multiple earthquakes into a single data set, making the assumption that correlations from the earthquakes are
equivalent4,7,6,21,22.
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Several issues make it difficult to definitively identify important factors. First, because the spatial correlation estimation is
empirical and requires many observed ground motions from an earthquake, it is difficult to obtain sufficient data under the
conditions of interest. Second, there are no closed-form results from spatial correlation estimation that allow for a quantitative
assessment of the uncertainty in a given estimate. Bootstrap estimation is another popular technique to quantify estimation
uncertainty. However, it is difficult to apply to spatial data because of challenges with maintaining spatial dependence structure
in the replicates while avoiding resampling the same location within a replicate (which provides no information about spatial
structure). Some studies have proposed bootstrap techniques that resample from an estimated nonparametric distribution23 or
resampling transformed data24, but the methods are somewhat complex and have not been adopted widely. For the above reasons,
no results have been presented in previous studies to quantify the estimation uncertainty in spatial correlations computed from
individual earthquakes.
Another issue that has not been evaluated in this literature is the role of the method used to fit parameters for the models,

and relative performance of alternative methods. Fitting methods used in prior ground motion studies include manual visual
fitting14, least squares regression on transformed data16,7, and least squares regression with weighting according to distance
or number of data25. One general study evaluated several fitting methods using Monte Carlo simulation of spatial data with a
known correlation structure26, and found that the above fitting methods produce systematic differences in results. But that study
considered a small number of observed data (16 or 36 stations) on a regular grid–a situation very different than ground motion
data coming from greater numbers of irregularly spaced stations. A recent study examined this issue for realistic numbers of
stations in earthquake ground motion studies, but the locations in that study were randomly simulated20. There are no general
statistical results for estimators under arbitrary station configurations27.
Exact estimation of a correlation model from data (i.e., consistency in statistical estimation language) requires a large number

of observations at closely spaced distances, with the dense locations not too concentrated at a single location28. The above-
cited studies of ground motions consider well-recorded earthquakes, but none systematically study the impact of well-recorded
versus more-poorly-recorded earthquakes on resulting spatial correlation estimates. Further, the above-cited studies use different
methods to fit models to data, and it is unknown what impact those fitting methods have on estimation uncertainty. The baseline
estimation uncertainty is important as it establishes a threshold at which variability in observed correlations can be credibly
linked to some causal source rather than being due to estimation variability.
Given the potential variation in correlations between earthquakes and a lack of consensus predictive physical mechanism,

several authors have suggested that correlation model parameters should be considered uncertain in risk analysis calculations
forecasting the impacts of future events15,16,17. While uncertainties in correlations may be relevant in some cases, care is needed
to distinguish true variation in correlations among earthquakes from our measurement errors caused by having small samples
of recordings; only the former is relevant to risk analysis.
To address the above issues, this paper proposes a framework to quantify uncertainty in spatial correlation models, and uses

the framework to evaluate estimation uncertainty associated with individual earthquakes and model fitting methods. Section 2
introduces the basic framework for characterizing ground motion amplitudes using ground motion models, and introduces the
semivariogram as a tool for quantifying spatial correlations. Methods for fitting semivariogram models are also introduced.
Section3 then introduces a model to describe the various components of apparent uncertainty in semivariogram parameters.
A method is proposed for quantifying estimation uncertainty, by synthetically simulating ground motion amplitudes with a
known spatial correlation model but observed only at locations corresponding to those of past earthquakes. This method is then
applied to the considered earthquakes and fitting methods. The results are then discussed, along with the limitations and broader
implications of the work.

2 MODELS FOR GROUNDMOTION AMPLITUDE AND SPATIAL CORRELATION

Models for ground motion amplitude correlation utilize the typical ground motion model (GMM) formulation. This formulation
is written in the following equations, and written for two sites to illustrate how differences in amplitude at the two sites are
considered. A GMM predicts a ground motion intensity measure (IM) from earthquake rupture i at site j (here j = 1 and 2,
indicated by subscripts) as a function of rupture and site properties.
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ln IMi,1 = �ln IM (rupi, site1) + �Bi + �Wi,1 (1)
ln IMi,2 = �ln IM (rupi, site2) + �Bi + �Wi,2 (2)

where �ln IM ( ) is the mean predicted ln IM value, as a function of rupture (rup) parameters and site (site) parameters. The
predictor parameters depend upon the particular GMM, but rupture parameters typically include earthquake magnitude and
rupture mechanism. Site parameters typically include source-to-site distance, and a metric for near-surface geology, among
others. Rupture parameters depend only upon the rupture, and are fixed for all locations given that rupture. The site parameters
vary by location, and so are indexed by the site number in the above equations.
The �Bi and �Wi,j terms are the between- and within-event residuals, representing deviations between observed and mean

predicted lnIM values. These are normally distributed random variables with means of zero and standard deviations denoted �
and �, respectively. These standard deviations are also sometimes a function of rupture and site parameters, but this dependence
is omitted here for brevity. The between-event residual, �Bi, is common for all sites because it depends upon the rupture and
not the specific site.
Standard GMMs provide the function �ln IM ( ), and the standard deviations � and�. So, for this spatial correlation application,

the only uncharacterized portion of the model is the dependence of �Wi,1 and �Wi,2–the model for how within-event residuals
vary in space. Since these two parameters are each normally distributed, we make the additional assumption that they are
jointly normal29, so we can fully characterize their dependence with a correlation coefficient (or a semivariance, which will be
introduced in Section 2.2).

2.1 Ground motion data
We consider ground motion IM data from the NGA-West2 database30, to illustrate the proposed calculations below. The IMs
of interest are spectral accelerations at a range of periods (SA(T )). We consider the SARotD50 definition of spectral acceleration;
this is the median spectral amplitude over all horizontal orientations and is the metric used by the adopted GMM.
We restrict the database to consider only ground motions from earthquakes with moment magnitude (Mw) ≥ 4, closest

distance to rupture < 300 km, 180 ≤ VS30 ≤ 760 m/s, and a maximum usable period within the period range of interest. We
then consider all earthquakes with greater than 40 stations that satisfy the above criteria. Table A1 provides a summary of the
resulting data.
For these ground motion data, we use the Chiou and Youngs GMM31 to compute residuals, and mixed-effects regression

to estimate within-event residuals32. Because the GMM already provides the standard deviation of the residuals, we divided
the residuals from each earthquake by their sample standard deviation and worked with these standardized residuals for the
calculations below. This standardization simplifies themodel fitting below because it ensures a known sample standard deviation.
Figure 1 shows within-event residuals from two example earthquakes. The two events have differing numbers of recordings

(290 for El Mayor-Cucapah and 118 for Yorba Linda), which will be important later. The areas of similarly-colored symbols in
both maps (typically with separation distances of less than 40 km) indicate that similarly-located stations had similar ground
shaking intensity residuals. We next use these data to build a quantitative model of spatial correlations.

2.2 The semivariogram
A popular tool to estimate spatial correlations is the semivariogram, which measures dissimilarity of two values �Wi,j and �Wi,k

j,k =
1
2
E
[

(

�Wi,j − �Wi,k
)2
]

(3)

where j and k are two locations of interest,  denotes the semivariogram, and E [ ] denotes expectation33.
The semivariogram can be empirically estimated from observed data. Because we rarely have data to make estimates for

specific locations j and k, we typically make an assumption of stationarity and isotropy: all locations separated by a distance ℎ
have the same semivariance. In this case, we can estimate the semivariogram by pooling all observations with a given separation
distance ℎ and using them to estimate the semivariance:

̂(ℎ) = 1
2n(ℎ)

∑

d(j,k)=ℎ

(

�Wi,j − �Wi,k
)2 (4)
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FIGURE 1 Observed SA(1s) within-event residuals from (a) theMw 7.2 2010 El Mayor-Cucapah, earthquake, and (b) theMw
4.3 2002 Yorba Linda, earthquake. The earthquake epicenter is shown with a black star, and residuals are shown with colored
circles.

where d(j, k) is the distance between sites j and k, the summation is over all j and k with separation distance ℎ (within a
user-specified tolerance), and n(ℎ) is the number of observed station pairs with separation distance ℎ (i.e., the counts shown in
Figure 3). Note that while Equation 4 is the most common semivariogram estimator, some studies3,21,17 have used an alternate
estimator developed to be less sensitive to outlier data34.
Empirical semivariograms obtained from the ground motion data shown in Figure 1 are computed using the Equation 4

estimator and plotted in circles in Figure 2. The semivariogram values start near 0 at small separation distances ℎ, and increase
to values of approximately one at large distances. The circles in the figure represent estimates at increments of 3km, and each
estimate uses a tolerance of ±1.5 km in the distance criterion.

0 20 40 60
h [km]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(h
)

(a)

Empirical semivariogram
Fitted exponential function

0 20 40 60
h [km]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(h
)

(b)

FIGURE 2 Example empirical semivariograms (Equation 4) and fitted semivariograms (Equation 5) for SA(1s) within-event
residuals from the (a) El Mayor-Cucapah, and (b) Yorba Linda, earthquakes.

In Figure 2, the large variation in the circles’ vertical axis values with small changes in ℎ is an indication of estimation
uncertainty (because the true semivariance varies smoothly with small changes in ℎ). This is expected, as the estimate is made
from a finite number of data pairs, leading to estimation uncertainty. Further, given the maps of Figure 1, we know that the
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El Mayor-Cucapah earthquake has more than double the number of recordings than the Yorba Linda earthquake (290 versus
118), so we expect the Figure 2b semivariogram values to be more uncertain than the Figure 2a values. To further quantify this
issue, Figure 3 shows the number of data pairs at each separation distance for each earthquake. Depending upon the specific
distance, the El Mayor-Cucapah earthquake has 1.6 to 6.5 times the number of data pairs. The numbers of pairs for all other
earthquakes are also shown in the figure, to illustrate that these two earthquakes are typical of the broader data set (although El
Mayor-Cucapah is one of the better-recorded events).
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FIGURE 3 Number of paired observations of within-event residuals (�Wi,j) for SA(1s) values observed in all considered
earthquakes, at each considered separation distance. The El Mayor-Cucapah and Yorba Linda earthquakes are highlighted with
distinct line styles.

2.3 Semivariogram model fitting
The data from the previous section is next used to fit a semivariogram model that can be used for forward predictions. The
model is a continuous function of distance (and possibly other parameters such as azimuthal angle). It must be positive definite
to satisfy the requirements of the semivariance definition.
Here we will consider the common ‘exponential’ semivariogram model (but note that other models can be considered, as will

be discussed later):

̃(ℎ) = s
[

1 − exp
(−3ℎ

r

)]

(5)
Where ℎ is the separation distance and s and r are parameters to be fitted (referred to as the sill and range, respectively). Figure 2
illustrates fitted exponential semivariograms.
The semivariogram is directly related to a correlation function, by the following relationship:

(ℎ) = V ar[�Wi,j] (1 − �(ℎ)) (6)
where �(ℎ) is the correlation at separation distance ℎ, V ar[�Wi,j] is variance of the residuals, and it can shown that V ar[�Wi,j] =
s. We will assume throughout this study that s = 1, due to the previous standardization of the residual data. Nonetheless,
for generality, we provide general formulas for estimating s in the equations below. We could study correlation instead of
semivariance, but the semivariogram is often preferred in geostatistical practice as it does not require a prior estimation of the
mean or standard deviation of the considered parameter.
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Determining the parameters of the fitted semivariogram model, such that it is a ‘good’ fit with the empirical semivariogram
data, requires a metric to evaluate misfit. We can then choose the parameter values that minimize this misfit. Generally, we can
write this:

ŝ, r̂ = argmin
r,s

n
∑

i=1
f
(

̂(ℎi), ̃(ℎi)
)

(7)

where i is the ith separation distance of interest, n is the number of separation distances, ̂(ℎi) and ̃(ℎi) are defined in Equations
4 and 5, and f ( ) is some function to evaluate misfit between ̂(ℎi) and ̃(ℎi). Several fitting methods have been proposed in
the earthquake engineering and general geostatistical literature, and almost all follow the general form of Equation 7. Several
specific examples are given below, along with citations to studies that proposed or adopted each approach. Note that some of
the cited studies considered correlation coefficients rather than semivariograms, but the formulas have been converted using
Equation 6 so that each approach is presented in a consistent format.
An Ordinary Least Squares approach simply minimizes the sum of squared differences between the empirical data and fitted

model:

ŝ, r̂ = argmin
r,s

n
∑

i=1

(

̂(ℎi) − ̃(ℎi)
)2 (8)

This is conceptually simple, is implemented in several numerical algorithms, and one numerical package names it as ‘the best
general approach’35. It has been used in a number of ground motion studies13,36,21,37. But this approach does not account for the
fact that the empirical ̂(ℎi) values differ in variance depending upon the ̂(ℎi) and number of data points, and ignores that the
model at small-ℎ values is of much greater practical importance than at large-ℎ values.
A Weighted Least Squares approach incorporates weights on the squared errors to refine the fitting:

ŝ, r̂ = argmin
r,s

n
∑

i=1
wi

(

̂(ℎi) − ̃(ℎi)
)2 (9)

wherewi is the weight for the itℎ term in the summation. Weights are typically used to increase the relative importance of small-
distance values (because they are of more practical importance and are lower-variance by nature of their smaller ̂ value) and to
increase the relative importance of ̂(ℎi) values estimated from more data (because they are thus known with more precision).
Several ground motion studies have used weighted least squares functions4,15. The following weighting function, which will
refer to below simply as Weighted Least Squares, is proposed in this study:

wi = n(ℎi) e−ℎi∕c (10)
where c is a coefficient that controls how quickly the weights decrease with increasing distance. The value of c can be adjusted
depending on the anticipated extent of spatial correlation. Here we will use c = 5 km, indicating that an error at a distance of 5
km receives approximately 1/3 the weight of an error at a distance of 0 km. This choice of coefficient value is discussed further
in the Appendix.
The R software’s gstat package38 provides a number of weighting functions for use in weighted least squares semivariogram

fitting, and by default uses the following weighting function, which wewill refer to asWeighted Least Squares,w = n∕h2 below:

wi =
n(ℎi)
ℎ2i

(11)

This function places greater weights on values estimatedwith high numbers of data points (i.e., large n(ℎi)) and at small distances.
Other fitting approaches perform a transformation on the semivariogram values, as part of the process of evaluating misfit.

Cressie25 proposed the following function based on a theoretical derivation that minimized estimation errors:

ŝ, r̂ = argmin
r,s

n
∑

i=1
n(ℎi)

(

̂(ℎi)
̃(ℎi)

− 1
)2

(12)

Note that the n(ℎi) term in the summation is a weighting term based on the number of data pairs, so this approach also incorpo-
rates weighting, and the theory behind Cressie’s derivation led to the inclusion of this term. Two recent ground motion studies
have utilized this approach for fitting semivariograms39,40.
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Two ground motion studies used a Fisher Transformation during fitting to account for differing estimation variances for
highly-correlated versus less correlated conditions16,41

ŝ, r̂ = argmin
r,s

n
∑

i=1

(

ln
2 − ̂(ℎi)
̂(ℎi)

− ln
2 − ̃(ℎi)
̃(ℎi)

)2

(13)

This transformation compensates for the fact that estimated semivariances (and correlation coefficients) have estimation uncer-
tainty that depends on the actual semivariance value. The Fisher-transformed estimated parameter has a normal distribution with
mean zero and variance of 1∕(n(ℎi) − 3). For this approach to have errors with uniform variances, the misfit metric should thus
also include a weight factor of n(ℎi) − 3, though neither of the cited studies include this factor.
One ground motion study used a transformation that then allows for fitting of the semivariogram parameter r using Linear

Regression7 (the s parameter was estimated separately):

r̂ = argmin
r

n
∑

i=1

1
ℎi

[

ln
(

1 − min
{

̂(ℎi), 0.99
})

− ln
(

1 − ̃(ℎi)
)]2 (14)

This transformation requires truncating the empirical semivariogram at 0.99 to avoid taking logarithms of negative numbers.
Note the 1∕ℎi weighting to more heavily weight small-distance values, reflecting one goal of some weighting schemes above.
A few other approaches have been used with ground motion data. One common approach is to perform a visual fit14,42,22,43.

This allows an informed user to tailor the fit to distances of interest, down-weight outliers, etc., and thus is considered a reasonable
approach44. It is not considered further here, however, as it is not replicable and thus not compatible with the calculations below.
Others have proposed simultaneously fitting the ground motion model and a spatial correlation model45,46, but these approaches
are more algorithmically complex and less compatible with the calculations below, so are also not considered further here.
Reviewing Equations 8-14, it is clear that there are multiple possible semivariogram fitting methods. The earthquake engineer-

ing and geostatistics communities have not reached consensus on a preferred approach. This is because there is no theoretically
optimal approach (unlike classic statistical problems such as least-squares linear regression) and because the effectiveness of the
algorithms depends upon the number and spatial configuration of the data being studied. Several of the proposers of the above
approaches explicitly note that the formulations are pragmatic rather than being based on theory7,38; in other studies this issue
is implicit, but it remains. For the same reason, most geostatistical software packages provide multiple fitting methods in their
libraries and leave it to the user to select an appropriate one35,38.
To illustrate the practical implications of these fitting options, Figure 4 shows the empirical semivariogram data from Figure

2, with exponential models fitted using four of the above approaches. Because the residuals are standardized, the sill is set equal
to 1 in each case, and only the range is estimated. The methods produce similar, but not identical, fitted functions. For each
specific event, the estimated r values vary by approximately 6 km among the methods. We also see that the El-Major Cucapah
ranges (Figure 2b) are approximately 5km smaller than the Yorba Linda ranges (Figure 2a). These anecdotal results suggest
that estimation uncertainty and event-to-event uncertainty in ranges are both non-trivial. These issues will be explored more
quantitatively in the following sections.

3 MODEL FOR OBSERVED SEMIVARIOGRAM UNCERTAINTY

We propose the following random effects model to characterize real and apparent uncertainty in semivariograms. We assume
that the semivariogram for a particular earthquake can be represented by a parametric model with an uncertain parameter or
parameters. In this discussion, we will consider the range parameter r from Equation 5, but the same process can be applied to
other model functions or parameters.
We then assume that a population of earthquakes has a distribution of r values, with earthquake i having a true (but unknown

to us) value of ri. We consider the population of earthquakes to have a mean value of �ri and a standard deviation of �ri . For
earthquake i and its associated recorded ground motions, we do not know the true value of ri, but we can estimate it using one
of the methods from Section 2.3. We denote this estimate r̂i. Because of our limited observational data, the estimate will have
uncertainty. We denote the estimator’s standard deviation, conditional on the true value ri, as �r̂i|ri (where ‘A|B’ denotes that A
is conditional on B). We also denote the estimator’s mean, conditional on the true value ri, as �r̂i|ri . We would like an estimator
that is unbiased (i.e., �r̂i|ri = ri) and that has small variance (i.e., �r̂i|ri is small). We will explore these estimator properties in
Section 3.1.
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FIGURE4Example empirical semivariograms and fitted semivariograms using fourmethods, forSA(1s)within-event residuals
from the (a) El Mayor-Cucapah, and (b) Yorba Linda, earthquakes. Legend abbreviations: OLS = Ordinary Least Squares, WLS
= Weighted Least Squares, CR = Cressie, FT = Fisher Transform.

When we estimate a semivariogram model from observational data, we obtain an r̂i that reflects both the variability in ri, and
the estimation variability in r̂i|ri. According to the variance decomposition formula, the total variance of r̂i is:

�2r̂i = E
[

V ar
(

r̂i|ri
)]

+ V ar
(

E
[

r̂i|ri
])

(15)
where V ar( ) denotes variance. Note that, given ri, r̂i is conditionally independent of �ri and �ri . If r̂i is an unbiased estimator
of ri, Equation 15 can be simplified to

�2r̂i = �2r̂i|ri + �
2
ri

(16)
We will quantify and study this total uncertainty in Section 3.2.

3.1 Quantification of estimation uncertainty
We next consider the estimation uncertainty associated with a particular fitting method and a particular set of ground motion
data, to quantify �r̂i|ri and �r̂i|ri . We propose the following five-step procedure to estimate these properties:

1. Specify station locations, an assumed semivariogram model, and a semivariogram estimation method. In this study, we
use locations of recordings from past earthquakes, an exponential semivariogram with r = 30 km (a typical range seen in
real ground motion data) and s = 1, and consider the six fitting methods described in the previous section.

2. Generate many Monte Carlo simulations of ground motion data (i.e., �Wi,j values at each station location), using a
multivariate normal distribution with mean values of zero, and a covariance matrix specified by the semivariogram.

3. For each Monte Carlo simulation of residuals, compute an empirical semivariogram using Equation 4, and estimate a
semivariogram model using the chosen fitting method.

4. Take the set of range estimates from step 3, and compare them to the (known) range in order to study the estimation error
associated with that set of station locations and fitting method.

5. Repeat steps 1-4 for all station location configurations and all fitting methods of interest.

Figure 5 graphically illustrates the procedure, with steps 1-4 numbered on the figure.
This calculation process addresses several issues needed to decompose the total apparent variance in Equation 15. First, by

specifying the semivariogrammodel and range in Step 1, and sampling data from that model, we can generate data with a known
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FIGURE 5 Illustration of the process used to quantify semivariogram model parameter estimation uncertainty.

ri (unlike with real data). Second, by Monte Carlo sampling synthetic data, we can obtain multiple parameter estimates for a
given earthquake (unlike with real data). Third, by using station locations from real earthquakes, we can study the performance of
fitting algorithms in exactly the conditions we use them for, and we are also able to obtain event-specific estimates of estimation
uncertainty.
Figure 6 shows histograms of range estimates obtained from this procedure, using the station locations shown in Figure 1

and the Weighted Least Squares fitting method. As anticipated, the El Mayor-Cucapah range estimates are less variable than the
Yorba Linda estimates, because of the greater data: the standard deviations of the data are 7.7 and 9.3 km, respectively. In both
cases, the average range estimate is fairly close to the true value of 30km (the sample means are 29.1 and 29.5 km, respectively).
To study estimation variability and bias more comprehensively, Figure 7 shows scatter plots of estimated ranges for all con-

sidered earthquakes and fitting methods. Each subfigure was produced with a single fitting method. Within each subfigure, the
data for each earthquake is plotted versus the number of recording stations from that earthquake (so the replicates from a single
earthquake are plotted as a vertical stripe of data). The correct range value of 30km is shown with a dotted line for reference.
To aid interpretation, a moving average and moving standard deviation (�) are estimated from the data and also plotted on the
figures.
We see in Figure 7 that for all fitting methods, more reliable estimates are obtained with earthquakes with a greater number of

stations, as expected (i.e., the moving average tends towards the correct range and the ±� interval gets smaller). For earthquakes
with small numbers of stations, the estimates are biased and have large ±� intervals. Results of this type can guide investigators
in choosing appropriate data sets and can quantify the fitting uncertainty and bias associated with a particular earthquake or set
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FIGURE 6 Histograms of ranges estimated when sampling residuals from an exponential semivariogram model and using the
Weighted Least Squares fitting method. (a) Using station locations from the El Mayor-Cucapah, earthquake (b) Using station
locations from the Yorba Linda, earthquake.

of earthquakes. Note that several previous studies have used only earthquakes with n ≥ 100 stations to perform earthquake-
specific semivariogram fitting5,16,19, and others have used earthquakes with as few as 90 stations47,7. The results here suggest
that those less-well-recorded events will be subject to substantial estimation uncertainty.
With the above general observations, we then group the data into three groups: the 48 earthquakes with n ≤ 65 stations (when

estimation uncertainty is large), the 23 earthquakes with n > 130 stations (when estimates are less biased and have smaller
estimation uncertainty), and the 58 earthquakes with 65 < n ≤ 130 stations (in the middle). Estimation biases are reported in
Table 1, and estimation sample standard deviations are reported in Table 2 for these pools of data. From Figure 7 and these
Tables, we see that the Weighted Least Squares and Fisher Transformation methods have lower bias than the other four methods
for the n > 130 earthquakes of greatest interest. And between these two, the Weighted Least Squares approach has the smaller
estimation standard deviation.
To evaluate the robustness of these results to the assumed range value, we repeated the calculations in this section for r values

between 15 and 45 km. The bias results were quite stable for all assumed ranges. The estimation standard deviations did vary
somewhat with range (with larger ranges producing larger standard deviations), but the increase in standard deviation was not
proportional to the increase in r. The effect of the number of recording stations and the relative performance of the six fitting
methods were consistent across all cases.
Event-specific estimation standard deviations obtained from the Weighted Least Squares approach and using r = 30 are

reported in Table A1.

TABLE 1 Fitting bias for the six considered fitting methods. The bias is the mean of the sample ranges from earthquakes with
the given numbers of recording stations, minus the true range of 30.

Fitting method Bias when
n ≤ 65

Bias when
65 < n ≤ 130

Bias when
n > 130

Ordinary Least Squares 10.3 7.3 3.7
Weighted Least Squares 4.5 1.2 -1.2
Weighted Least Squares, w = n∕ℎ2 4.2 0.5 -3.0
Cressie -17.3 -10.2 -4.9
Fisher Transform 24.2 9.1 0.3
Linear Regression 10.6 4.8 3.0
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FIGURE 7 Replicates of range estimates using each considered earthquake’s station locations and an assumed exponential
semivariogram model with r = 30 km, plotted versus the number of stations. Estimates using (a) Ordinary Least Squares, (b)
Weighted Least Squares, (c)Weighted Least Squares, n∕ℎ2, (d) Cressie, (e) Fisher Transform, (e) Linear Regression. The correct
range, the moving average of the estimates, and the moving average ± the moving standard deviation are plotted for reference.

3.2 Total uncertainty
We next consider the total uncertainty that is apparent in r̂i from real earthquake data, using the preferredWeighted Least Squares
fitting method. We again consider the sets of earthquakes with n ≤ 65, 65 < n ≤ 130, and n > 130 stations, and compute the
sample standard deviations of the ranges from the real SA(1s) ground motion data. For the Weighted Least Squares method,
the sample standard deviations (�r̂i) are 32.0, 25.7, and 20.5 km, respectively. From Table 2, we see that the corresponding
estimation standard deviations (�r̂i|ri) are 23.0, 14.7, and 8.1 km, respectively. Substituting these values into Equation 16 gives
an estimate of the true underlying standard deviation of r: 22.2, 21.1, and 18.8 km, respectively. These same calculations are
repeated for spectral acceleration data at other periods, and results are plotted in Figure 8. While the results vary somewhat



12 BAKER and CHEN

TABLE 2 Estimation standard deviation for the six considered fitting methods. Sample standard deviations of the ranges are
computed for the data from earthquakes with the given numbers of recording stations.

Fitting method �r̂i|ri when
n ≤ 65

�r̂i|ri when
65 < n ≤ 130

�r̂i|ri when
n > 130

Ordinary Least Squares 31.8 25.4 16.9
Weighted Least Squares 23.0 14.7 8.1
Weighted Least Squares, w = n∕ℎ2 24.0 15.7 8.0
Cressie 12.5 13.4 9.3
Fisher Transform 34.8 22.6 11.6
Linear Regression 14.1 13.3 10.8

by period, there is a general trend of the total standard deviation and the estimation standard deviation being larger for poorly
recorded earthquakes. In contrast, the underlying standard deviation (�ri) is fairly constant near 20 to 25 km for most periods
and groups of earthquakes. The consistency of �ri among groups of earthquakes is reassuring, as the proposed model assumed
that this was a property of the earthquake itself (and not dependent upon the number of stations that recorded it).
These results, and those of Figure 7, suggest that at least 100 (and preferably 200) stations should be available in order to obtain

an event-specific range estimate with reasonably low estimation uncertainty. More precisely, the estimation uncertainty depends
in a more complex way on the number of station pairs with small separation distances, but the results vary depending upon the
fitting method and are omitted here for brevity. The following section will present a technique for quantifying uncertainty in
event-specific range estimates using these results.
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FIGURE 8Apparent and actual standard deviations of range estimates obtained fromWeighted Least Squares fitting to spectral
acceleration values at a range of periods. Separate results are shown separately for data from earthquakes with a small, medium,
or large number of recordings. Estimated �r̂i values are shown in light lines and estimated �ri values are shown in heavy lines.
The lines have been smoothed with a moving average function for ease of reading.
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3.3 Earthquake-specific posterior parameter estimates
The decomposition of the earthquake-specific parameter estimates into two types of uncertainty allows for estimation of a
posterior distribution of ri, conditional upon an estimated prior distribution for ri and the event-specific estimate r̂i. If we assume
that ri and r̂i are jointly normally distributed (which is true if ri is marginally normal and r̂i|ri is marginally normal with mean
ri and standard deviation independent of ri), the posterior distribution of ri|r̂i can be shown to be normally distributed with the
following mean and variance48

�ri|r̂i =
�2ri

�2r̂i|ri + �
2
ri

r̂i +
�2r̂i|ri

�2r̂i|ri + �
2
ri

�ri (17)

�2ri|r̂i =

(

1
�2r̂i|ri

+ 1
�2ri

)−1

(18)

Equation 17 shows that for small estimation uncertainty (�2r̂i|ri) the posterior mean tends towards the estimated value (r̂i) because
the small estimation uncertainty makes the estimate highly informative. On the other hand, for large estimation uncertainty, the
posterior tends toward the overall population mean (�ri). Similarly, Equation 18 shows that the posterior variance decreases as
�2r̂i|ri decreases, because the estimate is more informative.
To use these equations on our SA(1s) earthquake data, we assume the range estimates are unbiased (a reasonable assumption

for at least the well-recorded earthquakes, per Table 1), obtain event-specific estimates of �2r̂i|ri from the data of Figure 6 and 7,
estimate �ri = 30 km from the sample mean of the real earthquake data range estimates (29.6 km), and estimate �ri = 20 km
from Figure 8. This approach uses an Empirical Bayesian formulation, in which the population’s prior parameters are estimated
from the data. With this approach, we are also using a �2r̂i|ri estimate obtained assuming ri = 30 km, while it was noted above
that this standard deviation varies somewhat with ri; this assumption adds some degree of approximation to the results.
Figure 9 shows the posterior distributions estimated for the two example earthquakes considered throughout this paper. The

point estimates of the ranges (26.6 and 32.8 km for El Mayor-Cucapah and Yorba Linda, respectively, from Figure 4) are shown
in dotted lines. The posterior mean values from Equation 17 are shown in dashed lines; they both move slightly towards the
global mean value of 30km, relative to the point-estimate values. The posterior probability density functions are shown in solid
lines. These probability density functions have mean values from Equation 17 and standard deviations from Equation 18. The
posterior standard deviations (7.2 and 8.4 km) are substantial relative to the difference in posterior means between these two
earthquakes (5.2 km), indicating that there is no strong evidence that the ranges between these two earthquakes differ. The
posterior distribution for ElMajor-Cucapah is narrower than the distribution for Yorba Linda, due to ElMajor-Cucapah’s smaller
estimation uncertainty. These results are consistent with qualitative evaluation of the data presented earlier in Figures 1 and 4.
Posterior distributions are computed for all 129 considered earthquakes and shown in Figure 10. Each earthquake’s range

estimate is shown with a single point, and its posterior mean and ± one standard deviation is shown with an error bar. The
horizontal axis of the figure shows the number of recordings for each earthquake (in log scale to slightly ease viewing of results
from the poorly-recorded earthquakes). We see that the error bars are wider at the left side of the figure, as these are the events
with larger estimation uncertainty. Further, 83% of the earthquakes with n ≤ 65 recordings include the prior mean (30 km) in
the ± one standard deviation interval, but only 35% of the earthquakes with n > 130 recordings include it. This implies that
only the well-recorded earthquakes can provide clear information regarding the potential deviations of ranges from a general
distribution. Note also that for the poorly recorded earthquakes with point estimates of r̂i > 80 km, the posterior distributions
do not even include that point estimate in the ± one posterior standard deviation interval. This is because the poorly recorded
earthquakes have significant estimation uncertainty, so the extreme values of range estimates are likely resulting from poor
estimation rather than clear evidence of a truly extreme range. Mean posterior range estimates for each considered earthquake
are reported in Table A1.

4 DISCUSSION

The above results have several limitations due to assumptions in the formulation and several broader implications for the field
of spatial correlation estimation. While the above framework for estimating estimation uncertainty and decomposing it into
underlying range variation versus estimation error is general, it was applied under a specific set of assumptions here, and those
assumptions influence the presented results.
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FIGURE 9 Posterior distributions of ri for the example El Mayor-Cucapah and Yorba Linda earthquakes, estimated using the
Weighted Least Squares method. Posterior probability density functions are shown in solid lines, point estimates of r̂i are shown
in dotted lines, and posterior mean values of r̂i are shown in dashed lines.
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FIGURE 10 Point estimates and posterior distributions of r for all earthquakes, plotted versus the earthquakes’ number of
recordings.

First, we have assumed that an exponential semivariogram model correctly captures the semivariance. This is reasonable for
some earthquakes (e.g., Figure 2), but it is less reasonable for others, and a number of other studies have considered alternate
semivariogram functional forms1,13,7,16. If the assumed functional form is a poor representation of the data’s actual spatial
structure, the functional-form error will partially manifest as parameter error, complicating the statistical analysis above. Further,
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the estimation-error calculations of Section 3.1 generate data from a specified semivariogram function, and so the results will not
reflect the effects of a semivariogram functional form that is incorrectly assumed or is varying from earthquake to earthquake.
Second, we have considered a semivariogram functional form (exponential) with only a single unknown parameter (r). Many

other semivariogram functions have more than one parameter. The procedures above can be employed to estimate uncertainty in
multiple parameters, with only minor adjustments. From our limited experience with other functional forms, we have seen that
when there is more than one model parameter, the uncertainty in each individual parameter can increase substantially. This is
because there are often multiple combinations of parameter values that lead to comparably good fits, leading individual param-
eters to be poorly constrained. A multi-parameter estimation technique could also be used to estimate the standard deviation (s)
parameter in Equation 5, and it may produce evidence of varying standard deviations from earthquake to earthquake. However,
this quantification would be more appropriate within the initial GMM development stage, rather than during spatial correlation
estimation based on the GMM.
Third, we have used the classical estimator of the semivariance (Equation 4). Some ground motion studies21,17 have used an

alternate robust estimator proposed by Cressie and Hawkins34. Schiappapietra and Douglas20 explore the performance of the
classical versus robust empirical semivariogram estimators, and find that the performance is generally comparable between the
two. So we expect that the results measured above would be similar if the robust estimator were used in the procedure instead.
Fourth, the conditional event-specific parameter distributions of Section 3.3 requires some additional assumptions. We have

assumed that the parameter, and its estimation error, are both normally distributed, and that the estimation error is independent
of the true parameter value. Further, we have estimated the true parameter value’s distribution from population data. (A similar
alternative formulation, not presented here, would assume that the parameter and its estimation uncertainty are both lognormally
distributed.) These assumptions are almost certainly not strictly true, and the parameter distribution estimate is approximate,
so the conditional distributions of Equations 17-18 are approximate. They nonetheless are informative in illustrating the factors
influencing parameter estimates and their uncertainty.
There are two notable broader implications of these results. First, these results indicate our ability to detect earthquake-

specific variation in semivariances. Specifically, they show that subtle variations will be challenging to detect, given the inherent
estimation uncertainty associated with the ground motion data we are currently able to obtain. The best-recorded earthquakes
are the most useful for this purpose, but there are only 12 earthquakes in this catalog with more than 200 usable recordings. It is
unlikely that this number will grow rapidly in the near future. Numerical simulations of ground motions are likely to provide the
next generation of insights on causes of variations in correlations, as there is no data limitation and causality is easier to infer,
though the simulation algorithms will require validation for use in this way43,49.
A second implication is that there is a tradeoff between single-earthquake semivariogram estimates (which let us study the

effect of a particular earthquake or region on ranges) and estimates obtained from pooling data frommultiple earthquakes (which
have reduced estimation uncertainty). Some ground motion correlation studies pool all data from all available earthquakes and
produce one semivariogram model. In contrast, others split the data into specific earthquakes or specific regions, as discussed
in the Introduction. Here there is a clear analogy with ground motion prediction models, where some models are general to a
range of conditions, while others are tuned to specific regions or locations e.g., 50,51.

5 CONCLUSIONS

This study has investigated the role of the fitting method and of estimation uncertainty on models for spatial correlation in
ground motion amplitudes. This work was motivated by the variations in approaches used to estimate spatial correlations from
ground motion data, and by the varying conclusions in the literature regarding the role of earthquake and site properties on
resulting correlations. Spatial correlations of ground motion residuals were studied and were quantified using a semivariogram.
The semivariogram is a measure of dissimilarity in values at two sites having a given separation distance, and can easily be
converted into a correlation model. Here we have assumed that the semivariogram can be represented by a parametric model,
and that the model parameter uncertainty is of interest.
The model parameter variability we observe when estimating semivariograms from a set of earthquakes comes from two

sources: true variability from earthquake to earthquake, and estimation uncertainty resulting from limited observational data.
The true variability is of primary interest and is what should be considered in calculations of possible future ground motions.
The estimation uncertainty is an artifact of our analysis rather than a true phenomenon in nature; further, it is larger for poorly
recorded earthquakes and smaller for well-recorded earthquakes.
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Weproposed a technique for quantifying the estimation uncertainty for a particular earthquake.With this technique, we assume
a semivariogram model, take the station locations that recorded the earthquake, and then simulate data from the assumed corre-
lation model at those locations. We then re-estimate the semivariogram model using a particular fitting method. By repeatedly
simulating data and re-estimating the model, we can measure uncertainty and potential bias associated with a particular fitting
method, and for a specific earthquake’s recordings.
Applying this technique to the NGAWest-2 database of crustal earthquakes, we evaluated a number of semivariogram fitting

methods that have been used in the literature. The results suggest that a Weighted Least Squares fitting method is most effective
in estimating the semivariogram, due to its limited bias and small estimation uncertainty. This technique identified model param-
eters by minimizing the squared differences between the observed semivariogram data and fitted function, where the squared
differences are weighted by the number of data pairs and the inverse exponential of the distance value. That fitting method was
then used to study earthquake-specific semivariogram models.
When considering earthquake-specific semivariogram models, we found that estimation uncertainty decreased as a function

of the number of stations that recorded the earthquake. At least 100, and preferably 200, stations are needed to limit estima-
tion uncertainty. For earthquakes with fewer stations, earthquake-specific estimation of spatial correlations should be performed
with caution. When this estimation uncertainty was removed from the apparent total variability in semivariogram estimates, the
implied underlying true variability was seen to be relatively stable among well-recorded and poorly recorded earthquakes, as
expected. To rigorously incorporate estimation uncertainty, we also proposed an empirical Bayes approach to obtain a posterior
estimate of semivariogram parameters, conditional on an estimated parameter, and an estimated prior distribution for the param-
eter from the data. These posterior estimates for the NGA West-2 data showed that extreme parameter values estimated for a
few poorly recorded earthquakes are not well constrained and that the posterior distributions lie much closer to typical values
than to the earthquake-specific point estimate.
Even for well-recorded earthquakes, fitted semivariograms have substantial estimation uncertainty. This fundamentally limits

our ability to detect subtle earthquake-specific or region-specific features of spatial correlations from empirical data. That is not
to say that no such features exist, but rather that these features will likely be difficult to discern from empirical data sets available
at present. Researchers evaluating whether earthquake-specific patterns in spatial correlations are present in their data can use
the approach proposed here to assess whether any potential trends rise above the level of estimation noise inherent to the data.
The results above assumed that ground motions are well described by an exponential semivariogram function with an average

range of 30km (a typical value observed in past studies of real data) and utilized the Weighted Least Squares fitting method that
was observed to perform better than alternatives. The calculations have been repeated for other range values, for other fitting
methods, and for other semivariogram functional forms. Results in these other cases are broadly consistent those presented here,
but have not yet been studied as extensively. Software to perform these calculations is freely available (see Data and Resources
section), and is set up to evaluate alternative assumptions for analysts interested in other cases. While the numerical results
presented here should be useful, the insights from the application of this framework to other data sets and assumed models are
likely to have lasting value as researchers continue to investigate causes of spatial correlations in ground motions.
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6 DATA AND RESOURCES

The ground motion data in this study came from the NGA-West2 Database Flatfile (https://apps.peer.berkeley.edu/ngawest2/
databases/). Maps were produced using Generic Mapping Tools52. Source code used to perform the above analysis and produce
the figures in this paper is available at https://github.com/bakerjw/spatialCorrelationEstimation. The authors hope that the source
code will help interested readers to perform further investigations of the type proposed here, and will also provide documented
functions to perform basic semivariogram calculation and fitting.
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APPENDIX

AWEIGHTED LEAST SQUARES COEFFICIENT

Given the good performance of the weighted least squares method in the sections above, that method is further scrutinized here.
Specifically, the c coefficient in Equation 10 is a tunable parameter, and the fitting performance will depend upon the choice of
that parameter. To explore the performance of the fitting approach as a function of the fitting parameter and the properties of
the ground motion, the above assessment scheme was performed for several approaches. Two figures are provided to document
the findings. Figure A1 provides results for estimated ranges from sythetic data (using the same approach as used to produce
Figure 7). The four panels show results when using Weighted Least Squares fitting with four values of c in the weight function.
Results like this were produced for a range of c values, and for each one, the average bias was computed:

Average Bias = 1
n

n
∑

i=1
|ri − r| (A1)

where ri is the mean estimated range for earthquake i, and r is the true range used to simulate the data (i.e., 30 in the case of
Figure A1). Additionally, the average coefficient of variation was computed

Average coefficient of variation = 1
n

n
∑

i=1

sr,i
r

(A2)

where sr,i is the sample standard deviation of the r estimates for earthquake i.
The above calculations were repeated for several c values, and for several r values used to simulate the data. The variation

in r is important to consider, to ensure that the fitting function is not overly tuned to one particular semivariogram model,
recognizing that real-world data will not conform to one specific semivariogram and so the estimator needs to be robust. The
results are shown in Figure A2, and a few observations can be made. The estimation bias is minimized for c ≈ 5 km. The
coefficient of variation is minimized for c ≈ 4 km. In general, 3 < c < 9 km all perform reasonably well; this is also seen in
Figure A1. The results are remarkably stable when the true underlying range used to simulate the ground motion data is varied.
This was somewhat unexpected, but appears to result in part from the fact that typical earthquake data have relatively few paired
observations with ℎ < 10km (Figure 3). While those pairs are important, a very small c (which would emphasize those pairs)
would ignore most of the available data. Conversely, a very large c would emphasize distant station pairs that do not strongly
constrain the model regardless of the true range. So the optimal weighting function seems to be dependent upon both the data
configuration and the true underlying semivariogram.
Noting that the distance taper in this weighting scheme has the same functional form as the semivariogram of Equation 5, we

see that an effective weighting scheme is one that tapers weights roughly as 1− (ℎ). This finding raises the question of whether
an iteratively reweighted least squares approach would be effective. Such an approach would estimate a semivariogram and use
that semivariogram to produce an updated weighting function, which is then used to re-estimate the semivariogram. The process
would then be iterated until convergence. The authors found, however, that in application this approach is not always stable and
so it is not recommended.

TABLE A1 Summary of earthquake ground motion data considered in this study. The event name and event index are from the
NGA-West2 database30. The number of usable stations and posterior mean r values are for SA(1s) data.

Event name Year Event
index

Magnitude # of usable
stations

Estimated
�r̂i|ri

Posterior
mean ri [km]

Chuetsu-oki 2007 278 6.8 542 6.0 28.1
Niigata, Japan 2004 180 6.6 464 5.9 55.7
Chi-Chi, Taiwan 1999 137 7.6 371 5.6 53.5
Tottori, Japan 2000 176 6.6 338 6.0 58.4
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TABLE A1 Summary of earthquake ground motion data considered in this study. The event name and event index are from the
NGA-West2 database30. The number of usable stations and posterior mean r values are for SA(1s) data.

Event name Year Event
index

Magnitude # of usable
stations

Estimated
�r̂i|ri

Posterior
mean ri [km]

Iwate 2008 279 6.9 332 6.7 58.7
Chi-Chi, Taiwan-05 1999 174 6.2 306 5.8 23.5
El Mayor-Cucapah 2010 280 7.2 290 7.8 27.0
Chi-Chi, Taiwan-02 1999 171 5.9 280 6.7 55.9
Chi-Chi, Taiwan-06 1999 175 6.3 280 5.6 27.9
10370141 2009 1018 4.5 245 8.1 29.4
Chi-Chi, Taiwan-03 1999 172 6.2 238 6.3 78.5
Chi-Chi, Taiwan-04 1999 173 6.2 238 6.4 36.3
10275733 2007 1028 4.7 196 7.7 21.8
14312160 2007 1019 4.7 189 13.5 27.0
Anza-02 2001 163 4.9 186 8.3 24.1
14383980 2008 1002 5.4 184 8.3 50.8
10410337 2009 1011 4.7 169 9.9 34.1
40199209 2007 1045 4.2 161 9.8 34.4
40204628 2007 1001 5.5 152 9.9 41.2
71336726 2010 1221 4.0 152 9.5 19.8
Northridge-01 1994 127 6.7 147 10.9 18.3
14138080 2005 1014 4.6 139 14.0 12.1
21522424 2006 1021 4.3 138 8.5 6.2
Parkfield-02, CA 2004 179 6.0 130 19.1 17.1
51207740 2008 1051 4.1 130 12.1 38.4
14151344 2005 1003 5.2 126 11.6 25.9
14186612 2005 1012 4.7 126 13.7 12.7
Hector Mine 1999 158 7.1 125 13.1 34.7
9753485 2002 1015 4.2 122 13.6 11.3
Yorba Linda 2002 167 4.3 118 9.3 32.2
14095628 2004 1006 5.0 118 15.6 85.8
9983429 2004 1016 4.3 118 13.6 12.1
51177644 2007 1101 3.7 117 9.9 16.7
21305648 2003 1060 4.0 112 10.6 19.0
Whittier Narrows-01 1987 113 6.0 111 11.7 26.9
21530368 2006 1023 4.5 110 10.9 58.7
21437727 2005 1050 4.2 109 10.3 20.9
14155260 2005 1007 4.9 107 12.2 42.1
9941081 2003 1066 3.9 106 15.6 36.2
9173365 2001 1035 4.3 105 17.2 35.6
Wenchuan, China 2008 277 7.9 103 17.0 82.0
30226086 2003 1059 4.0 103 10.7 32.7
40194055 2007 1046 4.2 99 14.4 17.2
21465580 2005 1008 4.8 97 8.7 7.3
21510121 2006 1079 3.7 97 10.9 20.5
10059745 2004 1064 4.2 95 15.5 44.5
21339029 2004 1096 3.6 91 11.0 17.5
21502994 2006 1125 3.6 90 12.7 31.0
14077668 2004 1038 4.3 89 16.5 40.6
Big Bear City 2003 170 4.9 87 18.6 37.9
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TABLE A1 Summary of earthquake ground motion data considered in this study. The event name and event index are from the
NGA-West2 database30. The number of usable stations and posterior mean r values are for SA(1s) data.

Event name Year Event
index

Magnitude # of usable
stations

Estimated
�r̂i|ri

Posterior
mean ri [km]

51203888 2008 1138 3.5 87 10.3 28.3
14201764 2005 1075 4.2 86 16.0 37.7
10403777 2009 1025 4.4 85 14.4 30.1
21414391 2004 1098 3.7 85 9.9 24.0
14295640 2007 1020 4.3 84 19.1 14.9
21422178 2004 1022 4.3 83 11.6 8.2
51203773 2008 1070 4.0 83 11.5 28.3
14376612 2008 1113 4.0 83 18.9 26.3
9970349 2003 1152 3.5 83 13.6 10.6
14519780 2009 1186 5.2 83 19.2 14.7
21350824 2004 1031 4.2 82 11.7 19.6
30225187 2002 1069 3.9 82 12.1 27.7
Darfield, New Zealand 2010 281 7.0 80 22.0 40.3
Christchurch, New Zealand 2011 346 6.2 80 18.9 37.4
14239184 2006 1108 3.9 80 20.7 15.8
Landers 1992 125 7.3 76 16.3 51.5
51183708 2007 1032 4.2 75 12.0 49.0
21455182 2005 1044 4.1 74 12.0 45.2
9644101 2001 1128 3.6 74 16.7 29.3
30225889 2003 1043 4.1 73 11.8 8.4
Loma Prieta 1989 118 6.9 71 10.7 29.9
21262721 2003 1030 4.3 71 12.5 16.4
14118096 2005 1054 4.3 70 17.7 23.2
9652545 2001 1095 3.8 70 24.9 18.4
14242516 2006 1140 3.7 69 17.3 44.2
10321561 2008 1086 4.2 68 18.2 13.9
30226452 2003 1137 3.5 68 15.2 11.5
13692644 2002 1103 3.7 67 22.0 18.7
21335949 2004 1130 3.7 67 13.7 24.3
40193843 2007 1170 3.4 67 13.1 18.0
10299017 2008 1094 3.9 66 30.7 23.1
Whittier Narrows-02 1987 114 5.3 65 12.1 23.3
San Simeon, CA 2003 177 6.5 65 15.6 45.2
21266207 2003 1049 4.0 65 14.2 31.1
10972299 2001 1076 3.8 64 22.1 16.8
14146956 2005 1062 4.1 62 24.0 17.9
51177794 2007 1160 3.4 62 13.3 33.6
10477949 2009 1178 4.0 62 25.5 25.3
10067405 2004 1132 3.6 61 16.9 59.0
10249565 2007 1110 3.9 60 23.3 17.5
51182810 2007 1013 4.6 59 15.5 39.7
14403732 2008 1052 4.1 59 19.4 14.9
14366244 2008 1134 3.6 57 21.6 16.4
14295984 2007 1135 3.7 57 21.7 18.5
10216101 2006 1146 3.6 56 22.7 69.1
21397674 2004 1097 3.7 55 14.0 29.7
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TABLE A1 Summary of earthquake ground motion data considered in this study. The event name and event index are from the
NGA-West2 database30. The number of usable stations and posterior mean r values are for SA(1s) data.

Event name Year Event
index

Magnitude # of usable
stations

Estimated
�r̂i|ri

Posterior
mean ri [km]

14137160 2005 1085 3.9 54 24.2 18.0
21261124 2002 1123 3.6 54 12.4 30.8
10276197 2007 1068 4.1 53 25.6 19.1
14204720 2005 1139 3.6 52 27.7 26.7
40234037 2009 1033 4.3 51 13.9 10.4
40219463 2008 1081 3.8 51 17.8 37.1
14216544 2006 1154 3.5 51 27.0 48.7
9069997 1998 1034 4.5 50 27.0 29.1
14330056 2007 1053 4.3 50 35.9 28.2
10207681 2006 1089 4.0 49 24.2 64.8
14520900 2009 1190 4.2 49 38.4 46.1
14355256 2008 1264 3.4 49 22.5 25.0
L’Aquila, Italy 2009 274 6.3 47 28.1 26.4
9064093 1998 1027 4.8 47 26.6 38.1
21526081 2006 1099 3.7 47 18.8 24.3
21549979 2006 1100 3.7 47 17.6 23.4
10205997 2006 1163 3.6 47 22.9 28.4
14169456 2005 1048 4.3 46 35.5 23.0
Big Bear-01 1992 126 6.5 45 15.7 32.9
Coalinga-01 1983 76 6.4 44 19.4 16.0
14295380 2007 1118 4.1 44 26.0 25.8
Big Bear-02 2001 161 4.5 43 19.9 20.9
9171679 2000 1042 4.4 43 25.0 34.8
30192424 1998 1061 4.1 43 31.6 44.9
14079184 2004 1107 3.8 43 25.8 20.8
10285533 2007 1065 4.2 42 25.2 19.6
9950169 2003 1151 3.5 42 29.8 39.4
San Fernando 1971 30 6.6 41 19.9 15.2
9655209 2001 1091 3.8 41 28.9 20.4
9986489 2004 1131 3.6 41 31.0 21.2
14039128 2004 1145 3.5 41 28.1 20.0
10025757 2004 1166 3.4 41 22.1 39.3
14285852 2007 1156 3.6 40 25.4 18.7
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