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SUMMARY

The ‘strength’ of an earthquake ground motion is often quanti�ed by an Intensity Measure (IM), such
as peak ground acceleration or spectral acceleration at a given period. This IM is used to predict
the response of a structure. In this paper an intensity measure consisting of two parameters, spectral
acceleration and epsilon, is considered. The IM is termed a vector-valued IM, as opposed to the single
parameter, or scalar, IMs that are traditionally used. Epsilon (de�ned as a measure of the di�erence
between the spectral acceleration of a record and the mean of a ground motion prediction equation
at the given period) is found to have signi�cant ability to predict structural response. It is shown
that epsilon is an indicator of spectral shape, explaining why it is related to structural response. By
incorporating this vector-valued IM with a vector-valued ground motion hazard, we can predict the
mean annual frequency of exceeding a given value of maximum interstory drift ratio, or other such
response measure. It is shown that neglecting the e�ect of epsilon when computing this drift hazard
curve leads to conservative estimates of the response of the structure. These observations should perhaps
a�ect record selection in the future. Copyright ? 2005 John Wiley & Sons, Ltd.
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INTRODUCTION

As non-linear dynamic analysis becomes a more frequently used procedure for evaluating the
demand on a structure due to earthquakes, it is increasingly important to understand which
properties of a recorded ground motion are most strongly related to the response caused in
the structure. A value that quanti�es the e�ect of a record on a structure is often called an
Intensity Measure (IM). The Peak Ground Acceleration of a record was a commonly used
IM in the past. More recently, spectral response values (e.g. spectral acceleration at the �rst-
mode period of vibration – Sa(T1)) have been used as IMs. Spectral acceleration at T1 has
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been found to be an e�ective IM [1], but among records with the same value of Sa(T1), there
is still signi�cant variability in the level of structural response in a multi-degree-of-freedom,
non-linear structural model. If some of this remaining record-to-record variability could be
accounted for by an improved intensity measure, then the accuracy and e�ciency of structural
response calculations could be improved.
In this paper, vector-valued intensity measures are considered as potential improvements

on current intensity measures. The intensity measures considered consist of Sa(T1) as before,
but also include a second parameter: the magnitude, distance or � (‘epsilon’) associated with
the ground motion. The IM is termed vector-valued because it now has two parameters, as
opposed to traditional scalar, or single-parameter, IMs. It is found that the vector-valued IM
consisting of Sa(T1) and � is signi�cantly superior to the IM consisting of Sa(T1) alone. The
predictive power of � is demonstrated, and an intuitive understanding is developed about the
source of this predictive power.

WHAT IS EPSILON?

Magnitude and distance are familiar quantities to any earthquake engineer, but understand-
ing of the � parameter may be less common. Epsilon is de�ned by engineering seismolo-
gists studying ground motion as the number of standard deviations by which an observed
logarithmic spectral acceleration di�ers from the mean logarithmic spectral acceleration of a
ground-motion prediction (attenuation) equation. Epsilon is computed by subtracting the mean
predicted ln Sa(T1) from the record’s ln Sa(T1), and dividing by the logarithmic standard devi-
ation (as estimated by the prediction equation). Epsilon is de�ned with respect to the unscaled
record and will not change in value when the record is scaled. We will see later that � is
an indicator of the ‘shape’ of the response spectrum, and the shape of the spectrum does not
change with scaling, providing intuition as to why � would not vary with scaling.
Because of the normalization by the mean and standard deviation of the ground motion

prediction equation, � is a random variable with an expected value of zero, and a unit standard
deviation. In fact, the distribution of � is well represented by the standard normal distribution,
at least within values of ±3 [2, 3]. Thus, a sample of randomly chosen records will have
an average � value near zero, as can be seen visually in Figure 1(b), although an average
value of zero is not required for our vector-valued IM work below. It should be noted that
for a given ground motion record, � is a function of T1 (i.e. � will have di�erent values
at di�erent periods) and the ground motion prediction model used (because the mean and
standard deviation of ln Sa(T1) vary somewhat among models). The de�nition of � is valid
for any ground motion prediction model, but the model of Abrahamson and Silva [4] is the
only one used in calculations here. If one would like to use � in a vector IM to compute
drift hazard, the model used to compute � should be the same as the model used to perform
the ground motion hazard assessment.
It should also be noted that there is more than one way to de�ne spectral acceleration, and

that the choice of de�nition will a�ect the computation of �. Many ground motion prediction
equations provide mean and standard deviation values for the average ln Sa(T1) of the two
horizontal components of a ground motion [4]. However, in this work we analyze only 2D
frames, and thus use only one (arbitrarily chosen) component of a given ground motion. Thus,
we use ln Sa(T1) of an arbitrary horizontal component of the ground motion as our IM. It is
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Figure 1. Analysis of data at a �xed value of Sa: (a) prediction of the probability of collapse using
logistic regression applied to binary collapse=non-collapse results; and (b) prediction of response given

no collapse, with the distribution of the residuals superimposed over the data.

therefore important that we compute our ground motion hazard for ln Sa(T1) of an arbitrary
component (as opposed to the average ln Sa(T1) provided by the ground motion prediction
equation). In this study, the ground motion hazard was computed using Abrahamson and
Silva’s equation, but the standard deviation of ln Sa(T1) was in�ated to re�ect the increased
variability of an arbitrary component of ln Sa(T1) rather then the average of two components.
The in�ation factor was determined from another ground motion prediction model [5], which
presents standard deviation values for both de�nitions of spectral acceleration. This in�ated
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standard deviation must also be used when computing the � values for ground motion record-
ings as well. A more thorough explanation of this issue is in preparation by the authors.
Now that � has been de�ned, we discuss how it and other IMs are used to predict drift,

and then incorporated with ground motion hazard results to compute a drift hazard curve.

CALCULATION OF THE DRIFT HAZARD CURVE USING A SCALAR IM

Once an intensity measure is de�ned, the predicted structural response given an intensity
measure level can be combined with Probabilistic Seismic Hazard Analysis (PSHA) to calcu-
late the mean annual rate of exceeding a given structural response level. An example of the
need for this calculation is seen in the work of the Paci�c Earthquake Engineering Research
(PEER) Center [6]. Here, following PEER practice, the response of a structure is termed an
Engineering Demand Parameter, or EDP (in this paper, the only EDP considered is maximum
interstory drift ratio, although the methodology is directly applicable to any EDP of interest).
The annual frequency of exceeding a given level of the EDP is calculated as follows:

�EDP(z) =
∫
x
P(EDP¿z | IM = x) · | d�IM (x)|

∼= ∑
all xi

P(EDP¿z | IM = xi) ·��IM (xi) (1)

where �EDP(z) is the mean annual frequency of exceeding a given EDP value z, �IM (xi)
is the mean annual frequency of exceeding a given IM value xi (this is commonly referred
to as the ground motion hazard curve), and ��IM (xi)= �IM (xi)− �IM (xi+1) is approximately
the annual frequency of IM = xi. The term P(EDP¿z | IM = xi) represents the probability
of exceeding a speci�ed EDP level, z, given IM = xi. In this paper we will use numerical
integration to compute results, making use of the discrete summation approximation. We see
that the rate of exceeding a given EDP level is found by assessing the ground motion hazard
and the response of the structure, and coupling these two parts together with the use of an
IM. Note that methods of computing drift hazard with techniques other than the IM-based
method have been proposed [7, 8], but the IM-based method is the focus of this paper. If the
IM is a vector, Equation (1) must be generalized, as will be discussed below.

PREDICTION OF STRUCTURAL RESPONSE USING A SCALAR IM

The IM-based procedure described above requires estimation of the probability distribution
of structural response at a given IM level (i.e. P(EDP¿z | Sa(T1)= xi) in Equation (1)). An
estimation procedure is now described for the scalar case, and later generalized to the case of
a vector-valued IM. The scalar IM Sa(T1) is used in this section, both because of its wide use
elsewhere, and because it will be easily generalized to our vector case: Sa(T1) and �. Standard
terminology from regression analysis is used in this section, to allow for quick descriptions
of some concepts from statistics. The reader desiring a more detailed explanation is referred
to a previous related publication [9].
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The method used in this paper requires a suite of earthquake accelerograms, all at the
same IM value, Sa(T1)= x (e.g. in this study, 40 records are used at each IM level). We
scale a suite of recorded earthquake accelerograms to the given Sa(T1) value (e.g. Reference
[1]). In this study, we use the same suite of records for di�erent Sa(T1) levels, although one
could use di�erent record suites at di�erent levels if PSHA disaggregation suggested that, for
example, the representative magnitude level was changing [10]—we shall return to the record
selection subject below. This suite of records is used to perform non-linear dynamic analysis
on a model of the structure. Now we have n records, all with Sa(T1)= x, and n corresponding
values of EDP. So EDP given Sa(T1)= x is a random variable that we need to characterize.

Characterizing the collapses

When predicting non-linear response of structures, it is necessary to account for the possibility
that some records may cause collapse of the structure at higher levels of IM. For the purpose
of illustration here, collapse is de�ned to have occurred if the dynamic analysis algorithm fails
to converge due to numerical instability or if the drift ratio at any story exceeds 10%. Such
a �nite cut-o� is used because the validity of current non-linear models is not well con�rmed
beyond large deformation levels, which a real structure may not be able to reach before
collapsing. For example, for the particular older reinforced concrete frame considered below,
one might in fact expect axial failure of columns in the 3–5% interstory drift ratio range.
This failure mechanism is di�cult to model and was not incorporated in the computer model,
resulting in larger displacements being obtained before collapse was signalled by numerical
instability of the program. Other collapse criteria that have been used in such studies include
dynamic instability, de�ned as the ratio of the increment in displacement to the increment in
spectral acceleration level exceeding a speci�ed threshold. The simpler 10% drift criterion is
used here for illustration, but the proposed procedure applies universally, regardless of the
structural model or the speci�ed collapse criteria. Future research to more precisely model and
identify response levels associated with collapse will be helpful to the drift hazard procedure
presented here.
To account for these collapses, we separate our realizations of EDP into collapsed and

non-collapsed data. We then estimate P, the probability of collapse, C, at the given Sa(T1)
level. This estimate is denoted P̂ and calculated as:

P̂(C | Sa(T1)= x)= number of records causing collapsetotal number of records
(2)

We then return to the non-collapse responses for the remainder of the response prediction.

Characterizing the non-collapse responses

The distribution of the non-collapsed responses for our EDP, maximum interstory drift ratio,
has been found to be well represented by a lognormal distribution (the Kolmogorov–Smirnov
test [11] was used to verify this supposition, and the same conclusion has been reached else-
where [12, 13]). For this reason we work with the natural logarithm of EDP, which then
follows the normal distribution. We can estimate the parameters for this normal distribu-
tion using the method of moments [14]. For each IM level, we denote the estimated mean
of lnEDP as �̂ln EDP | Sa(T1) = x and the estimated standard deviation as �̂ln EDP | Sa(T1) = x (this
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logarithmic standard deviation is sometimes referred to as ‘dispersion’). The probability that
EDP exceeds z given IM = x and no collapse can now be calculated using the normal
complimentary cumulative distribution function:

P(EDP¿z | Sa(T1)= x; no collapse)=1−�
(
ln z − �̂ln EDP | Sa(T1) = x
�̂ln EDP | Sa(T1) = x

)
(3)

where �( · ) denotes the standard normal cumulative distribution function.

Combining collapse and non-collapse results

We now combine the characterizations of collapses and non-collapse responses using the total
probability theorem. Our estimate of the probability that EDP exceeds z given IM = x is:

P(EDP¿z | Sa(T1)= x) = P̂(C | Sa(T1)= x)

+(1−P̂(C | Sa(T1)= x))
(
1−�

(
ln z − �̂ln EDP | Sa(T1) = x
�̂ln EDP | Sa(T1) = x

))
(4)

We can now proceed to work with this estimate.

CALCULATION OF THE DRIFT HAZARD CURVE USING A VECTOR-VALUED IM

A vector-valued IM can also be used to compute a drift hazard curve using a generalization
of Equation (1), as given in Equation (5) [15].

�EDP(z) =
∫
x1

∫
x2
P(EDP¿z | Sa(T1)= x1; �= x2) ·

∣∣∣∣@2�IM (x1; x2)@x1@x2

∣∣∣∣ dx1 dx2
∼= ∑
all x1; i

∑
all x2; j

P(EDP¿z | Sa(T1)= x1; i ; �= x2; j) ·��IM (x1; i ; x2; j) (5)

We see �rst that the scalar-IM drift prediction P(EDP¿z | IM = x) has been replaced with the
vector-IM drift prediction P(EDP¿z | Sa(T1)= x1, �= x2), which will be expanded by a means
analogous to Equation (4) in Equation (11) below. In addition, the scalar-IM ground motion
hazard has been replaced by the joint hazard of the vector-valued IM. De�ning ��IM (x1; i ; x2; j)
as �Sa∈[x1; i ; x1; i+1]; �∈[x2; j ; x2; j+1], we take advantage of the fact that we could also express this as the
marginal rate density of Sa(T1), and the conditional probability distribution of � given Sa(T1):

��IM (x1; i ; x2; j)=P(x2; j¡�¡x2; j+1 | Sa(T1)= x1; i) ·��Sa(T1)(x1; i) (6)

Then Equation (5) can be restated as:

�EDP(z) =
∑
all x1; i

∑
all x2; j

P(EDP¿z | Sa(T1)= x1; i ; �= x2; j)

×P(x2; j¡�¡x2; j+1 | Sa(T1)= x1; i) ·��Sa(T1)(x1; i) (7)
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We state the equation in this way because we obtain the distribution of Sa(T1) and � from
PSHA in this form: ��Sa(T1)(x1; i) comes from the standard PSHA hazard curve, and P(x2; j¡�
¡x2; j+1 | Sa(T1)= x1; i) is a standard disaggregation result. Note that the disaggregation can be
presented in more than one way. Some PSHA codes provide P(x2; j¡�¡x2; j+1 | Sa(T1)= x1; i)
(see Reference [16]), while others provide P(x2; j¡�¡x2; j+1 |Sa(T1)¿x1; i) (see Reference [17]).
For instance, Abrahamson’s code [18] provides P(x2; j¡�¡x2; j+1 | Sa(T1)= x1; i), while the
U.S. Geological Survey [19] provides P(x2; j¡�¡x2; j+1 | Sa(T1)¿x1; i). It is fairly simple mat-
ter to convert the results between the two forms [20, p. 195], but one should be aware
of which version is provided by the software in use, and convert the results if neces-
sary. The hazard assessments in this study were performed using the Abrahamson code,
which provides results (e.g. Figure 6) directly in the form needed for drift hazard
calculations.

PREDICTION OF BUILDING RESPONSE USING A VECTOR-VALUED IM

We now generalize the prediction procedure of the preceding section for use with a vector-
valued IM. Consider the vector consisting of Sa(T1) and �. We are now trying to estimate
P(EDP¿z | Sa(T1)= x1; �= x2). The simplest solution, if possible, would be to scale our
records to both parameters of our IM: Sa(T1)= x1 and �= x2. However, � is de�ned with
respect to the unscaled record, and does not change with scaling (similarly, magnitude and
distance do not change with scaling). Because of this, we need a supplement to scaling for
the vector-valued IM procedure, in order to predict response as a function of the second IM
parameter.
The solution we adopt is to scale to Sa(T1) as before, and then apply regression analysis to

estimate EDP as a function of � [11]. Thus our treatment of Sa(T1) remains the same as in the
scalar case, but we now incorporate information from the regression on �. Our approach with
the vector case is the same as the scalar case in that we separate out the collapse responses
�rst, and then deal with the remaining non-collapse responses.

Accounting for collapses with the vector-valued IM

When using a vector-valued IM, instead of taking the probability of collapse to be simply the
fraction of records that cause collapse, we can take advantage of the second IM parameter
to predict the probability of collapse more accurately. We do this using logistic regression,
which is a commonly used tool for analyzing binary data [11]. It should be noted that this
is not the only method for quantifying the probability of collapse. For example, a bivariate
normal model for collapse capacity of the structure could be de�ned and used to estimate
probability of collapse. The results from the two models will be nearly identical, but it may
be more convenient to adopt one or the other in certain cases. This will be explored in a
future publication by the authors.
With the logistic regression procedure used here, each record has a value of �, which we

use as our predictor variable. We designate C as an indicator variable for collapse (C is equal
to 1 if the record causes collapse and 0 otherwise). We then use the logistic regression to
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Figure 2. Prediction of the probability of collapse as a function of both Sa(T1) and �.

predict collapse:

P̂(C | Sa(T1)= x1; �= x2)= exp(�̂0 + �̂1x2)

1 + exp(�̂0 + �̂1x2)
(8)

where �̂0 and �̂1 are coe�cients to be estimated from regression on a dataset that has been
scaled to Sa(T1)= x1 (i.e. �̂0 and �̂1 will be di�erent for di�erent values of Sa(T1)). An example
of this data and a �tted logistic regression curve is presented in Figure 1(a). The tendency
for the probability of collapse to decay with increasing � is common; such observations will
be discussed below. By performing this regression for all Sa(T1) levels, one can obtain the
probability of collapse as a function of both Sa(T1) and �, as seen in Figure 2.
It should be noted that the level of con�dence in the result from Equation (8) depends

on the nature of the data used in the regression analysis. If there are signi�cant numbers of
both collapses and non-collapses in the dataset, then the regression should be very stable.
However, if for a given Sa level, the dataset consists of, for instance, 39 records that do not
cause collapse, and one record that causes collapse, the logistic regression will be strongly
in�uenced by the single collapse data point, and may indicate a di�erent trend that in fact
exists (if the exercise were to be repeated with more records or di�erent records). For this
reason, it is suggested that if there are two or fewer collapse data points, then the probability
of collapse should be taken as a simple constant (i.e. 1=n or 2=n, where n is the number
of records) for all levels of x2: This is equivalent to using the scalar-IM procedure for the
collapse portion of the prediction (Equation (2)). The same should be done in the case where
all but one or two records cause collapse. It should be noted that in these cases, the probability
of collapse will already be very high or very low, so the second IM parameter would not
have much e�ect anyway. This modi�cation to the procedure will merely prevent the logistic
regression prediction from producing unstable results.
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Characterizing non-collapses with the vector-valued IM

We now incorporate the second parameter of our IM in prediction of response for the non-
collapse results. Note that each of these records has been scaled to Sa(T1)= x1. Each of
the records has a value of � and a value of EDP. We have found that there tends to be
a relationship between � and EDP of the form lnEDP=�2 + �3� + e, where �2 and �3
are constant coe�cients, and e is the prediction error (‘residual’). We can use linear least-
squares regression [11] to obtain estimates of the two regression coe�cients, �̂2 and �̂3 (again,
these values will vary for di�erent Sa(T1) levels). A graphical example of this data and the
regression �t is shown in Figure 1(b).
When using linear least-squares regression on a dataset, several assumptions are normally

implicitly made, and the accuracy of the results depends on the validity of these assumptions.
The prediction error of record i (the di�erence between the predicted value of lnEDPi and the
actual value) is termed the ‘residual’ of record i, and is assumed to be mutually independent
from the prediction error of record j for all i �= j. In addition, we will later assume the residuals
to be normally distributed with constant variance (i.e. homoscedastic). The assumptions of
independent normal residuals with constant variance have been examined for the data in this
study, and found to be reasonable. An estimate of the variance of the residuals is also available
from the analysis software, and we denote it Vâr[e]≡ �̂2e . This variance in the residuals is
displayed graphically in Figure 1(b), by superimposing the estimated normal distribution of
the residuals over the data. From regression, we now know that given Sa(T1)= x1; �= x2 and
no collapse, the mean value of lnEDP is:

E[lnEDP]= �̂2 + �̂3x2 (9)

where �̂2 and �̂3 have been obtained by regressing on records scaled to Sa(T1)= x1. We also
know that, conditional on Sa(T1) and �, lnEDP is normally distributed with variance equal
to the �̂2e . So the probability that EDP exceeds z, given Sa(T1)= x1, �= x2, and no collapse
can be expressed as:

P(EDP¿z | Sa(T1)= x1; �= x2; no collapse)=1−�
(
ln z − (�̂2 + �̂3x2)

�̂e

)
(10)

Recall that �̂2, �̂3 and �̂
2
e are all functions of Sa(T1) or x1. This equation is very similar

to Equation (3) used in the scalar case. We previously estimated the mean of the normal
distribution by the average logarithmic response of all records, but now we use a result from
regression on �. We have also replaced the standard deviation of the records by the standard
deviation of the regression residual. Otherwise, the equation is the same.
As with the estimation of collapse, there is more than one way to incorporate the vector

IM. For example, rather than using regression, one could use a weighted scheme where the
weights of each record are determined according to the results of the PSHA analysis [12].
The results from these two schemes will agree closely, but one may be more appropriate than
the other based on the amount of data available and the extent to which the e�ect of the IM
can be parameterized. This will be described in a future publication by the authors.
We now combine the possibilities of collapse or no collapse, using the Total Probabil-

ity Theorem and Equations (8) and (10), to compute the conditional probability that EDP
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exceeds z:

P(EDP¿z | Sa(T1)= x1; �= x2)= P̂(C) + (1− P̂(C))
(
1−�

(
ln z − (�̂2 + �̂3x2)

�̂e

))
(11)

where

P̂(C)=
exp(�̂0 + �̂1x2)

1 + exp(�̂0 + �̂1x2)

Although x1 does not appear in Equation (11), our estimate is implicitly a function of x1,
because the data used to estimate �̂0, �̂1, �̂2, �̂3 and �̂e all come from records scaled to
Sa(T1)= x1. This gives us a response prediction that is similar to the original prediction of
Equation (4), but that now incorporates a two-element vector.

INVESTIGATION OF MAGNITUDE, DISTANCE AND EPSILON
AS IM PARAMETERS

The procedure for evaluating drift hazard using a vector-valued IM can now be used to
assess the response-predicting e�ectiveness of � as an element in a vector with Sa(T1). Ad-
ditionally, we will examine magnitude (M) and distance (R) as elements in a vector with
Sa(T1) using the same procedure, to evaluate whether they have any signi�cant e�ect on
structural response after conditioning on Sa(T1). This study considers only M, R and � be-
cause the conditional distribution P(x2; j¡IM2¡x2; j+1 | Sa(T1)= x1; i) is then easily available
from standard PSHA software (where IM2 is used to represent either M, R or �). If one is
interested in the e�ect of other parameters such as spectral shape or duration, special modi-
�cations to the PSHA analysis [15] are needed in order to obtain the conditional distribution
P(x2; j¡IM2¡x2; j+1 | Sa(T1)= x1; i).
To test the e�ectiveness of M, R or � as predictors, we examine the results from our

response regressions on these variables. The seven storey concrete frame structure described
below was used to generate response data. At each level of Sa(T1), we predict collapse us-
ing logistic regression on M, R or �, and we use linear regression on these variables to
model the non-collapse responses. An e�ective predictor should show a trend in one or both
of these regressions and the trend (i.e. slope of the regression) should be statistically sig-
ni�cant. A standard way of measuring statistical signi�cance is with the ‘p-value’ for the
regression coe�cient. Typically, a p-value smaller than 0.05 is interpreted to indicate that
the predictive variable is signi�cant [11], although when a slightly larger p-value shows up
repeatedly in separate tests of the same predictor variable, this can also be interpreted as an
indicator of signi�cance. A p-value can also be computed for both the logistic and linear
regression results.
When distance is considered as a candidate IM parameter, we �nd no statistical signi�cance

(median p-values of 0.34 and 0.29 for linear and logistic regression, respectively, considering
13 levels of Sa(T1)). Both � and magnitude show some signi�cance for the linear response
regression (median p-values of 0.05 and 0.06, respectively), although � shows more signif-
icance than M for the logistic collapse probability regression (median p-values of 0.14 and
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Table I. P-values from linear and logistic regression on magnitude and epsilon.

Magnitude

Potential Prediction
Sa Percent Linear regression Logistic regression Linear regression error (M =6:5

collapsed p-value p-value coe�cient vs M =7)

0.1 0% 0.04 – 0.13 7%
0.2 0% 0.09 – 0.16 8%
0.3 0% 0.05 – 0.25 13%
0.4 0% 0.04 – 0.29 16%
0.5 0% 0.06 – 0.35 19%
0.6 3% 0.06 – 0.37 20%
0.7 8% 0.05 0.36 0.33 18%
0.8 9% 0.20 0.45 0.23 12%
0.9 14% 0.10 0.29 0.36 20%
1.0 16% 0.04 0.37 0.41 22%
1.2 24% 0.10 0.10 0.28 15%
1.4 56% 0.10 0.98 0.49 28%
1.6 68% 0.51 0.66 0.27 14%

Median 0.06 0.37 0.29 16%

Epsilon

Potential Prediction
Sa Percent Linear regression Logistic regression Linear regression error (�=0

collapsed p-value p-value coe�cient vs �=1:5)

0.1 0% 0.00 – −0.15 24%
0.2 0% 0.01 – −0.15 25%
0.3 0% 0.07 – −0.14 24%
0.4 0% 0.05 – −0.19 32%
0.5 0% 0.01 – −0.30 56%
0.6 3% 0.13 – −0.20 34%
0.7 8% 0.03 0.14 −0.24 42%
0.8 9% 0.01 0.26 −0.30 57%
0.9 14% 0.02 0.20 −0.32 61%
1.0 16% 0.08 0.14 −0.24 43%
1.2 24% 0.13 0.04 −0.19 32%
1.4 56% 0.17 0.09 −0.23 42%
1.6 68% 0.69 0.05 −0.09 14%

Median 0.05 0.14 −0.20 34%

0.37, respectively). The lack of signi�cance of R and slight signi�cance of M are consis-
tent with results from previous work on this topic (e.g. Reference [1]). The signi�cance of
� and the evaluation of signi�cance with respect to collapse prediction are believed to be
new results.
The p-values from both regressions using M and � as predictors at 13 levels of spectral

acceleration are given in Table I (distance has been omitted because of the consistent lack
of signi�cance it demonstrated). Values for logistic regression are omitted when fewer than
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three records cause collapse, preventing the regression from being performed. At high Sa(T1)
levels, when nearly all of the records cause collapse and there is little data for either the
linear or logistic regression, the regressions are less useful, and the results are omitted.
In addition to standard p-values, a value termed the ‘potential prediction error’ is also

reported in Table I. This value is de�ned as the percentage di�erence in predicted response
for a reasonable range of values in the second IM (i.e. what is the di�erence in response
between magnitude 6.5 and 7 records, given the same Sa(T1) level). In Table I we see that for
the given range of variation, a change in magnitude produces a potential prediction error of
16%, while a change in � produces a potential prediction error of 34%. This major di�erence
is because, while the slopes of the two trends are similar, there is more room for variation
with � (records are typically selected to be within 0.5 magnitude units of the target value
obtained from PSHA, but using zero-epsilon records in place of 1.5-epsilon records is not
uncommon). Both the statistical signi�cance and this potential prediction error are relevant,
and jointly they suggest that �, and to a lesser extent magnitude, should be considered when
predicting the response of a structure.
Note that the trend with � would be more di�cult to discern if we had not already scaled

the records to Sa(T1). This is because � and Sa(T1) tend to be correlated, making it more
di�cult to separate e�ects due to Sa(T1) and e�ects due to �. By �rst scaling to Sa(T1) we
have eliminated this problem (termed ‘collinearity’ [11]) and allowed the e�ect of � to be
seen more clearly.
Although Table I appears to show empirically that � has an e�ect on structural response,

this conclusion would be much more convincing if supported by an intuitive understanding
as to why � might matter. This understanding is developed in the following section.

WHY DOES EPSILON AFFECT STRUCTURAL RESPONSE?

When considering why � could a�ect structural response, we should consider current under-
standing about non-linear response of multiple-degree-of-freedom structures. The �rst param-
eter of our IM, Sa(T1), provides the response of a linear single-degree-of-freedom structure
with a period of vibration approximately equal to the �rst-mode period of the MDOF structure
under consideration. Given Sa(T1), the shape of the response spectra is known to be a signif-
icant factor in the response of non-linear MDOF structures (e.g. References [9, 21]). This is
because the response of an MDOF structure is also a�ected by excitation of higher modes of
the structure at periods shorter than T1 (as implied, e.g. by response spectrum analysis [22]).
In addition, Sa at periods longer than T1 a�ects non-linear structures because, as the structure
starts behaving non-linearly, the e�ective period of its �rst mode increases to a period larger
than T1 [23, 24]. Thus, given two records with the same Sa(T1) value, the record with higher
Sa values at periods other than T1 will tend to cause larger responses in a non-linear MDOF
system. So given Sa(T1), we would like to know about Sa at other periods. We could do this
by measuring that Sa at other periods directly [9, 25, 26]. Alternatively, we will see that � is
a convenient implicit measure of spectral shape.
A record with a positive � value is one that has a larger-than-expected spectral acceleration

at the speci�ed period. But what does it tell us about the spectral acceleration at other periods?
It may be that the record is stronger than expected at all periods, or it may be that the record
is stronger than expected in only a nearby range of periods, and that the spectral acceleration
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Figure 3. Scaling a negative � record and a positive � record to the same Sa(T1): an illustration of the
peak and valley e�ect. In this case, T1 = 0:8 s.

values at other periods are not as strongly related. We are interested in the possibility that
only a narrow range of periods have comparatively large Sa values. We term this a record
with a spectral ‘Peak’ at Sa(T1). Conversely, a record that is lower than expected in only
a narrow range of periods has a spectral ‘Valley’ at Sa(T1). Now consider scaling a record
with a peak and a record with a valley to the same Sa(T1) level. At T1, the two records will
have the same spectral acceleration by construction, but at other periods the valley record will
tend to have larger spectral accelerations than the peak record. This is seen by examining the
two sample response spectra shown in Figure 3. If a record has a peak or a valley at the
period considered, then � (which measures deviation from expected spectral values) may be
an indicator of this condition, and if so it would be useful for predicting structural response.

The e�ect of epsilon, as seen using a second-moment model for logarithmic spectral
acceleration
Anecdotal evidence of � indicating a spectral peak or valley is seen in Figure 3, but there
is more concrete evidence to show the connection between � and spectral shape. We note
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Figure 4. The mean value and the mean ± sigma values of ln Sa for a Magnitude=6:5, Distance=8km
event: (a) unconditioned values; (b) conditioned on ln Sa(0:8 s) equal to the mean value of the ground
motion prediction equation; (c) conditioned on ln Sa(0:8s) equal to the mean value of the ground motion
prediction with actual response spectra superimposed; and (d) conditioned on ln Sa(0:8 s) equal to the

mean value of the ground motion prediction plus two standard deviations.

that for a given magnitude, distance, site classi�cation and faulting mechanism, logarithmic
spectral acceleration at a given period is a random variable with a mean and standard deviation
speci�ed by a ground motion prediction equation [4]. Lines indicating the mean value ± one
standard deviation at all periods for a scenario event are shown in Figure 4(a). Now consider
logarithmic spectral accelerations at two periods simultaneously. We can obtain the means and
standard deviations from the ground motion prediction equation. In order to completely specify
the �rst and second moments of this pair, we also need to know the correlation between ln Sa
values at the two periods. An empirically determined relationship for this correlation is given
by Inoue and Cornell [27]:

�ln Sa(T1); ln Sa(T2) = 1− 0:33 | ln(T1=T2)| 0:1 s6T1; T264 s (12)
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This correlation coe�cient approaches one when the two periods are nearly equal, and de-
creases as the periods get further apart from each other. We have now fully de�ned the mean
and covariance of this pair of response spectra values. Note that for expository purposes, we
will later assume that this equation is valid over the range 0:05 s6T1; T265 s.
Previous research has established that ln Sa(T1) and ln Sa(T2) are each marginally normally

distributed. Under the mild assumption that they are jointly normally distributed, we obtain
the conditional mean of ln Sa(T2), given ln Sa(T1), as given in Equation (13):

�ln Sa(T2) | ln Sa(T1) = x = �ln Sa(T2) + �ln Sa(T1); ln Sa(T2) ·�ln Sa(T2)
(
x − �ln Sa(T1)
�ln Sa(T1)

)

= �ln Sa(T2) + �ln Sa(T1);ln Sa(T2) ·�ln Sa(T2) · �T1 (13)

where �T1 is the � value of the record at the period T1 (this equation is derived from the result
E[�T2 | �T1 ]=�ln Sa(T1); ln Sa(T2) · �T1). We see that the conditional mean of ln Sa(T2) is shifted up if
�T1¿0 or down if �T1¡0. We can also obtain the conditional standard deviation of ln Sa(T2):

�ln Sa(T2) | ln Sa(T1) = x=�ln Sa(T2)
√
1− �2ln Sa(T1); ln Sa(T2) (14)

We see that, as might be expected, the conditional standard deviation of ln Sa(T2) is reduced
as the correlation increases between ln Sa(T1) and ln Sa(T2). In Figure 4(b), for T1 = 0:8 s, we
condition on ln Sa(0:8 s)=�ln Sa(T1) and plot the mean and mean ± sigma for a scenario event
(for each value of T, we use the conditional mean and standard deviation from Equations
(13) and (14)). This plot represents the theoretical distribution of the response spectra for all
records with ln Sa(0:8 s)=�ln Sa(T1).
We see in Figure 4(b) that there is less dispersion in Sa for periods close to T1, but for

periods at some distance from T1 there is little reduction in dispersion gained by conditioning
on T1. While it is not strictly a veri�cation, we can con�rm that this multivariate distribution
model is representative of reality by scaling real records to ln Sa(0:8 s) and superimposing
them over the model distribution. We see in Figure 4(c) that the real records match the
model reasonably well (i.e. the mean value of the records is close to the predicted mean
value, and the model prediction that 95% of the records should fall between the mean ± two
sigma is reasonable).
In Figure 4(d) we plot the expected Sa value and +=− sigma, but now conditioned on

ln Sa(0:8 s)=�ln Sa(T1) +2�ln Sa(T1) (i.e. an ‘�=2’ record). The original mean is also plotted as a
reference. In this �gure, we see that for periods near to T1 we have larger spectral values than
originally expected, but as the period gets much larger or smaller than T1, the expected value
of ln Sa(T ) goes back towards the original mean value, re�ecting Equations (12) and (13).
The results of this analysis can be restated in words as follows. A record with a positive

� has a higher than expected Sa value at the speci�ed period. But Sa values are not perfectly
correlated, so a higher-than-average value at one period does not imply correspondingly higher-
than-average values at all periods—in fact, the conditional expected values of Sa at other
periods tend back towards the marginal expected value. Thus, records with positive � values
tend to have peaks in the response spectrum at the speci�ed period, and records with negative
� values tend to have valleys. Therefore, � is an indicator of spectral shape, and this is why
it is e�ective in predicting the response of non-linear MDOF models.
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Consideration of other candidate IM parameters

It has been shown that � is an indicator of spectral shape, supporting its utility in predicting
non-linear response. But the question naturally arises, is it the best predictor of non-linear
response? Other candidates have been considered. Magnitude has often been considered as
an indicator of spectral shape as discussed above, but it e�ectively has a weaker relationship
with spectral shape than �. We demonstrate next via Figure 5 this di�erence. Consider a target
event with M =7 and �=1:5. Records with these parameters are rare; there are few recordings
available from large magnitudes, and of those recordings, only 7% are expected to have an
ln Sa(T1) at least 1.5 standard deviations larger than the mean. Suppose instead we have two
records available for analysis: an M =7, �=0 record and an M =6:5, �=1:5 record (i.e. we
can match either magnitude or �, but not both). The expected spectra for these two records
are shown in Figure 5(a), along with the expected spectrum for the target event. In Figure
5(b), the three ‘records’ have been scaled so that their Sa(T1) values match. We see that the
record with the correct � and incorrect magnitude comes closer to matching the target spectral
shape than does the record with the correct magnitude but incorrect �. So a di�erence of 0.5
units in magnitude makes much less di�erence in spectral shape than the di�erence of 1.5
units of �. Therefore it is anticipated that � will prove more e�ective than M. This conclusion
will be con�rmed below.
As mentioned earlier, it is also possible to measure spectral shape in a direct manner by

considering spectral acceleration at an additional period as a second parameter in the vector
IM. In previous work, the drift estimation method presented in this paper has been used
with such a direct measure of spectral shape. With an informed choice of the second period,
the direct measure of spectral shape has been shown to be an e�ective IM as well [9].
The comparative advantage of � is that it is easy to �nd the joint distribution of Sa and �
from PSHA disaggregation, with no need for specialized hazard analysis software. Further
consideration of spectral shape is outside of the scope of this paper, but it should also be
considered a promising candidate for a vector-valued IM.
Spectral acceleration averaged over a range of periods may be an e�ective IM in the

case where a structure is sensitive to several periods, and may reduce the peak/valley ef-
fects seen when using spectral acceleration at only a single period [12]. The disadvan-
tage is that when structural response is predominantly governed by a single period, aver-
aging spectral values over a range of periods will tend to reduce the e�ciency of response
predictions.
One might also wonder if there is a better epsilon-based measure of spectral shape. For

example, it is possible that a record could have a positive � at the period considered, but also
have large � values at all other periods. In this case, the positive � value would incorrectly
suggest the presence of a peak and thus it would incorrectly predict the relatively smaller
level of response we have seen to be typically associated with positive � values. It would
seem plausible that a more sophisticated ‘epsilon-type’ parameter might do a better job than
one considering simply � itself. The authors have tried several approaches to develop an
improved epsilon-based measure. A measure separating the inter-event epsilon from the intra-
event epsilon (see Reference [4]) was attempted, anticipating that the intra-event epsilon
would tend to represent peaks and valleys, while the inter-event epsilon would re�ect the
overall increase or decrease in the response spectra already accounted for by Sa(T1). Measures
attempting to separate ‘global’ shape e�ects from ‘local’ shape e�ects (see Reference [28])
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Figure 5. (a) Expected response spectra for three scenario events; and (b) expected response spectra for
three scenario events, scaled to have the same Sa(0:8 s) value.

were also examined. However, neither of these measures showed signi�cant improvement over
�, and thus were rejected in favor of the simpler � parameter.
For these reasons, the � predictor is believed to have advantages over alternative response

predictors, making it an interesting candidate as an e�ective intensity measure.
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Figure 6. Disaggregation of PSHA results. The conditional distribution of � given Sa(0:8s)= x is shown
for both fault models at three di�erent hazard spectral acceleration levels associated with three di�erent

mean annual frequencies of exceedance.

Epsilon and ground motion hazard

Having established � as an e�ective predictor of structural response supplemental to Sa(T1), it
is useful to consider what values of � are typically to be anticipated in ground motions that
are of interest to structural engineers. For a given site and a given fault, the three parameters
that can vary are magnitude, distance, and �. In a Probabilistic Seismic Hazard Analysis,
the possible values of these three parameters and their likelihoods are integrated over for
each fault, and the hazard contributions of all faults are summed [29]. The result is a curve
specifying the annual rate of exceeding varying levels of ground motion intensity. For purposes
of illustration, consider a hypothetical site that has a single fault, capable of producing only
magnitude 6.5 events at a distance of 8 km. At this site, magnitude and distance are �xed
for all events, so � is the only free variable in the PSHA analysis; thus the e�ect of � can
be more clearly seen. A single event model is also quite representative of the ground motion
hazard situation at many sites located near a single large fault (i.e. some urban locations near
the San Andreas or Hayward faults in northern California). This model will be referred to as
the ‘Characteristic Event model’.
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With this model, the median value of spectral acceleration (i.e. the exponential of the mean
of ln Sa) is 0:46g, so any ground motions larger than 0:46g have a positive � value. Thus,
at low annual frequencies (where Sa values greater than 0:46g are seen) the ground motion
hazard is governed exclusively by records with positive epsilons. This is seen in Figure 6:
as the ground motion level is increased, the � value seen in the disaggregation shows a
corresponding increase.
Now consider the ground motion hazard at a real site surrounded by several faults, each

of which is capable of producing events with a variety of magnitudes and distances. The
hazard assessment used here is that for Van Nuys, California, at the site of the example
structure which will be analyzed below. (The activity rate of the Characteristic Event model
is speci�ed such that both of these models have the same ground motion level at the 10% in
50 year hazard: Sa(0:8 s)=0:6g. In addition, the magnitude and distance values for the Char-
acteristic Event equal the mean values of the Van Nuys disaggregation at the 10% in 50 year
level.) The hazard there is simply a summation of many hazard contributions each similar to
the Characteristic Event model. There is a limit on the maximum magnitude and minimum
distance of an event, so it is still true that large ground motion events will have positive �
values. In fact, as noted earlier, we can determine the � values at a given hazard level by
examining the disaggregation of the PSHA results. The disaggregation-based distribution of
� at the Van Nuys site is shown in Figure 6 for several levels of Sa. As the annual rate
of exceedance decreases (i.e. as the ground motion level increases) the epsilons contributing
to the hazard are seen to shift to larger values. Thus in general, for any hazard environ-
ment, the ground motion hazard at long low annual frequencies will be dominated by positive
� events.

EPSILON AND DRIFT HAZARD

In the previous section, it was established that at ground motion intensity levels with low
annual rates of exceedance, records tend to have positive � values. Further, we have seen that
for a given Sa value, records with larger � values cause systematically smaller responses in
structures, due to the fact that � is an indicator of peaks and valleys in the response spectra
at the period of interest. But a typical random sample of records would have an average �
value of zero. Now consider the usual practice of using simply a scalar Sa with a suite of
(on average) zero-epsilon records. When these records are used to estimate the response of
a structure at (low annual frequency) high ground motion levels (typically characterized by
positive epsilons), estimates of the frequency of exceeding large structural drifts are likely
to be conservatively biased. This expectation can be con�rmed by using the drift hazard
procedure outlined earlier. The traditional approach using Equation (1) and Sa(T1) alone as the
intensity measure is referred to here as the ‘scalar-based approach’. The alternative approach
using a vector-valued IM consisting of Sa(T1) and M or �, and using Equation (7), is referred
to as the ‘vector-based approach’. A complete drift hazard curve is computed for a variety
of structures using both of these approaches, and it is seen that neglecting to account for
the � value of a record nearly always results in over-estimation of the mean annual rates of
exceeding large levels of drift.
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Description of the structures analyzed

The primary structure analyzed is a reinforced-concrete moment-frame building. The building
has 1960’s era construction and is serving as a test-bed for PEER research activities [30].
The actual structure is located in Van Nuys, California, at the same site for which the ground
motion hazard assessment above was conducted. A 2D model of the transverse frame created
by Jalayer [31] is used here. This model has a �rst-mode period of 0:8 s, and contains non-
linear elements that degrade in strength and sti�ness, in both shear and bending [32]. Forty
historical earthquake ground motions from California are used to analyze this structure. The
events range in magnitude from 5.7 to 7.3, and the recordings are at distances between 6
and 36 km. Directivity e�ects are not expected at this site [30], so these e�ects were avoided
by choosing records with small distances only when the rupture=site geometry suggested that
near-fault e�ects would be unlikely; the ground motion velocity histories were not observed
to contain pulse-like intervals. Epsilon was not calculated before the records were selected—
therefore they have been e�ectively randomly selected with respect to �. The set of 40 records
was then scaled to 16 levels of Sa(T1) between 0:1g and 2:4g.
To supplement the data from this structure, a series of generic frame structures was eval-

uated as well. Fifteen generic frame models were analyzed, with a variety of con�gurations,
periods, and degradation properties. The speci�c model parameters are summarized in Ta-
ble II. All of the structures are single-bay frames, with sti�nesses and strengths chosen to
be representative of typical structures. Five structural con�gurations were considered, with
varying numbers of stories and �rst-mode periods. A set of non-degrading models designed
and analyzed by Medina and Krawinkler [33] was considered. These models do not have
degrading elements, but the more �exible structures still have the potential to collapse due
to P–� e�ects. A set of degrading models designed and analyzed by Ibarra [34] was also
considered. These structures are identical to the models of Medina and Krawinkler, except for
incorporation of elements that degrade in sti�ness and strength. For each of the �ve building
con�gurations, a non-degrading model and two degrading models were considered. A second
set of forty records were used by those authors to analyze these structures, ranging in mag-
nitude from 6.5 to 6.9, and ranging in distance from 13 to 40 km. It is di�cult to generalize
conclusions to all possible structures, but it is believed that by considering this wide range
of models, the consistent e�ect of � is apparent.

Drift hazard results

The �rst case considered is the reinforced concrete frame structure. This structure was evalu-
ated for both the Characteristic Event and the Van Nuys ground motion hazard environments.
The results are shown in Figure 7. We see that in both cases, versus the scalar approach,
inclusion of � in the intensity measure results in lower mean annual frequencies for high
levels of drift. While inclusion of M with Sa has the same e�ect, it is much less pronounced,
as anticipated.
This same procedure was repeated for the 15 generic frames considered. The drift hazard

curves look similar to those of Figure 7. In order to present the results in a concise way,
two important values for each structure are considered: the annual rate of exceeding 10%
maximum interstorey drift ratio (this amount of drift could be interpreted to indicate collapse
of the structure), and the drift that has a 10% chance of being exceeded in 50 years (i.e. the
drift level z such that �(EDP¿z)=0:0021). The percentage change in these values between
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Table II. Percentage change in mean annual collapse rate and in the 10% in 50 year
drift demand on a series of structural models when using the improved vector-based

procedure versus the scalar-based procedure.

Reduction in Reduction in
Number Period Degradation mean annual drift at 10% in
of stories (s) model rate of collapse 50 year hazard

3 0.3 a 55% 93%
3 0.3 b 58% 91%
3 0.3 none 0% 17%
3 0.6 a 40% n.a.
3 0.6 b 51% 73%
3 0.6 none 99% 25%
7 0.8 c 43% n.a.
9 0.9 a 72% 42%
9 0.9 b 80% 41%
9 0.9 none 99% 32%
9 1.8 a 5% 18%
9 1.8 b 49% 20%
9 1.8 none 71% 25%
15 3.0 a 41% 5%
15 3.0 b 40% n.a.
15 3.0 none 46% 13%

Degradation models:

(a) Ibarra degradation parameters: peak oriented model,
�c=�y =4, �c =−0:10, �s=0:03, 	s; c; k; a=∞

(b) Ibarra degradation parameters: peak oriented model,
�c=�y =4, �c =−0:05, �s=0:03, 	s; c; k; a=50

(c) Pincheira model, with parameters calibrated to re�ect concrete
connections with representative detailing [19]

the scalar-based (Sa) result and the vector-based (Sa; �) result is listed in Table II. For some
cases, the structure collapses with a greater than 10% probability in a 50 year period (e.g.
this is seen in Figure 7). In these cases, there is no drift level associated with the 10% in
50 year hazard level, so the corresponding cell in Table II is marked ‘n.a.’ (not applicable).
In addition, the non-degrading structure with a period of 0:3 s is not predicted to collapse
at the ground motion levels present at the site, so there is no change in the frequency of
collapse. We see that in every case (besides these special cases) the improved vector-based
procedure produces lower demands on the structure. One interesting insight: it can be noted
that the collapse rate reduction is typically less for the longer period version of otherwise
similar models; the absolute rates are, however larger in such cases implying smaller values
of �, and hence less e�ect.

DISCUSSION

It has been shown that � has a systematic e�ect on the shape of a record’s response spectra,
and thereby an important e�ect on the response of non-linear MDOF models. This being the
case, it is desirable to account for the e�ect of � when predicting the annual rate of exceeding
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Figure 7. Seven storey reinforced concrete frame. Mean annual frequency of exceedance versus maxi-
mum interstorey drift: (a) scalar-based and vector-based drift hazard curves for the characteristic event

hazard; and (b) scalar-based and vector-based drift hazard curves for the Van Nuys hazard.

a given drift level. There is more than one way to accomplish this. One approach is to consider
� values carefully when selecting ground motions to use in analysis. In current practice, ground
motions are selected so that they match the magnitude and distance values of the events that
dominate the disaggregation, and the soil conditions present at the site under consideration
[10]. This paper suggests that � should also be considered when selecting ground motions.
Unfortunately, the existing library of recorded ground motions is not large enough such that
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all desired parameters can be matched simultaneously, especially for a sample of nominal size.
In light of the relatively greater e�ect that � has on structural response, the desire to closely
match distance and magnitude should probably be relaxed in favor of matching � levels. For
example, one could match � while also trying to match magnitude, but allow records from a
wide range of distances to be used. When selecting records to match �, one needs to remain
aware that target � values will increase as the mean annual frequency considered decreases
(the target magnitude and distance may also change as the annual frequency decreases, and
this is sometimes accounted for in the selection process, e.g. Reference [10]).
The method to address the e�ect of � proposed here is to adopt an IM that accounts for

the e�ect of � (i.e. an IM that is su�cient with respect to � [35]). The most obvious IM
that accomplishes this is the vector-valued IM presented in this paper, with Sa(T1) and �
as parameters. One �rst assesses the dependence of drift on � at one or more levels of Sa,
as described herein. One level at or near the mean annual frequency of interest (e.g. 2% in
50 years) may be su�cient in some cases. The sample size can probably be limited to the
order of 10 records, especially if record selection is designed to capture, for example, the
dependence of � in the 0 to +2 range (note that with this approach, a wide range of � values
in the suite of records is desirable in order to improve the slope �t, in contrast to the pre-
vious approach where only records with speci�c � values are desired). Then the drift hazard
curve is computed using the vector-based procedure of Equation (7), as was done to produce
Figure 7.
Finally, there is a possibility that alternative scalar intensity measures may account for the

e�ects of � more su�ciently than spectral acceleration (for instance, some of the improved
scalar IMs that have been proposed recently [25, 35, 36]). If this were the case, then � would
not need to be included as a second parameter of the IM. However, this hypothesis remains
to be tested. In the meantime, the most direct way to address the observed e�ect of � is to
use the vector-valued IM presented in this paper.

CONCLUSIONS

A method for calculating the probabilistic response of structures with a vector-valued IM is
used to evaluate the signi�cance of magnitude, distance and � on the response of structures,
conditioned on spectral acceleration. It is seen that � has a signi�cant e�ect on the response of
structures, because it is an indicator of spectral shape (more speci�cally, it tends to indicate
whether Sa at a speci�ed period is in a peak or a valley of the spectrum). For a �xed Sa(T1),
records with positive � values cause systematically smaller demands in structures than records
with negative � values. The e�ect of � on structural response given Sa(T1) is seen to be greater
than the e�ect of magnitude or distance.
In addition, by examining disaggregation of the ground motion hazard, it is seen that at low

mean annual frequency of exceedance the ground motions are all positive-epsilon motions.
Therefore, the practice of scaling up zero-epsilon (on average) records to represent records
with positive epsilons is likely to result in over-estimation of the demand on the structure.
This will lead to over-estimation of drift at a given hazard level, or over-estimation of the
mean annual frequency of collapse.
A vector-valued IM consisting of Sa(T1) and � has been proposed in this paper. The pro-

posed IM will account for the e�ect of � on structural response. Alternatively, one could
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correct for the e�ect of � on structural response by intelligently choosing records that have
the proper � value, and then using Sa(T1) as a scalar IM.
The results presented here are based on a suite of structural models that are similar in

behavior to many frame structures. However, these models are by no means representative of
all classes of structures in existence. It is believed that the e�ect of � will be seen in a broad
class of structures, but further work is needed to further con�rm and quantify this e�ect.

ACKNOWLEDGEMENTS

This work was supported primarily by the Earthquake Engineering Research Centers Program of the
National Science Foundation, under Award Number EEC-9701568 through the Paci�c Earthquake Engi-
neering Research Center (PEER). Any opinions, �ndings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily re�ect those of the National Science
Foundation. We thank Dr Ricardo Medina and Dr Luis Ibarra for providing structural analysis results
for the generic frame structures used. We also thank Dr Norman Abrahamson for allowing us to use
his PSHA code to perform the ground motion hazard analysis.

REFERENCES

1. Shome N, Cornell CA, Bazzurro P, Carballo JE. Earthquakes, records, and nonlinear responses. Earthquake
Spectra 1998; 14(3):469–500.

2. Abrahamson NA. Statistical properties of peak ground accelerations recorded by the Smart 1 array. Bulletin of
the Seismological Society of America 1988; 78:26–41.

3. Abrahamson NA. State of the practice of seismic hazard evaluation. GeoEng 2000. Melbourne, Australia, 2000.
4. Abrahamson NA, Silva WJ. Empirical response spectral attenuation relations for shallow crustal earthquakes.
Seismological Research Letters 1997; 68:94–126.

5. Boore DM, Joyner WB, Fumal TE. Equations for estimating horizontal response spectra and peak acceleration
from western North American earthquakes: a summary of recent work. Seismological Research Letters 1997;
68:128–153.

6. Cornell CA, Krawinkler H. Progress and challenges in seismic performance assessment. PEER Center News
2000; 3. http:==peer.berkeley.edu=news=2000spring=performance.html

7. Bazzurro P, Cornell CA, Shome N, Carballo JE. Three proposals for characterizing MDOF nonlinear seismic
response. Journal of Structural Engineering (ASCE) 1998; 124(11):1281–1289.

8. Jalayer F, Beck JL, Porter KA. E�ects of ground motion uncertainty on predicting the response of an existing
RC frame structure. 13th World Conference on Earthquake Engineering. 2004. Vancouver, Canada, 10p.

9. Baker JW, Cornell CA. Choice of a vector of ground motion intensity measures for seismic demand hazard
analysis. 13th World Conference on Earthquake Engineering. 2004. Vancouver, Canada, 15p.

10. Stewart JP, Chiou S-J, Bray JD, Graves RW, Somerville PG, Abrahamson NA. Ground motion evaluation
procedures for performance-based design. PEER 2001-09. 2001, Paci�c Earthquake Engineering Research
Center, University of California at Berkeley: Berkeley, California. 229p.

11. Neter J, Kutner MH, Nachtsheim CJ, Wasserman W. Applied Linear Statistical Models; 4th edn. McGraw-Hill:
Boston, 1996; 1408p.

12. Shome N. Probabilistic Seismic Demand Analysis of Nonlinear Structures. Department of Civil and
Environmental Engineering, Stanford University, 1999; 320p. http:==www.stanford.edu=group=rms=.

13. Aslani H, Miranda E. Probabilistic response assessment for building-speci�c loss estimation. PEER 2003-
03. 2003, Paci�c Earthquake Engineering Research Center, University of California at Berkeley: Berkeley,
California. 49p.

14. Benjamin JR, Cornell CA. Probability, Statistics, and Decision for Civil Engineers. McGraw-Hill: New York,
1970; 684p.

15. Bazzurro P, Cornell CA. Vector-valued probabilistic seismic hazard analysis. 7th U.S. National Conference on
Earthquake Engineering. 2002, Boston, MA: Earthquake Engineering Research Institute. 1 CD-ROM.

16. McGuire RK. Probabilistic seismic hazard analysis and design earthquakes: Closing the loop. Bulletin of the
Seismological Society of America 1995; 85:1275–1284.

17. Bazzurro P, Cornell CA. Disaggregation of seismic hazard. Bulletin of the Seismological Society of America
1999; 89:501–520.

18. Abrahamson NA. Personal communication, Paci�c Gas & Electric Co., San Francisco, California, 2004.

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2005; 34:1193–1217



A VECTOR-VALUED GROUND MOTION INTENSITY MEASURE 1217

19. U.S. Geological Survey Earthquake Hazard Maps. 2002. http:==eqhazmaps.usgs.gov=.
20. Bazzurro P. Probabilistic Seismic Demand Analysis. Department of Civil and Environmental Engineering,

Stanford University: Stanford, CA, 1998; 329p. http:==www.stanford.edu=group=rms=.
21. Kennedy RP, Short SA, Merz KL, Tokarz FJ, Idriss IM, Power MS, Sadigh K. Engineering characterization of

ground motion—Task I: E�ects of characteristics of free-�eld motion on structural response. NUREG/CR-3805.
1984, U.S. Nuclear Regulatory Commission: Washington, D.C.

22. Chopra AK. Dynamics of Structures: Theory and Applications to Earthquake Engineering; 2nd edn. Prentice
Hall: Upper Saddle River, NJ, 2001; 844p.

23. Iwan WD. Estimating inelastic response spectra from elastic response spectra. Earthquake Engineering and
Structural Dynamics 1980; 8:375–388.

24. Kennedy RP, Kincaid RH, Short SA. Prediction of inelastic response from elastic response spectra considering
localized nonlinearities and soil-structure interaction. 8th SMIRT. 1985, 427–434.

25. Cordova PP, Deierlein GG, Mehanny SSF, Cornell CA. Development of a two-parameter seismic intensity
measure and probabilistic assessment procedure. The Second U.S.–Japan Workshop on Performance-based
Earthquake Engineering Methodology for Reinforced Concrete Building Structures. 2001, Sapporo, Hokkaido.
187–206.

26. Vamvatsikos D. Seismic Performance, Capacity and Reliability of Structures as Seen through Incremental
Dynamic Analysis. Department of Civil and Environmental Engineering, Stanford University: Stanford, CA,
2002; 152p. http:==www.stanford.edu=group=rms=.

27. Inoue T, Cornell CA. Seismic hazard analysis of multi-degree-of-freedom structures. RMS-8. 1990, Reliability
of Marine Structures: Stanford, CA. 70p.

28. Carballo JE. Probabilistic Seismic Demand Analysis: Spectrum Matching and Design. Department of Civil and
Environmental Engineering, Stanford University: Stanford, CA, 2000; 259p. http:==www.stanford.edu=group=rms=.

29. Kramer SL. Geotechnical Earthquake Engineering. Prentice-Hall Civil Engineering and Engineering Mechanics
Series. Prentice Hall: Upper Saddle River, NJ, 1996; 653p.

30. Van Nuys Hotel Building Testbed Report: Exercising Seismic Performance Assessment. H. Krawinkler, Editor.
2004, Paci�c Earthquake Engineering Research Center, University of California at Berkeley: Berkeley, California.

31. Jalayer F. Direct Probabilistic Seismic Analysis: Implementing Non-Linear Dynamic Assessments. Department
of Civil and Environmental Engineering, Stanford University: Stanford, CA, 2003; 244p. http:==www.
stanford.edu=group=rms=.

32. Pincheira JA, Dotiwala FS, D’Souza JT. Seismic analysis of older reinforced concrete columns. Earthquake
Spectra 1999; 15:245–272.

33. Medina RA, Krawinkler H. Seismic Demands for Nondeteriorating Frame Structures and Their Dependence on
Ground Motions. John A. Blume Earthquake Engineering Center Report No. 144. Stanford University: Stanford,
CA, 2003; 347p.

34. Ibarra LF. Global Collapse of Frame Structures under Seismic Excitations. Department of Civil and
Environmental Engineering. Stanford University: Stanford, CA, 2003; 324p.

35. Luco N, Cornell CA. Structure-speci�c scalar intensity measures for near-source and ordinary earthquake ground
motions. Earthquake Spectra 2005 (under revision of publication).

36. Mori Y, Yamanaka T, Luco N, Nakashima M, Cornell CA. Predictors of seismic demand of SMRF buildings
considering post-elastic mode shape. 13th World Conference on Earthquake Engineering. 2004. Vancouver,
Canada, 15.

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2005; 34:1193–1217


