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Motivation 

•  Probabilistic seismic hazard analysis (PSHA) is used worldwide to assess 
risk from natural seismicity 

•  Its application to induced seismicity is nontrivial 
–  Detecting changes in seismicity is important for PSHA (and other 

decision support—traffic lights) 
–  Common assumptions in natural-seismicity hazard analysis may not be 

appropriate 
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Change Point detection illustrated with simulated seismicity data 
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This example data comes from a Poisson process, where the rate of events triples at a 
known point in time. Can we detect this Change Point using only the observed data? 
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Change-Point results: time of change 

We can also calculate the probability of the Change Point being at time t 
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Change-Point results: event rates 
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Change Point detection for Oklahoma seismicity 
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From declustered catalog of M≥3 earthquakes (Oklahoma Geological Survey) 

Change Point detection for Oklahoma 

From seismicity through 2010 
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Change Point detection for Oklahoma 

From seismicity through 2014 
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Change Point detection for Oklahoma 

From seismicity through 2014 
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Increases in seismicity rates 
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Base model 
•  Areal source (25 km radius 

considered) 
•  Gutenberg-Richter recurrence 

model  
–  one M=3 earthquake per year 
–  b=1, Mmin = 3, Mmax = 7 

•  Atkinson (2015) ground motion 
prediction model (calibrated for 
induced seismicity) 

Effect of seismicity models on seismic hazard 

3 4 5 6 7 8

10
-4

10
-2

10
0

Magnitude

A
nn

ua
l r

at
e 

of
 e

xc
ee

da
nc

e
Seismicity rate 

Ground motion prediction 

min( ) ( ). ( | , ) ( ) ( )λ λ⎡ ⎤> = > = =⎢ ⎥⎣ ⎦
∑ ∑∑
sources M R

PGV x m P PGV x m r P M m P R r

Magnitude distribution 

Distance distribution Hazard 

0 10 20 30
0.1

1

10

100

Distance (km)

M
ed

ia
n 

P
G

V 
(c

m
/s

)



J. Baker  12 

Impact of seismicity rate on PSHA results 

Seismicity rate 
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Impact of Mmax on PSHA results 
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Impact of Mmin and Mmax on PSHA results 
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Impact of ground motion prediction model on PSHA results 
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Potential risk management actions 

•  Simpler to make decisions or rules 
(fewer models required) 

•  Poor link to risk (ground motions 
cause damage, not earthquakes) 

•  Most direct measure of risk 
•  Requires more models 
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Conclusions 

•  Seismicity rates are a key input to seismic hazard analysis, and changes in 
seismicity rates can be detected and quantified using the Bayesian Change-
Point calculations 

•  The results have relevance to seismic calculations and stop-light systems 
for risk management 

•  Traditional intuition regarding PSHA important parameters for PSHA 
calculations may not apply when considering frequent low-amplitude 
events 


