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Abstract This article proposes a Bayesian treatment of uncertainty in probabilistic
seismic-hazard assessment to account for the possibility of anthropogenic changes in the
properties of future earthquake occurrences. Operational factors are used to establish
prior distributions for future seismicity, and observations are used to dynamically update
the distributions and resulting hazard calculations. The updating process is relevant for
regions of the central and eastern United States where large increases in the rate of earth-
quakes, apparently triggered by anthropogenic activities, are difficult to address using
conventional quantitative methods for assessing seismic hazards. The approach is con-
sistent with conventional seismic-hazard analysis initially, allows a number of types of
data to be used for updating in an informative and transparent manner, and may incen-
tivize improved monitoring of at-risk regions. Examples are provided to illustrate the
approach, including the use of Gibbs sampling to characterize updated distributions in
the case for which analytical solutions to the updating equations are not available.

Introduction

Large increases in the rate of earthquakes in a number of
areas, at levels inconsistent with historical seismicity, have
raised concerns about the impact of fluid injection on earth-
quake hazards (Committee on Induced Seismicity Potential in
Energy Technologies, 2012; Ellsworth, 2013; McGarr et al.,
2015). Probabilistic seismic-hazard analysis (PSHA) is a
widely used tool for assessing and managing the impacts
of natural earthquakes (e.g., McGuire, 2004; Petersen et al.,
2014). PSHA generally assumes that past earthquake occur-
rences and ground motions can be used to infer future seismic
hazard but lacks mechanisms to dynamically revise predic-
tions if evidence suggests that induced seismicity has changed
the number of earthquakes likely to occur in the near future.
Although PSHA has been advocated for management of in-
duced seismicity (Mignan et al., 2015), it is with an admon-
ition that “as more information becomes available (particularly
seismic monitoring results), the hazard can be re-calculated
and uncertainties reduced” (Majer et al. 2012).

This article proposes a PSHA process that allows dynamic
updating of results, rather than periodic recalculation of haz-
ard. Uncertainty in future earthquake rates, or other inputs to
the hazard assessment, is treated as prior distributions at the
start of analysis, and likelihood functions are formulated to
quantify the consistency of future observed data with the un-
certain parameters. As time passes and new earthquakes are
observed, the prior distributions can then be dynamically
revised with those likelihoods, using Bayesian updating.

Because of its ability to integrate prior knowledge with
observational data, Bayesian analysis of seismic-hazard

parameters has been proposed since the earliest days of
PSHA (Esteva, 1969), and many earthquake hazard and risk
assessments have utilized Bayesian updating and related
Bayesian networks (e.g., Bayraktarli et al., 2005, among
many). The general updating concept is thus straightforward
and widely understood. The contribution of this article is to
develop and utilize likelihood functions and updating proce-
dures that are appropriate for dynamic updating, using
induced-seismicity data, and that are compatible with modern
PSHA procedures. Examples are provided to illustrate the uti-
lization of various types of data and to demonstrate the impact
of this updating on ground-motion hazard.

When applying PSHA to induced seismicity, one ap-
proach to deal with this challenge is to estimate seismicity
rates in narrow windows of time, in order to obtain relatively
current estimates of seismicity rates (Convertito et al., 2012;
Atkinson et al., 2015; Mignan et al., 2015). Statistical seis-
micity models can produce short-term dynamic estimates of
earthquake activity at well-instrumented sites (e.g., Ogata,
1988; Werner et al., 2011), but they are not clearly relevant
in the central United States, where the locations of potential
seismicity are not well characterized, where the region is
sparsely instrumented, and where it is difficult to locate or
even detect small (M <3) earthquakes that might inform oc-
currence rates of larger earthquakes (Ellsworth, 2013).

In a few cases, relationships have been developed
between injection operations and seismicity associated with
a specific injection site (e.g., Ake et al., 2005; Brodsky and
Lajoie, 2013). There are several models that propose to more
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generally relate volumes of injected fluids to the number
(Shapiro et al., 2007, 2010) or maximum size (McGarr,
2014) of potentially induced earthquakes. These models
are uncertain and difficult to calibrate for new sites, however,
and thus at present are not directly adaptable in a PSHA con-
text. Incorporating knowledge about these anthropogenic
“operational factors” is a critical need if PSHA is to be used
as a tool for risk screening or regulation related to wastewater
injection (Walters et al., 2015). The latest U.S. Geological
Survey seismic-hazard results for induced seismicity note
this limitation but do not yet resolve it (Petersen et al., 2015).

This article proposes to address the above challenges,
using a prior distribution for potential future changes in seis-
micity parameters, based on operational factors. If the prior
distribution is diffuse (as it should be in many cases), it need
not imply greatly increased seismic hazard. It does, however,
facilitate rapid updates in hazard results if data are collected
that indicate changed seismicity conditions. With this ap-
proach, new data are used to (probabilistically) validate or
eliminate the possibility of dangerous conditions, rather than
being used solely to estimate future seismicity rates based on
recent seismicity. The article begins by describing basic com-
ponents of traditional PSHA, because many of these compo-
nents are adopted in the proposed procedure. The traditional
approach is then revised to adopt a Bayesian perspective that
facilitates the use of additional observational data. Finally,
three example calculations are presented to illustrate several
ways in which this revised approach can be adopted to utilize
various prior distributions and various types of observational
data likely to be available in the induced-seismicity context.
The first example utilizes an analytical solution to provide a
transparent illustration of updating; the second example uses
a more realistic formulation of earthquake-rate updating with
a numerical solution for the hazard; and the final example uti-
lizes Gibbs sampling to illustrate the feasibility of the approach
when analytical or numerical solutions are not available.

Traditional Probabilistic Seismic-Hazard Analysis

The PSHA calculation procedure for natural seismicity is
well documented elsewhere (e.g., Cornell, 1968; McGuire,
2004), but is briefly discussed here to facilitate later discus-
sion. The annual rate, λ, that some ground-motion intensity
measure [IM] exceeds a given amplitude x at a site is com-
puted as follows:
EQ-TARGET;temp:intralink-;df1;55;197

λ�IM > x� �
Xnsources
i�1

λ�Mi >mmin�

×
Z

mmax

mmin

Z
rmax

0

P�IM > xjm; r�fMi;Ri
�m; r�drdm; �1�

in which nsources is the number of earthquake sources consid-
ered, and Mi and Ri denote the magnitude and distance
distributions for source i. The term fMi;Ri

�m; r� is the prob-
ability density function for magnitude and distance of an
earthquake on source i, and λ�Mi >mmin� is the annual rate

of occurrence of earthquakes on source i with magnitude
greater than mmin, the minimum magnitude of interest. The
λ�Mi >mmin� and fMi;Ri

�m; r� terms reflect the source char-
acterization portion of the calculation. The probability that an
earthquake of magnitude m at distance r could produce a
ground motion with intensity greater than x, P�IM > xjm; r�,
is the ground-motion characterization portion of the hazard
analysis. In general, the source characterization and ground-
motion prediction utilize additional variables beyond magni-
tude and distance (e.g., rupture mechanism and site conditions),
but the notation is simplified here for ease of illustration, with-
out affecting the general procedure.

Figure 1 shows results from an example calculation of
this type, considering peak ground velocity as the IM of in-
terest. For this calculation, the source characterization is as
follows: earthquake locations are uniformly located within a
25 km radius of the site at a depth of 3 km; earthquake mag-
nitudes have a truncated Gutenberg–Richter distribution with
Mmin � 3, Mmax � 6:5, and λ�M > 3� � 0:1 per year.
Ground-motion predictions are from the model of Atkinson
(2015), with no truncation of the ground-motion distribution.
A plot like Figure 1, showing the rates of exceeding various
levels of ground-motion intensity, is called a ground-motion
hazard curve, or simply hazard curve.

The inputs to equation (1) are models and are subject to
lack of knowledge (epistemic) uncertainty. In PSHA this epi-
stemic uncertainty is characterized by a logic tree, with each
branch of the logic tree corresponding to a plausible set of
models and having a resulting ground-motion hazard curve
(Kulkarni et al., 1984; Senior Seismic Hazard Analysis Com-
mittee [SSHAC], 1997; Mignan et al., 2015). To illustrate,
we extend the previous example to treat several input param-
eters as uncertain. Let us consider the annual rate of earth-
quakes to be 0.05, 0.1, or 0.2, the maximum possible
magnitude to be 6, 6.5, or 7, and three models for predicting
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Figure 1. Annual rates of exceeding various levels of peak
ground velocity for the example site.
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the ground-motion amplitude for a given earthquake. Figure 2
illustrates a logic tree associated with these alternatives.
Each set of alternatives has a corresponding set of weights
that sum to 1, and the weight associated with a complete set
of inputs is equal to the product of the associated weights
(e.g., the weight associated with λ�Mi >mmin� � 0:2,
Mmax � 6:5, and ground-motion prediction equation
[GMPE] = A15 is 0:25 × 0:25 × 0:4 � 0:025). Each com-
plete set of inputs can also be used in equation (1) to com-
pute the associated hazard. These hazard calculations and
associated weights, taken collectively over all possible in-
put values, represent a seismic-hazard calculation with epi-
stemic uncertainty considered.

These results are often illustrated by plotting a represen-
tative set of hazard curves, fractiles of the exceedance rates,
and the mean exceedance rate. Mathematically, we compute
the mean hazard as

EQ-TARGET;temp:intralink-;df2;55;348λmean�IM > x� �
Xnbranches
j�1

wjλj�IM > x�; �2�

in which j is an index indicating the jth logic-tree branch, wj

is the weight associated with branch j (the wj’s sum to unity),
and λj�IM > x� is the hazard curve, computed using equa-
tion (1), for the source characterization and ground-motion
prediction terms from logic-tree branch j. Figure 3 shows
the hazard curves and mean hazard for the example described
by Figure 2.

The seismic-hazard calculations discussed in this section
can be combined with information about exposure (of people,
buildings, and other assets) and vulnerability (susceptibility of
exposed assets to adverse outcomes under earthquake shak-
ing) to quantify seismic risk (Bommer et al., 2015). Although
risk is often the ultimate concern in this application, these later
steps are omitted from discussion here in the interest of focus-
ing on the hazard calculation approach.

Bayesian Treatment of Potential Future Seismicity

To adopt the above PSHA approach to address induced
seismicity, we consider how new data would influence the

weight (wj in equation 2) associated with our belief that
model j represents reality. In the natural seismicity case,
new data and models are developed at a relatively steady rate,
and typical practice is to repeat hazard calculations on a time-
span of years and develop new logic-tree branches and
weights (Petersen et al., 2008, 2014). In the case of induced
seismicity, where data may provide rapid changes in our es-
timates of future earthquake activity and shaking at a site, we
can treat these models in a Bayesian manner with weights
that are dynamically updated. We will treat the initial set
of weights as a prior distribution on the models and update
the weights using relevant data.

If seismic activity differs from an assumed model, it can
be taken as evidence that the model is inconsistent with the
current state of nature (Llenos and Michael, 2013) and used
to justify reduced consideration of the model in PSHA cal-
culations. That same data, however, will be more consistent
with some other model for the state of nature. As long as both
models are in the initial logic tree, the data can be used in a
likelihood function to update model weights.

If we denote the probability of observing the data, given
logic-tree branch j, as Lj, then these values can be used to
obtain updated logic-tree branch weights using Bayes rule:

EQ-TARGET;temp:intralink-;df3;313;182w′

j �
LjwjP

allj

Ljwj
: �3�

The updated weights w′

j describe a posterior distribution for
our belief in the candidate models. This standard formula has
several intuitive implications. Branches that produce a rela-
tively higher likelihood of observing the data (Lj) receive
increased weight (w′

j > wj), whereas branches that are less
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Figure 2. Example probabilistic seismic-hazard analysis logic
tree. Parameter values are indicated at the left of each alternative
sub-branch, followed by the corresponding weight in italics.
Ground-motion prediction equations (GMPEs) are abbreviated as
follows: A15, Atkinson (2015); AB06, Atkinson and Boore
(2006); BSSA14, Boore et al. (2014).
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Figure 3. Annual rates of exceeding various levels of peak
ground velocity, considering epistemic uncertainty, for the example
site. The color version of this figure is available only in the elec-
tronic edition.
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consistent with the data will receive decreased weight. The
original logic-tree weights also play a role, however, in quan-
tifying the plausibility of the logic-tree branch prior to the
observation of data (as indicated by the presence of wj in
the right-side numerator). The denominator simply normal-
izes the updated weights to sum to unity. These new weights
can then be used to update the seismic-hazard calculation.

Examples

The mathematics of the updating procedure are simple,
but complexity can arise when computing the likelihood, Lj,
associated with a given data type and logic-tree branch. To
illustrate implementation of this procedure, three example
calculations are considered here.

Example 1: Potential Change in Seismicity Rate at a
Known Point in Time

We first consider a simple case where we have an esti-
mated distribution for the seismicity rate prior to the start of
an injection operation and want to update this distribution
based on observed seismicity after injection begins. We de-
note the annual rate of earthquakes from a given source and
above some minimum magnitude as λ, simplifying the
λj�Mi >mmin� notation from equation (2) for brevity. We
will count observed earthquakes satisfying these criteria and
use these observations to update our estimate of λ. We as-
sume that earthquakes occur as a Poisson process, that a rate
change (if one occurs) will occur immediately after the start
of injection, and that the postinjection rate of earthquakes
will remain constant. Although these conditions are ideal-
ized, they provide analytical results that complement the
more general example below.

Under these conditions, the probability of observing n
earthquakes in time t after injection begins, given λ, is

EQ-TARGET;temp:intralink-;df4;313;485L�λ� � P�n earthquakes in time t� ∝ λne−λt; �4�

in which L�λ� denotes a likelihood function for λ, conditional
on our observed data, and ∞ indicates proportionality (i.e.,
equality to within a constant that is not needed for later cal-
culations). This serves as the Lj term in equation (3). For this
example, we consider a gamma distribution to reflect our
prior probabilities for λ:

EQ-TARGET;temp:intralink-;df5;313;390f�λ� ∝ λa−1e−λ=b; �5�

in which f� � denotes a probability density function, and a >
0 and b > 0 are parameters controlling the shape of the dis-
tribution. The choice of a gamma distribution is convenient
here, as it is the conjugate prior of the Poisson-likelihood
function, and thus this pair has an analytical solution for
the posterior distribution of λ. If λ has a gamma prior distri-
bution with parameters a and b, and we observe n earth-
quakes in time t, then the posterior distribution for λ also has
a gamma distribution but with parameters a′ � a� n and
b′ � b=�tb� 1� (Gelman et al., 2014).

Figure 4 shows a prior gamma distribution having
a � 0:1 and b � 0:2, which gives a mean estimated rate of
earthquakes of 0.02 per year but allows for a possibility of a
wide variation in rate away from that mean. Figure 4 shows
the posterior distributions for several potential cases of post-
injection observations. In Figure 4a, we see that when the
number of observed earthquakes is larger than the prior esti-
mated mean rate of 0.02 per year, the posterior distribution
shifts to the right, as the data suggest a greater rate of earth-
quakes. For the case of four observed earthquakes in one
year, the posterior distribution changes significantly and
even indicates a non-negligible probability that the rate of
earthquakes is greater than one per year, although the prior
distribution indicated that such a rate would be very unlikely.
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Figure 4. (a) Gamma prior distribution for earthquake rates and posterior distributions, given several possible observation scenarios over
a one-year period. (b) Gamma prior and posterior distributions given possible observation scenarios over a multiyear period (i.e., observations
corresponding to the data in example 2). The color version of this figure is available only in the electronic edition.
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If zero earthquakes are observed in one year, then the pos-
terior distribution is essentially identical to the prior, as zero
earthquakes are expected given the low prior rate, and so the
data are not very informative.

In Figure 4b, we consider a � 0:5 and b → ∞ and
consider some specific observation cases that will be relevant
in the following example. This prior distribution gives a very
high probability of a rate close to zero (the probability den-
sity is on top of the y axis in Fig. 4b) but also a very heavy
tail that allows for the possibility of high rates; in fact it has
an infinite variance and so does not strongly influence the
posterior distribution. Even with a few observations of earth-
quakes, the posterior distribution differs dramatically from
the prior, indicating that the prior is not providing a strong
constraint on the posterior distribution.

Example 2: Change in Seismicity Rate at an
Unknown Point in Time

The above calculation can be generalized to consider the
time of rate change to be unknown, which is useful, as in
many cases an increase in seismicity need not occur immedi-
ately after injection commences, and there may not be a
single causal injection well (Ellsworth, 2013). Assume that
earthquakes occur as a Poisson process with rate λ1 up to
time τ and after that occur as a Poisson process with rate λ2.
All three of these parameters are unknown, and we assign λ1
and λ2 prior gamma distributions with a � 0:5 and b � ∞
and τ a prior distribution that is uniform over the duration of
the considered catalog. For a given λ1, λ2, and τ, a likelihood
function can be computed using a generalization of equa-
tion (4) that considers the differing λ before and after τ:

EQ-TARGET;temp:intralink-;df6;55;355L�λ1; λ2; τ� ∝ λn�τ�1 e−λ1τλn�tend�−n�τ�2 e−λ2�tend−τ� �6�
(Raftery and Akman, 1986; Gupta and Baker, 2015), n�t� is
the number of events between the catalog start and time t,
and tend is the time at the end of the considered catalog. The
posterior distribution in this case is computed using numeri-
cal integration (Gupta and Baker, 2015). The change-point
model includes a model selection step in which we evaluate
whether or not a constant-rate or change-point model is ap-
propriate. For each set of considered data, we compute a
Bayes factor, which is equal to the constant rate likelihood
from equation (4) divided by the change point likelihood
from equation (6), integrated over the posterior distributions
(Raftery and Akman, 1986). When the Bayes factor is less
than 0.01, meaning that data are more consistent with the
change-point model, we assume a change has occurred and
use the posterior distribution for λ2; otherwise, we conclude
that there is no change and use the posterior distribution for λ
from example 1.

To illustrate, we consider earthquake observations near
Oklahoma City (latitude 35.48°, longitude −97:54°) from
1974 to May 2015. Figure 5a shows the cumulative number
of M ≥3 earthquakes observed within a 25 km radius of the

reference location at a given point in time. The catalog has
been declustered to remove aftershocks using the method of
Reasenberg (1985) with the published parameters and a
magnitude completeness of 3; this was done so that the
occurrences would be Poissonian in the absence of a rate
change. With the benefit of viewing the full catalog, one can
clearly see a large increase in earthquake rate after 2009. But
ideally this change would be detectable shortly after the
increase in earthquake activity.

To demonstrate the Bayesian updating approach, we
consider three points in time, as noted in Figure 5a. Time
A is February 2009, when three earthquakes have been ob-
served over the prior 35 years. Time B is January 2010, when
an additional three earthquakes have been observed in the 11
months since time A. Time C is May 2015, at the end of the
considered catalog, when a total of 37 earthquakes have been
observed.

At each point in time, only the catalog up to that point is
considered for estimation. Likelihood values and posterior
distributions for the parameters are computed, and here
we are interested in the current rate of earthquakes. Figure 5b
shows the posterior distributions of earthquake rates at the
three considered points in time, with the mean values of the
distributions also noted. Figure 5c shows the mean values of
the posterior rate distributions considering all possible end
dates for the catalog, with the three specific mean values
noted by circles. For reference, a frequentist rate is also
shown, which is obtained by simply dividing the number of
earthquakes to date by the number of years since the start of
the catalog. Selected numerical values from both methods are
given in Table 1.

A few observations can be made from Figure 5 and Ta-
ble 1. At time A, when few earthquakes have been observed,
the Bayes factor of 0.045 indicates that the no-change model is
preferable (consistent with intuition), and the mean posterior
rate is 0.10 earthquakes per year. This is similar to the pure
frequentist estimate of (3 earthquakes)/(35.2 years) = 0.085
but somewhat higher, reflecting the effect of a prior distribu-
tion that allows for some probability of high earthquake rates.
At time B, the rapid occurrence of three additional earthquakes
reduces the Bayes factor to 0.0016, indicating a clear prefer-
ence for the change-point model, and that model suggests a
high probability that the earthquake rate is dramatically in-
creased after the change. The Figure 5b posterior distribution
shows some probability that the earthquake rate is still low
(similar to the time A posterior values) but a greater proba-
bility that the rate has increased significantly. The mean pos-
terior rate at time B is 4.85 earthquakes per year, versus the
0.17 frequentist rate. (Note that the mean values are shown in
Figure 5b and are in visually nonintuitive locations, because
the x axis is shown in logarithmic scale.) At time C, the many
additional observed earthquakes cause the frequentist esti-
mate to rise a further fivefold, to 0.89, whereas the Bayesian
mean posterior rate is 5.58 earthquakes per year (and the
Bayes factor has fallen to 10−23). The Bayesian rate is con-
sistent with the 24 earthquakes observed over the previous
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four years. Figure 5c shows that the mean Bayesian rate
jumps dramatically in 2009 (between time A and time B) and
stays somewhat stable after time B, whereas the frequentist
estimate fails to reflect the high rate of post-2009 earth-
quakes. Also shown in Figure 5c are the mean posterior rates
assuming a change point (CP) or assuming no change point
(NCP). We note that after 2009 the NCP model is effectively
equal to the frequentist rate, indicating that the prior distri-
bution assumption has little impact once there are a signifi-
cant number of observed earthquakes (the mean rates at

times A, B, and C are 0.10, 0.18, and 0.90, respectively, cor-
responding to the means of the distributions shown in
Figure 4b). We also note that the CP model gives unreason-
ably high estimated rates prior to 2009, indicating the need to
perform the Bayes factor computation to evaluate whether a
change-point model is appropriate.

Figure 5d shows the mean hazard curves for the site at the
three considered times, using the same model assumptions as
were used to produce Figure 1 but substituting the posterior
earthquake rate distributions considered here. Because nothing
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Figure 5. (a) Cumulative number of observed earthquakes within a 25 km radius of Oklahoma City. (b) Posterior earthquake rate dis-
tributions at three selected points in time. (c) Mean posterior earthquake rate and frequentist rate versus time. The dashed lines labeled CP and
NCP are the mean posterior rates assuming a change point or no change point, respectively. (d) Mean hazard curves given the posterior
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Table 1
Estimated Annual Rates of M ≥3 Earthquakes at Four Points in Time, as

Obtained from Four Different Methods

Date
Mean Posterior

(baseline)
Mean Posterior
(elevated prior) Frequentist

Windowed
Frequentist

February 2009 (time A) 0.10 0.19 0.09 0.04
January 2010 (time B) 4.85 1.19 0.17 1.33
February 2010 5.84 7.16 0.19 2.00
April 2015 (time C) 5.58 5.85 0.89 7.67

Dates corresponding to times A, B, and C from Figure 5 are noted. Mean posterior
(baseline) and frequentist are the estimates from Figure 5. Mean posterior (elevated
prior) and windowed frequentist are estimates from Figure 6.
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about the source except for the earthquake rates is being up-
dated, the mean ground-motion exceedance rates are propor-
tional to the mean earthquake rates. This example serves to
illustrate how the approach can rapidly update the seismic haz-
ard in a short window of time, without the need to manually
change the catalog estimation procedure or to manually
specify a date of seismicity rate change.

To examine the stability of the earthquake rate estimates
in Figure 5c, Figure 6 shows two sets of alternate results
along with the mean posterior rate from Figure 5c for refer-
ence. First, we consider a case where operational information
(e.g., knowledge that injection volumes in the region are high
and that nearby locations have experienced induced seismic-
ity) leads us to believe there is an elevated potential for in-
duced seismicity. We repeat the change-point calculation
using a prior gamma distribution with a � 2. This factor-
of-four increase relative to the value of a above leads to
the mean of the distribution being increased by a correspond-
ing factor. Results from this elevated prior case are labeled as
mean posterior (elevated prior) in Table 1 and Figure 6. We
see that at dates prior to 2009, the elevated prior case esti-
mates rates of approximately twice that of the baseline case.
The dramatic increase in rates is fully detected in February
rather than January 2010 (see Table 1). After that increase,
the elevated prior case continues to estimate higher rates than
the baseline case, though the difference is quite small by
2015. This indicates that the prior distribution assumption
does have an impact on the results, though the impact is re-
duced once a significant amount of observed data is available
(as would be hoped).

A second alternative calculation shown here is a fre-
quentist rate estimate that considers the average occurrence
rate over the previous three years; this is labeled as win-
dowed frequentist in Table 1 and Figure 6. It has the advan-
tage relative to the frequentist estimate of Figure 5 that it can

better quantify the large increase in rates after 2010, but it is
less stable than the Bayesian estimates over that time period.
Further, it performs poorly prior to 2010, when few earth-
quakes are observed. When using a window narrower than
three years, this windowed estimate becomes more unstable,
and when using a wider window it tends toward the baseline
frequentist estimate of Figure 5. These results are consistent
with the intuition that one should use a windowed earthquake
catalog when estimating induced-seismicity hazard using tra-
ditional methods (e.g., Petersen et al., 2015), but the choice
of window needs to be chosen manually, which is cumber-
some for regional assessments and may not be possible until
some time after a seismicity increase has occurred.

Example 3: Earthquake Locations Indicate Existence
of a Fault Structure

In this example, we consider updating a parameter other
than earthquake rate. Injection of wastewater near a pre-
existing fault (which is well oriented for failure in the am-
bient state of stress) is a risk factor for inducing earthquakes
(e.g., Townend and Zoback, 2000; Walters et al., 2015).
Detecting and locating such a fault, if one exists, would thus
provide an informative update to seismic hazard. In much of
the central and eastern United States, we are limited both in
our ability to locate critically stressed faults (other than by
observing earthquakes), and limited by sparse instrumenta-
tion in detecting small earthquakes or precisely locating de-
tected earthquakes. Here we consider an example where
observed earthquake locations are used to update a model
for the presence of a fault.

Assume that prior to monitoring we consider the exist-
ence of a fault source with unknown parameters. Assume a
vertical fault with a strike uniformly distributed between 30°
and 90° clockwise from north (an example range of orienta-
tions that could be activated under the regional stress state).
The length of the fault is uniformly distributed between 3 and
13 km, and it is equally likely to be located anywhere in the
25 km radius region of interest. The vector of parameters as-
sociated with the unknown fault are θ � fx; y; l; αg, in which
fx; yg is the coordinate of the lower-left end of the fault, l is
the fault length in units of kilometers, and α is the fault’s
strike angle clockwise relative to north. Under the above
assumptions, the prior distribution for θ is

EQ-TARGET;temp:intralink-;df7;313;211

f�θ�∝ 1 if �x2� y2�< 25;30°< α< 90°; and 3 ≤ l < 12

� 0 otherwise �7�

We could take the presence or absence of a fault, and the
fraction of on-fault versus background seismicity, to be addi-
tional unknown parameters and also update them based on
data, but we omit these refinements here for simplicity of
illustration.

Figure 7 shows two hypothetical earthquake catalogs
that will be used to update potential fault locations. To do
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Figure 6. Mean estimated earthquake rates versus time for ex-
ample 2, using two alternate models. The color version of this figure
is available only in the electronic edition.
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this we assume a fault geometry and idealize the earthquakes
as points equally likely along the fault length but with esti-
mated locations that are uncertain, due to sparse instrumen-
tation in the area. The location of an assumed 8-km-long
fault is shown in Figure 7 for illustration, but it is only used
to simulate the example earthquake catalogs (i.e., it is not
known for any of the following calculations). In case 1, we
assume that 10 earthquakes were observed and that the lo-
cation uncertainty has a 4 km standard deviation (i.e., the
distance from the actual earthquake location to the observed
location is assumed to have a Gaussian distribution with this
standard deviation and is assumed to be at a uniform random
angle from the actual location). In case 2, we assume that
better monitoring was utilized, so that 30 earthquakes were
observed (i.e., smaller-magnitude earthquakes can be de-
tected), and the location uncertainty has a reduced standard
deviation of 2 km.

The earthquake catalogs in Figure 7 can then be used to
compute the likelihood of observing these data, conditional
upon an assumed fault geometry. For a given set of param-
eters θ and a set of observed earthquake locations, the like-
lihood function is as follows (again using a proportionality
formula and omitting the normalizing constant):

EQ-TARGET;temp:intralink-;df8;55;286L�θ� ∝ Yn
i�1

e−0:5�di=σ�
2

; �8�

in which n is the number of earthquakes, and di is the closest
distance from earthquake i to the fault defined by θ. The
e−0:5�di=σ�

2

term comes from the Gaussian distribution on
earthquake locations, with a standard deviation of σ.

In this case there is no simple analytical or numerical
solution to the posterior distribution, so we use Gibbs sam-
pling to simulate realizations of the properties of interest
from the posterior distribution (Gelman et al., 2014). For
each iteration of the process, one parameter of θ is varied
across its range of allowable values (leaving all other values
constant at the most recently sampled value), the likelihood
function of equation (8) is computed for each candidate value
of θ, and the product of equations (7) and (8) provides the
conditional posterior distribution for that parameter (more

precisely, a discrete approximation using the considered
values), conditional on the values of the other parameters
of θ. A sample is generated from this conditional posterior
distribution using the inverse method, and the process is re-
peated for the next parameter of θ. After performing several
hundred iterations to let the distribution of θ approximately
converge, a set of samples from this process is collected as
realizations from the posterior distribution.

Sampled realizations from this process are shown in
Figure 8 and provide an implicit definition of the posterior
distribution. It is clear from these figures that the posterior
distribution in case 2 is narrower—that is, the fault param-
eters have less uncertainty due to the additional monitoring
data. We use these sampled results to compute the posterior
seismic hazard at the location of interest. To do this, we treat
each sampled fault geometry as an equally weighted logic-
tree branch representing a potential set of parameter values.
This differs slightly from the more common approach of
having logic-tree branches corresponding to an exhaustive
discretized set of parameter values, but it will produce equiv-
alent results as long as there are sufficient sampled values to
capture the posterior distribution (Musson, 2000; Bourne
et al., 2015). In addition to the fault geometries from
Figure 8, we assume that earthquake magnitudes have a trun-
cated Gutenberg–Richter distribution with Mmin � 3 and
Mmax � 4:33� 1:49 × log10�l� to reflect the potential of
longer faults to produce larger earthquakes (Wells and
Coppersmith, 1994). Earthquakes are assumed to occur at a
rate of λ�M >3� � 0:1 per year, uniformly along the length
of the fault (which then defines the earthquake distances),
and we again use the Atkinson (2015) model for ground-mo-
tion prediction. Seismic-hazard results for a location in the
center of the study region are shown in Figure 9. Comparing
the two subfigures, we see that in case 2 the variability in
hazard curves is reduced (due to the reduced uncertainty
in fault properties), and the mean hazard is also reduced rel-
ative to case 1 (partly due to the reduced uncertainty and
partly due to the reduced possibility of the fault coming close
to the site). Figure 9b also shows the hazard curve associated
with the true fault geometry, indicating the potential for the
hazard to be further reduced if the true fault geometry can be
more precisely estimated.

10 km

Location 
of interest

Observed 
earthquake
(Unknown) 
fault location

(a) (b)

Figure 7. Examples of observed earthquake catalogs. (a) Case
1: 10 observed earthquakes, located with 4 km uncertainty. (b) Case
2: 30 observed earthquakes, located with 2 km uncertainty. The
color version of this figure is available only in the electronic edition.

Simulated 
fault locations

10 km

(a) (b)

Location 
of interest

Figure 8. Fifty posterior distribution samples from (a) case 1
and (b) case 2. The color version of this figure is available only
in the electronic edition.
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This example illustrates that the approach can integrate a
number of types of monitoring data into hazard calculations
and that it can incentivize monitoring of an injection site to
reduce earthquake location uncertainty. If there are several
small earthquakes in an area, without precise locations one
cannot eliminate the possibility that they are occurring on a
fault capable of producing a larger earthquake. If monitoring
is performed and confirms that the earthquakes are not
occurring on a fault, then the observations need not lead
to increased seismic-hazard estimates. Observational data in-
dicating the potential presence of a fault would likely lead to
additional data collection for making a more definitive evalu-
ation (e.g., Horton, 2012), so the above calculation would
likely not be the final analysis. But the procedure proposed
here provides an automated approach to preform initial risk
screening and can be used with hypothetical catalogs as the
above to evaluate the potential value of information provided
by improved monitoring.

Discussion

This Bayesian updating approach is most useful if two
conditions hold: the hazard calculation inputs are potentially
changing in the future (such that past seismic activity may
not be indicative of future hazard), and observational data
have the potential to indicate changes if they occur (so that
the updating process will be informative). For natural seis-
micity, there is less value in this approach, as there is no ex-
pected change, and so future data on a short timescale are
unlikely to provide a substantial update to our belief in a
given model (which is presumably based on observations
over a longer timescale). For induced seismicity, the oppor-
tunities for updating ground-motion-model inputs are likely
to also be limited, as the variability associated with ground-
motion predictions is large, and so likelihood functions on

these models will not be strongly informative; this is why
the above examples considered updating of source charac-
terization rather than ground-motion characterization.

To be useful in a regulatory context, this approach would
benefit from standardization of the way in which prior distri-
butions on model parameters are developed (because the prior
distributions influence the hazard as well as the degree to
which observed data can change the hazard). With a focus
on seismicity from wastewater injection in the United States,
information on stress orientation, relative stress magnitudes,
and mapped faults can be used to identify the locations of po-
tentially active faults (Alt and Zoback, 2014). Locations of
prior potentially induced seismicity are documented by, for
example, Petersen et al. (2015). This information could be
used to establish standard prior distribution formulations for
earthquake rates—for instance by having prior rate distribu-
tions reflecting a given (perhaps high) probability that future
rates will be similar to past rates, but also allowing for some
probability that rates will dramatically increase. It is the au-
thors’ view that understanding of this phenomenon has not yet
advanced to the state where quantitative guidance on the
choice of prior distributions can be provided here, but the cal-
culation approach described here can be used to test and
evaluate prior distribution models as they are developed in
the future.

Note that use of a prior distribution suggesting the
potential for increased seismicity may lead to mean hazard
estimates that are larger than those implied if one only con-
siders past seismicity rates (because there is now some prob-
ability of increased rates and thus increased hazard), but this
is the natural implication if one believes that there is some
possibility of increased future earthquake activity. Future
observations of seismicity can then move the hazard higher
or lower, depending upon whether increased seismicity is in
fact observed.

Peak ground velocity (cm/s)
0.3 1  10 100

A
nn

ua
l r

at
e 

of
 e

xc
ee

da
nc

e

10–5

10–4

10–3

10–2

10–1

Individual curves, Case 1
Mean hazard, Case 1

Peak ground velocity (cm/s)
0.3 1  10 100

A
nn

ua
l r

at
e 

of
 e

xc
ee

da
nc

e

10–5

10–4

10–3

10–2

10–1

Individual curves, Case 2
Mean hazard, Case 2
Mean hazard, Case 1
Real fault geometry

(a) (b)

Figure 9. Individual hazard curves and mean hazard associated with the posterior fault distributions of example 3. (a) Results using the
case 1 seismic catalog and (b) the case 2 seismic catalog; the mean hazard curve from case 1 and the hazard curve associated with the real
fault’s geometry are also superimposed for comparison. The color version of this figure is available only in the electronic edition.
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Conclusions

A Bayesian procedure for seismic-hazard analysis has
been described and utilized to update hazard calculations
in the presence of induced seismicity, for which some aspect
of earthquake occurrences (e.g., rate or location) has the pos-
sibility to change in the future, relative to past observations.
The proposed approach shares many similarities with tradi-
tional PSHA procedures but differs in several ways: (1) epi-
stemic uncertainty is characterized as a prior distribution that
will be updated based on data; (2) likelihood functions must
be formulated to quantify the consistency of observed data
with an assumed model; and (3) the Bayesian updating
scheme may produce samples of model parameters from a
posterior distribution, rather than an explicit list of weights
on model parameter values. In this case, the PSHA logic-tree
branches correspond to individual sampled realizations rather
than individual parameter values.

The basic principles of Bayesian updating are straight-
forward and already in use in natural hazard risk assessment.
The challenges discussed here are in formulating likelihood
functions for updating and in making the updating approach
compatible with PSHA principles. By largely adopting the
PSHA framework that is widely used for regulations sur-
rounding natural seismicity and also incorporating knowl-
edge from injection operations and real-time monitoring, this
approach has the opportunity to provide insights in situations
with the potential for induced seismicity. Three examples
were provided to illustrate how one can perform hazard up-
dating on a variety of model parameters, using several types
of observational data (i.e., earthquake occurrence rates and
earthquake locations). Although the examples all have ide-
alizations that would need to be revised in a practical appli-
cation, they nonetheless illustrate the feasibility of the
approach and its compatibility with standard PSHA practice.

All of the examples rely on prior distributions for seismic-
ity parameters, and ideally these prior distributions would be
linked to operational factors associated with fluid injection in
the region. Prior distribution calibration will thus benefit from
continued study of the link between injection operations and
future seismicity. The proposed procedure does not eliminate
the need for such understanding but rather provides a process
for incorporating currently available knowledge when assess-
ing seismic hazard (and resulting risk). By providing a quan-
titative link between prior assumptions about the potential for
induced seismicity, observed data, and resulting hazard calcu-
lations, it provides a tool to evaluate the potential benefits pro-
vided by enhanced monitoring or new scientific understanding
related to induced seismicity.

Data and Resources

The earthquake occurrences surrounding Oklahoma City
were obtained from the Oklahoma Geological Survey catalog
(http://www.ou.edu/content/ogs/research/earthquakes/catalogs.
html, last accessed April 2016). MATLAB source code to per-

form the example change point and Gibbs sampling calculations
is available at https://github.com/bakerjw/BayesianPSHA (last
accessed September 2015).
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