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Ground motion models (or “attenuation relationships”) describe the
probability distribution of spectral acceleration at an individual period, given a
set of predictor variables such as magnitude and distance, but they do not
address the correlations between spectral acceleration values at multiple
periods or orientations. Those correlations are needed for several calculations
related to seismic hazard analysis and ground motion selection. Four NGA
models and the NGA ground motion database are used here to measure these
correlations, and predictive equations are fit to the results. The equations are
valid for periods from 0.01 seconds to 10 seconds, versus similar previous
equations that were valid only between 0.05 and 5 seconds and produced
unreasonable results if extrapolated. Use of the new NGA ground motion
database also facilitates a first study of correlations from intra- and inter-event
residuals. Observed correlations are not sensitive to the choice of
accompanying ground motion model, and intra-event, inter-event, and total
residuals all exhibit similar correlation structure. A single equation is thus
applicable for a variety of correlation predictions. A simple example illustrates
the use of the proposed equations for one hazard analysis
application. �DOI: 10.1193/1.2857544�

INTRODUCTION

The utility of ground motion models (GMMs) can be extended if correlations of re-
sponse spectral values at multiple periods or orientations (e.g., fault-normal/fault-
parallel) are known. These correlations allow existing ground motion models to be
adopted for predicting the joint distribution of spectral acceleration values at multiple
periods, which is useful for vector-valued probabilistic seismic hazard analysis and gen-
eration of custom ground motion models. Predictions of these correlations have been
previously proposed, but the NGA project’s new GMMs and expanded ground motion
library facilitate the development of an improved equation that is applicable over a wider
range of periods. In this paper, the methodology for measuring and predicting these cor-
relations is briefly outlined, a new correlation equation is developed, and the new results
are examined and compared to previous comparable equations.

To describe precisely the correlations being studied, it is helpful to note that ground
motion predictions take the following general form
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ln Sa�T� = f�M,R,�,T� + ��T� �1�

where f�M ,R ,� ,T� is the predicted mean of the natural log of spectral acceleration �Sa�
at a specified period �T�, provided by the ground motion model. This predicted mean is
a function of the earthquake magnitude �M�, distance �R�, and other parameters ��� such
as local site conditions and faulting mechanism. The term ��T� represents the difference
between the actual logarithmic spectral acceleration, ln Sa�T�, and its predicted mean
value f�M ,R ,� ,T�. For observed ground motions with known Sa�T� and known M, R,
etc., ��T� is a known number. For future ground motions, ��T� is represented by a ran-
dom variable with a mean value of zero. The standard deviation of ��T� is estimated as
part of standard ground motion models; this standard deviation is a function of the spec-
tral acceleration period, and in some models is also a function of the earthquake mag-
nitude. The symbol � is sometimes used to describe the number of standard deviations
between f�M ,R ,� ,T� and ln Sa�T�, rather than the simple difference shown in Equation
1. Measured correlation coefficients are identical if either of these two � definitions are
used, however, so the results below are also applicable when using the “number of stan-
dard deviations” definition of �.

The values of ��T� at differing periods are related probabilistically. For example, if a
recorded spectral acceleration is stronger than expected (i.e., ��T� is greater than 0) at a
given period, then it is likely to also be stronger than expected at adjacent periods. This
relationship can be described probabilistically using correlation coefficients between �’s,
as a function of the two periods of interest. To illustrate, an example response spectrum
and predicted mean value are shown in Figure 1a. Epsilon values from a large set of

Figure 1. Illustration of the � correlations being studied. (a) Predicted and observed response
spectrum for one ground motion, with � values at 0.3 s and 0.6 s highlighted. (b) Observed
��0.3 s� and ��0.6 s� values from a set of ground motions.
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ground motions are shown in Figure 1b, and they can be used to estimate an empirical
correlation coefficient, as will be described below. The process will then be repeated for
spectral acceleration values at many periods. For a ground motion with a given M, R,
etc., ��T� is the only source of uncertainty in ln Sa. Thus, the correlation of �’s com-
pletely describes the correlation of spectral acceleration values for the case of a single
M, R, etc.

Note that there are several ways in which spectral acceleration might be defined in
application, and f�M ,R ,� ,T� and the standard deviation of ��T� are affected by the
choice of definition used (Boore et al. 2006). Results will be presented here for several
definitions, but it will be seen that observed correlations are very similar in all cases.
Comparisons will also be made to previous models that predicted correlations of this
type (Abrahamson et al. 2003, Baker and Cornell 2006a, Inoue and Cornell 1990).

DEVELOPMENT OF CORRELATION EQUATIONS

The NGA ground motion library (http://peer.berkeley.edu/nga) was used to develop
response spectra data for analysis, and four NGA ground motion models were used to
compute predicted spectral acceleration values (Abrahamson and Silva 2008, Boore and
Atkinson 2008, Campbell and Bozorgnia 2008, Chiou and Youngs 2008). For each
record and period, the observed and predicted spectral acceleration values were used in
Equation 1 to compute � values. The usable period range differs for each record, so
records are only used when both periods of interest fell within this range. Approximately
1000 to 2500 records are available at moderate periods, and approximately 300 to 500
records are available at 10 seconds (where the fewest records are available due to filter-
ing of low-frequency signals in most records). The stated range of available records re-
flects variation in the number of ground motions used by the various ground motion
models considered; only records used by the GMM authors were used to compute �’s
associated with each model.

The correlation coefficient between two sets of observed � values (e.g., Figure 1b)
can be estimated using the maximum likelihood estimator (Kutner et al. 2004). Some-
times referred to as the Pearson product-moment correlation coefficient, it estimates the
correlation coefficient between ��T1� and ��T2� as

���T1�,��T2� =

�
i=1

n

��i�T1� − ��T1����i�T2� − ��T2��

��
i=1

n

��i�T1� − ��T1��2�
i=1

n

��i�T2� − ��T2��2

�2�

where �i�T1� and �i�T2� are the ith observations of ��T1� and ��T2�, ��T1� and ��T2� are
their sample means, and n is the total number of observations (records). For example, a
���T1�,��T2� of 0.74 is estimated from the data shown in Figure 1b. This calculation is re-
peated for each period pair of interest. The resulting correlations could be tabulated and
used in a look-up table when needed, but the table would be difficult to transfer or re-
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produce in print. For this reason, the empirical correlation coefficients were fit with an
analytical predictive equation that is easier to communicate.

The form of the predictive equation is chosen by judgment, and nonlinear least-
squares regression is used to find the associated coefficients. The nonlinear least-squares
algorithm works best when the errors for each observed value are of comparable size,
but this is not the case here because correlation coefficients estimated in Equation 2 have
non-constant standard errors. That is, one can have high confidence in observed corre-
lations that are close to 1 or −1, but lower confidence in observed correlations that are
close to 0. To correct for this, the Fisher z transformation (Kutner et al. 2004) was ap-
plied to the correlation coefficients

z =
1

2
ln�1 + �

1 − �
� �3�

where � is the estimated correlation coefficient from Equation 2 and z is the transformed
data. This “variance stabilizing transformation” leads to z values that have constant stan-
dard errors, so that the least-squares algorithm is optimal. Least-squares regression is
then applied to these transformed values, rather than the original correlations, as follows

min
�

�
i=1

n

�
j=1

n �1

2
ln�1 + �i,j

1 − �i,j
� −

1

2
ln�1 + �̂i,j���

1 − �̂i,j���
��2

�4�

where �i,j is the empirical correlation coefficient computed in Equation 2 at the period
pair (Ti, Tj) and �̂i,j��� is the predicted correlation using a given analytical equation and
a vector of associated coefficients �. Results from this calculation are presented in the
following section.

OBSERVED CORRELATIONS AND PREDICTIVE EQUATIONS

CORRELATIONS FOR GMRotI VALUES

The spectral acceleration definition used in the NGA ground motion models is typi-
cally “GMRotI50,” also referred to as “GMRotI.” This is the geometric mean of spectral
accelerations of orthogonal horizontal components, after rotating the components to
minimize the variation of the rotation-dependent geometric means over a range of peri-
ods (Boore et al. 2006). Correlation coefficients are first evaluated for this Sa definition.

Empirical correlation coefficients from four NGA GMMs (Abrahamson and Silva
2008, Boore and Atkinson 2008, Campbell and Bozorgnia 2008, Chiou and Youngs
2008), at a variety of period pairs, are shown in Figure 2 and Figure 3. Figure 2 shows
correlation coefficients for a selected set of periods T2, plotted versus T1 values between
0.01 and 10 seconds. Figure 3 shows the same results, plotted using contours of corre-
lation coefficients as a function of both T1 and T2. These results were used to fit a pre-
dictive equation, which is plotted in Figure 4. To evaluate this predictive equation, a se-
ries of initial calculations are first performed
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C1 = 1 − cos��

2
− 0.366 ln� Tmax

max�Tmin,0.109���
C2 = 	1 − 0.105�1 −

1

1 + e100Tmax−5�� Tmax − Tmin

Tmax − 0.0099
� if Tmax � 0.2

0 otherwise



C3 = �C2 if Tmax � 0.109

C1 otherwise

Figure 2. Plots of empirical correlation coefficients versus T1, for several T2 values. (a) Abra-
hamson and Silva (2008) model. (b) Boore and Atkinson (2008) model. (c) Campbell and Bo-
zorgnia (2008) model. (d) Chiou and Youngs (2008) model.
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C4 = C1 + 0.5��C3 − C3��1 + cos��Tmin

0.109
�� �5�

where Tmin=min�T1 ,T2� and Tmax=max�T1 ,T2�. The predicted correlation coefficient is
then given by

if Tmax � 0.109 ���T1�,��T2� = C2

Figure 3. Contours of empirical correlation coefficients versus T1 and T2. Abrahamson and
Silva (2008) model. (b) Boore and Atkinson (2008) model. (c) Campbell and Bozorgnia (2008)
model. (d) Chiou and Youngs (2008) model.
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else if Tmin � 0.109 ���T1�,��T2� = C1

else if Tmax � 0.2 ���T1�,��T2� = min�C2,C4�

else ���T1�,��T2� = C4 �6�

The equation is valid when T1 and T2 are between 0.01 and 10 seconds. The form of the
equation has no physical interpretation: it is simply a fit to observed data, and thus
should not be extrapolated. Note that the numerical coefficients present in Equations 5
and 6 are the � coefficients obtained from Equation 4. This equation is slightly more
complicated than previously proposed correlation equations, due to the need to fit ob-
served data over a larger period range.

Data from the Chiou and Youngs (2008) model was used for the fitting, so the pre-
diction matches that data most closely, although the agreement with data from the other
models is good. At moderate periods, the close agreement of the various models (and
their associated varying datasets) suggests that the computed correlations results are
very stable and have little uncertainty. The only noticeable differences between ground
motion models occur when T1 and/or T2 is larger than five seconds. Because the under-
lying GMMs and measured correlations are less precise at these long periods, due to the
smaller number of ground motions with appropriate filter frequencies, creation of dif-
fering correlation predictions for each GMM was judged to be inappropriate. For ex-
ample, if 300 observations are used to estimate a correlation coefficient of 0.1, the re-
sulting 95% confidence interval for that estimate is −0.01 to 0.21 (Kutner et al. 2004),
meaning that it is difficult to identify statistically significant differences among the low
correlation values where results from the four models differ. (In contrast, if 300 obser-

Figure 4. Plots of the predictions from Equation 6. (a) Plots of correlation coefficients versus
T1, for several T2 values. (b) Contours of correlation coefficients versus T1 andT2.
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vations are used to estimate a correlation of 0.9, the 95% confidence interval is 0.88 to
0.92.) Perhaps as importantly, a difference of 0.1 or 0.2 in a low correlation value has
very little practical impact on the joint distribution of two variables, which is the output
of interest from this model.

Further support for using the same model with all ground motion models is provided
by Figure 5, which shows scatter plots from observed �’s associated with two GMMs, at
several periods. The correlation coefficients of these four data sets are between 0.88 and

Figure 5. Scatter plots of � values obtained from two ground motion prediction models. Values
computed using the Abrahamson and Silva (2008) model are shown on the y axes, and values
computed using the Chiou and Youngs (2008) model are shown on the x axes. (a) � values at
0.01 s. (b) � values at 0.1 s. (c) � values at 1.0 s. (d) � values at 10 s.
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0.9, indicating that the � values associated with a given ground motion do not differ
significantly when the underlying ground motion model is changed (similar results were
observed when comparing � values from other GMMs). Because of the similarity of ob-
served � values and observed correlation coefficients between models, Equation 6 is rec-
ommended for use with all four GMMs considered here. Note that in addition to repro-
ducing empirical correlations, a predictive equation must also produce correlation
matrices that are positive definite (in order to avoid predicting conditional standard de-
viations that are negative). The positive definiteness of predictions from Equation 6 has
been verified.

CORRELATIONS FOR OTHER SA DEFINITIONS

Spectral acceleration definitions other than GMRotI may also be of interest to some
users. The Sa of a single ground motion component may be of interest, or it may be
useful to compute the geometric mean of Sa’s from two orthogonal ground motion com-
ponents (Baker and Cornell, 2006b). It can be shown that the mean values of these spec-
tral accelerations are nearly identical to the mean value of GMRotI (Beyer and Bommer,
2006), so the standard NGA ground motion models were used in Equation 1 to compute
�’s and resulting correlations associated with these other Sa definitions. (Note that the
standard deviation of ln Sa may vary by definition, but Equation 2 is not affected by the
standard deviation, so correlation results do not require it to be known.) Figure 6 shows
empirical correlations for GMRotI, geometric mean, and single-component spectral ac-
celerations, using the Chiou and Youngs ground motion model. The similarity in results
suggests that Equation 6 can be used for all of these Sa definitions. Note that for some
widely spaced period pairs, negative correlations are observed; this may be because sys-
tematic differences between predicted and observed spectral shapes cause one period to
be over-predicted while another is under-predicted. The negative correlations are small
and not of any obvious practical concern in hazard calculations.

The results shown in Figure 6 are for specific orientations of the ground motion com-
ponents (i.e., fault-normal and fault-parallel), rather than arbitrary orientations.
Arbitrarily-oriented components also show the same correlation structure, which per-
haps should not be surprising given the similarities in Figure 6. The strong empirical
similarity is also supported by Baker and Cornell (2005, Appendix B), who showed ana-
lytically that correlations between geometric-mean and arbitrary-component Sa’s are
nearly identical. Baker and Cornell also observed that correlations were independent of
the ground motions’ causal magnitudes and distances; that finding was assumed to hold
here as well.

CORRELATIONS FOR SA VALUES OF ORTHOGONAL GROUND
MOTION COMPONENTS

Correlations in spectral accelerations of orthogonal components of ground motions
are also of interest (e.g., for determining the distribution of spectral amplitudes when
analyzing 3-dimensional structures). Empirical correlations are shown in Figure 7 for Sa
values of orthogonal ground motion components, when both Sa values have the same
period. Results from four ground motion models are shown along with the correlation
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prediction from Baker and Cornell (2006a). The previous prediction closely matches the
correlations observed here, even though the prediction was designed for a more re-
stricted period range. That previous predictive equation is repeated here, given its con-
tinued validity

��x�T�,�y�T� = 0.79 − 0.023 · ln�T� �7�

where ��x�T�,�y�T� is used to denote the correlation between two epsilons, �x and �y, as-
sociated with orthogonal ground motion components at a given period T. Only the cor-
relations from the Campbell and Bozorgnia model do not fit this predictive equation

Figure 6. Empirical correlation coefficients from the Chiou and Youngs (2008) model versus
T1, for several T2 values. (a) Correlations of GMRotI spectral accelerations. (b) Correlations of
the geometric mean of the fault-normal and fault-parallel spectral accelerations. (c) Correla-
tions of fault-normal spectral accelerations. (d) Correlations of fault-parallel spectral
accelerations.
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well, but the difference is again primarily at longer periods where limited data affects the
accuracy of the models. For simplicity, and because of the potential effect of limited data
at long periods, Equation 7 is recommended for use with all ground motion models.

In the case of spectral acceleration values in orthogonal directions with different pe-
riods, it appears that correlations can be estimated using a product of correlation pre-
dictions given in Equations 6 and 7 above. To evaluate Equation 7 in the case where two
periods are of interest, the mean of the logarithmic periods is used, given the linearity of
correlations as a function of ln�T�. Figure 8 shows empirical correlations of orthogonal
epsilon values at two periods, along with a correlation prediction given by

��x�T1�,�y�T2� = ���T1�,��T2� · �0.79 − 0.023 · ln��T1T2�� �8�

where ���T1�,��T2� is given in Equation 6 and the term in parentheses is Equation 7 evalu-
ated at the mean of the logarithmic periods (i.e., the log of the geometric mean of the
periods). Because this prediction reasonably matches the empirical results shown in Fig-
ure 8, it is recommended as the predictive equation, rather than fitting a new equation.
Estimating this correlation as the product of two other correlation coefficients corre-
sponds to an assumption of Markovian dependence, where �x�T1� and �y�T2� are condi-
tionally independent given either �x�T2� or �y�T1�, and where an approximation is made
that ��x�T1�,�y�T1����x�T2�,�y�T2����x��T1T2�,�y��T1T2� (Baker and Cornell 2006a). This prod-
uct form also has the desirable property of matching Equation 7 in the special case
where T1=T2.

Figure 7. Observed and predicted correlations of � values from orthogonal components of
ground motion at a single period.
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CORRELATIONS FOR INTRA- AND INTER-EVENT RESIDUALS

Modern ground motion models refine Equation 1 by separating ��T� into two terms

ln Sa�T� = f�M,R,�,T� + ��T� + ���T� �9�

where ��T� and ���T� denote the inter-event and intra-event residual terms, respectively
(Abrahamson and Youngs 1992). The inter-event term ��T� is identical for all observed

Figure 8. Contours of correlation coefficients versus T1 andT2, for orthogonal components of
ground motion. (a) Empirical correlations from the Boore and Atkinson (2008) model. (b) Em-
pirical correlations from the Campbell and Bozorgnia (2008) model. (c) Empirical correlations
from the Chiou and Youngs (2008) model. (d) Predicted correlations using Equation 8.
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Sa�T� values from a given earthquake event, while the intra-event term ���T� is unique
for each observed ground motion. Most users will need only correlations for the total
��T� as formulated in Equation 1, but the correlation coefficients for these inter- and
intra-event epsilons may also be of interest.

By equating Equations 9 and 1, it is apparent that the total ��T� in Equation 1 is
equal to ��T�=��T�+���T�. The standard deviation of ���T� is known to be significantly
larger than the standard deviation of ��T�, so ���T� is the dominant contributor to the
total ��T� in Equation 1 and thus the correlations among intra-event residuals are well-
modeled by Equation 6. This has been verified by observing that empirical correlation
coefficients for ���T� are nearly identical to those shown in Figure 2 and Figure 3, and
has also been noted by Abrahamson and Silva (2007).

The NGA ground motion database is the first library with enough events to allow
computation of a significant number of ��T� values. A plot of the number of available
��T� values is given in Figure 9; the number varies by period and by model, due to us-
able period limitations and differences in the events used by each author. The values of
these residuals were obtained from the model authors, rather than being back-calculated,
to ensure that no errors were introduced while calculating residuals. Empirical correla-
tions of ��T�’s are shown in Figure 10 for three NGA models with available ��T�’s.
While the limited number of observations causes more variability in these plots than in
the comparable figures for total epsilons, the general trends are consistent with those
observed for intra-event and total residual terms. (The limited number of observations
also increases the uncertainty in the estimates, making it difficult to use statistical hy-
pothesis testing to identify differences.) While it may be tempting to think of inter-event
residuals as being uniformly positive or negative over large period ranges due to, for
example, stress-drop variations between events, this result suggests that inter-event re-

Figure 9. Number of observed inter-event residuals, by period and NGA model.
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siduals vary with period in the same way that intra-event residuals do. The use of Equa-
tion 6 to describe ��T� correlations appears to be reasonable (note that Abrahamson and
Silva 2007 also suggest that inter-event correlations be modeled using correlations from
total epsilons).

COMPARISON TO PREVIOUS CORRELATION EQUATIONS

Correlation equations of the type described here have been proposed previously
(Abrahamson et al. 2003, Baker and Cornell 2006a, Inoue and Cornell 1990). None of
those equations, however, used a dataset as large as the NGA ground motion library, and
they were valid over a smaller period range than the results given here. Those equations
were also developed using ground motion models that will be superseded by the NGA

Figure 10. Plots of inter-event residual empirical correlation coefficients versus T1, for several
T2 values. (a) Abrahamson and Silva (2008) model. (b) Chiou and Youngs (2008) model. (b)
Campbell and Bozorgnia (2008) model.
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models. Contours of predicted correlation coefficients are shown in Figure 11 for the
three previously proposed correlation equations and the equation proposed here. Shaded
regions correspond to extrapolations of the predictive equations, and it is clear that the
extrapolations are not reasonable for covering an extended period range. Within their
ranges of applicability, the four predictions produce similar results. It should be noted

Figure 11. Contours of predicted correlation coefficients versus T1 and T2. Shaded regions in-
dicate the period ranges for which the models are being extrapolated. (a) Predicted correlations
using Equation 6. (b) Predicted correlations using Baker and Cornell (2006a). (c) Predicted cor-
relations using Abrahamson et al. (2003). (d) Predicted correlations using Inoue and Cornell
(1990).
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that Baker and Cornell (2006a) also predicted correlations involving response spectra of
vertical ground motions, but those predictions are not revisited here, as the NGA ground
motion models do not predict vertical Sa values.

EXAMPLE APPLICATION: GROUND MOTION MODEL FOR SA AVERAGED
OVER A PERIOD BAND

To illustrate one use of the correlation equations presented above, a brief example
application is presented here. Standard ground motion models provide the distribution of
spectral acceleration values to be expected from an earthquake with a given magnitude,
distance, etc., and for a given period T. When combined with the correlation equations
presented above, a customized ground motion model can be created to predict the dis-
tribution of spectral acceleration averaged over any arbitrary period band. Consider the
geometric mean of spectral acceleration values at a set of periods

Saavg�T1, . . . ,Tn� = �
i=1

n

Sa�Ti��1/n

�10�

where T1 , . . . ,Tn are n periods of interest, and Saavg�� denotes spectral acceleration av-
eraged over a range of periods. This measure of ground motion intensity may be valu-
able if one desires to predict response of a structure that is sensitive to multiple periods
of excitation. It is also useful for smoothing out peak-to-trough variability in response
spectra, and thus providing a measure of average response spectra intensity. The product
form in Equation 10 is chosen so that its logarithm is a simple summation

ln Saavg�T1, . . . ,Tn� =
1

n
�
i=1

n

ln Sa�Ti� �11�

The ln Sa�Ti� terms have a joint normal distribution, so it follows that
ln Saavg�T1 , . . . ,Tn� is also normally distributed (a property that would not hold if the
geometric mean of Equation 10 was replaced with an arithmetic mean). Because the
ln Sa�Ti� terms in Equation 11 are described by existing GMMs, the mean and standard
deviation of ln Saavg�T1 , . . . ,Tn� can be easily computed as

E�ln Saavg�T1, . . . ,Tn�� =
1

n
�
i=1

n

f�M,R,�,Ti� �12�

Var�ln Saavg�T1, . . . ,Tn�� =
1

n2�
i=1

n

�
j=1

n

�ln Sa�Ti�,ln Sa�Tj�
�ln Sa�Ti�

�ln Sa�Tj�
�13�

where �ln Sa�Ti�,ln Sa�Tj�
is given in Equation 6, and f�M ,R ,� ,Ti� and �ln Sa�Ti�

are the mean
and standard deviation, respectively of ln Sa�Ti� as specified by standard ground motion
models. The notation E�� is used to denote the expected value, or mean, of ln Saavg, and
Var[ ] denotes its variance (i.e., the square of its standard deviation). Note that Equations
12 and 13 are the conditional logarithmic mean and variance for a given value of mag-
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nitude, distance, etc., as with standard ground motion prediction models for ln Sa�T�.
With the mean and standard deviation given by Equations 12 and 13, and with knowl-
edge that ln Saavg is normally distributed, it is simple to perform probabilistic seismic
hazard analysis in terms of Saavg�T1 , . . . ,Tn� rather than the traditional Sa at a single
period.

Note that the terms in the summation of Equation 11 could be weighted, and it would
still be straightforward to compute the mean and variance of the summation. This might
be useful if one wanted to create a structure-specific Saavg that weighted spectral accel-
erations at a structure’s modal periods, with weights corresponding to the structure’s
modal participation factors. The formulation presented in this section has been previ-
ously used in various forms by several authors (Abrahamson et al. 2003, Cordova et al.
2001, Pacific Gas & Electric 1988; Shome and Cornell 1999).

In addition to the custom ground motion model described in this section, there exist
several other potential applications of the correlation coefficient predictions. Vector-
valued probabilistic seismic hazard analysis requires these correlations to compute the
probability of joint occurrence of specified spectral acceleration values at multiple peri-
ods (Bazzurro and Cornell 2002). Correlations are also needed for ground motion se-
lection procedures that account explicitly for the spectral shape of ground motions hav-
ing “rare” or large spectral amplitudes at a specified period (Baker and Cornell 2006c).

CONCLUSIONS

Equations have been presented to predict correlations of spectral acceleration values,
using the NGA ground motion library and the new NGA ground motion models
(GMMs). A predictive equation was presented that provides correlations between loga-
rithmic spectral accelerations at two periods. This equation was observed to be valid for
a variety of definitions of spectral acceleration (i.e., spectral acceleration of an indi-
vidual component, the geometric mean of spectral accelerations from two orthogonal
components, and the orientation-independent GMRotI definition used by the NGA mod-
elers). Additional equations were provided to predict correlations of spectral accelera-
tions from orthogonally-oriented individual ground motion components. Correlations
are modeled by computing correlations between prediction residuals, termed �’s. These
residuals are defined as either the number of standard deviations between observed and
predicted spectral acceleration values or simply the direct difference between observed
and predicted values, but the computed correlations are the same for either definition.

The correlation equations are applicable for use with any of the NGA ground motion
models, at periods between 0.01 and 10 seconds. When the periods of interest are less
than 5 seconds, correlation coefficients from all considered models are essentially iden-
tical. If one period is greater than 5 seconds and the second period is significantly less
than 5 seconds, correlations vary slightly among models. These variations are likely due
to a lack of empirical data, and these widely-spaced period pairs are also of less engi-
neering interest, so separate correlation equations were not developed for each model.
The similarity of correlations from the various GMMs occurs because the correlations
are dominated by the large record-to-record variability in observed spectral values from
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similar events. While slight differences in mean predicted values from the GMMs may
be important for some applications, they do not affect computed � values to a large
enough extent that correlations change noticeably. This also explains why previous pre-
dictive equations fit to older GMMs produce similar correlations to those observed here
(within their more limited period ranges).

In addition to providing an updated prediction for correlations of total residuals from
spectral acceleration predictions, results were presented for inter-event and intra-event
residuals. Intra-event residuals have essentially identical correlation structure to the total
residuals, due to their dominant contribution to the total residual. Inter-event residuals
also have a similar correlation structure to the total residuals, suggesting that their cor-
relations can also be predicted using the equation developed for total residuals. Corre-
lations for inter-event residuals have not been examined prior to the NGA project, due to
the lack of a sufficiently large ground motion library.

An example application was presented to illustrate how the correlation equations can
be combined with a standard ground motion model to produce a custom prediction of
spectral acceleration averaged over a period range—a measure of ground motion inten-
sity that may be useful for predicting response of structures affected by excitation at
multiple periods or multiple orientations. Using the results of the example calculation, it
is straightforward to perform seismic hazard analysis for this measure of ground motion
intensity. Several other seismic hazard analysis and ground motion selection applications
will also benefit from these updated equations.
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