
1 INTRODUCTION  

Many geotechnical engineering problems are multi-
scale in nature because of inhomogeneities existing 
at different length-scales in geomaterials. Figure 1 
shows length scales relevant to modeling of granular 
materials in civil engineering applications. Informa-
tion pertaining to granular systems, including inho-
mogeneities, is encoded at the granular scale and 
propagated up to the field scale. For example, it is 
known that compactive shear bands in soils and 
rocks are zones of intense deformation where signif-
icant reductions in porosity are observed and hence 
strength and permeability characteristics in the me-
dium are completely altered due to imposed defor-
mations (Desrues and Viggiani 2004; Holcomb and 
Olsson 2003). These imposed changes are rather lo-
cal and confined to the grain scale (deformation 
banding thickness ranges from 3-4 mean grain di-
ameters in sandstones (Louis et al. 2006)  to about 
20 grain diameters in dense sands (Mühlhaus and 
Vardoulakis 1987)). However, their effect on the 
global performance of geosystems at the field scale, 
such as oil reservoirs, can be profound as it has been 
shown that these features can serve as flow barriers, 

reducing the effective permeability of the reservoir 
by orders of magnitude (Holcomb and Olsson 2003; 
Sternlof et al. 2006). 

 
Figure 1. Illustration of the multi-scale nature of granular mate-
rials (from Andrade et al. 2008). 

When characterizing fields of soil properties 
while accounting for uncertainty, consideration of 
spatial dependence is of great importance, and much 
effort has been devoted to this problem. Often, spa-
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ABSTRACT: This paper describes an approach to account for the multi-scale nature of soil by using a multi-
scale hierarchical Monte Carlo simulation framework. The behavior of particulate media, such as sands, is en-
coded at the granular-scale, and so methods for accurately predicting soil behavior must rely on methods for 
up-scaling such behavior across relevant scales of interest. Multi-scale analysis is known to be especially im-
portant under strain localization, penetration or liquefaction conditions, where a classical constitutive descrip-
tion may no longer apply. A probabilistic framework across multiple scales is needed to efficiently model and 
simulate multiscale fields of spatially varying material properties and to consistently compute the behavior of 
the material in a multi-scale model. From a material modeling standpoint, the multi-scale framework is facili-
tated here using a hierarchical conditional simulation procedure. With this approach, a more accurate material 
description at finer scales is pursued only when needed, such as in the presence of strong inhomogeneities. 
Monte Carlo simulation is used to simulate material properties at an initial coarse scale, and that initial simu-
lation is adaptively refined at finer scale materials whenever necessary, conditional upon previously simulated 
coarse scale data. Here the background of the multiscale geomechanics motivation is summarized, the ma-
thematics of this simulation approach is developed, and then several example calculations are shown to bring 
insights regarding the approach and its potential application in problems where multi-scale effects are impor-
tant. Details regarding open-source software documenting these calculations are also provided.  



tially dependent random fields are modeled spectral-
ly (e.g., Ghanem and Brzakala 1996; Popescu et al. 
2005; Sudret and Der Kiureghian 2002). Another 
common approach is to use a correlation coefficient 
between the unknown values of a soil property at 
two points, and the correlation decreases with in-
creasing distance between the points (Baise et al. 
2006; Degroot and Baecher 1993; Goovaerts 1997). 
While spectral-based simulation approaches are of-
ten preferable for random field simulation due to 
their stability and computational tractability, here a 
sequential correlation-based approach is utilized. It 
is believed that this approach is valuable if one de-
sires to do adaptive refinement as described below, 
because it is not necessary to specify a priori the lo-
cations requiring fine-scale resolution; one can 
simply add additional fine scale data, conditional 
upon all previously simulated data, as the need aris-
es.  

Spatial dependence models for soils are ad-
dressed in the literature, but are less common than 
results for probability distributions of soil properties 
at a single point (Fenton 1999; Jaksa and Fenton 
2000; Uzielli et al. 2005). Characterizing spatial de-
pendence for general cases is difficult because the 
dependence model is dependent upon other model-
ing assumptions such as whether the mean of the 
soil property is homogeneous. Note that a linear cor-
relation coefficient does not in general completely 
describe the stochastic dependence of two random 
variables, except for the case of joint normal distri-
butions, but it is often all that can be quantified and 
in many practical applications has been observed to 
be a sufficiently accurate representation of depen-
dence (Goovaerts 1997; K.K. Phoon 2006).  

Most experience with random field models for 
soil properties is limited to a single spatial scale. 
Multi-scale models for some geotechnical properties 
have been proposed based on theoretical arguments 
(Fenton 1999; Taylor and Burrough 1986) but not 
implemented or validated within a Monte Car-
lo/Finite Element Analysis framework. Challenges 
remain regarding computationally inexpensive ap-
proaches for implementing Monte Carlo simulation 
with this model and transferring the results to the 
mechanical model, as will be discussed below. Once 
spatial dependence of the random field has been de-
fined, Monte Carlo simulations can be generated us-
ing several methods. A sequential conditional simu-
lation approach that has been used previously by the 
authors (Andrade et al. 2008; Baker and Faber 2008; 
Chen et al. 2010) is first briefly summarized. 

2 CONDITIONAL SIMULATION OF 
DISCRETIZED RANDOM FIELDS AT A 
SINGLE SCALE 

To perform a sequential conditional simulation, first 
an arbitrary location in the grid is selected and a si-
mulation is generated from the standard Gaussian 
distribution. The needed conditional distribution is 
easy to compute when the field is Gaussian. Let nZ  
denote the random field at the next location to be 
simulated, and pZ  denote the random field at all 
previously simulated locations. The joint distribution 
of nZ  and pZ  is given by  
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where ~ ( )N μ,Σ  denotes that the vector of random 
variables has a joint normal distribution with mean 
values μ  and covariance matrix Σ  (note that μ  and 
Σ  have been partitioned in Equation 1, to clarify the 
matrix operations below). The covariance matrix is 
dependent upon the locations of the previously si-
mulated data points and the model for spatial depen-
dence.  

Given this model, the distribution of nZ , condi-
tional upon the previously simulated data points, is 
given by 

   1 1| ~ · · ,1 · ·np ppn p np pp pnZ N       Z z z  (2) 

where z is the vector of previously simulated numer-
ical values. A value for nZ  is simulated from this 
conditional distribution, and this value is then 
treated as a fixed data point for later simulations at 
other locations (i.e., nZ  is included in the vector pZ  
of Equation 1). The conditional simulation process is 
repeated until all values in the field have been simu-
lated. This approach will produce a Gaussian ran-
dom field with a mean of zero and unit standard dev-
iation, which can then be transformed to have a 
specified probability distribution (Goovaerts 1997; 
Rosenblatt 1952). Note that this conditional simula-
tion approach is ideally suited for multiscale analy-
sis because it is possible to selectively produce fine-
scale simulations that are conditional upon an origi-
nal set of coarse-scale simulations. 

The above equations apply to Gaussian random 
fields, and most random field simulations and cha-
racterization approaches have focused on Gaussian 
random fields, because of intractability associated 
with most non-Gaussian fields. Monte Carlo simula-
tions of non-Gaussian fields are typically obtained 
using a post-processing transformation of a simu-
lated Gaussian field. This approach is widely used 
today, is seen to be reasonable in many situations 



(Goovaerts 1997; K.K. Phoon 2006), and has been 
adopted by the authors in past research (Andrade et 
al. 2008; Baker and Faber 2008; Chen et al. 2010).  

 

 
Figure 2. Geometry and notation for refined meshing of mul-
tiscale simulations.  

3 MULTISCALE SIMULATIONS 

When extending this procedure to simulations at 
multiple scales (i.e., multiple levels of spatial discre-
tization), the challenge is to maintain spatial depen-
dence across several scales, as illustrated schemati-
cally in Figure 2. For later finite element analysis, it 
is desired that the numerical value at each discre-
tized grid point represents the average property val-
ue over the spatial extent of that grid point. Because 
the spatial extent of the grid points varies with level 
of discretization, the needed probability distributions 
and spatial correlation structures varies with refine-
ment scale. The relationships between scales can be 
determined, however, and are documented for this 
approach in a previous publication by the authors 
(Chen et al. 2010). 

Once the relevant probability distributions and 
correlation structures between scales have been de-
termined, it is relatively straightforward to apply the 
approach of Section 2 and input the needed means 
and covariances appropriate for each grid point de-
pending upon its scale. The book-keeping in the si-
mulation software is somewhat more complex, but 
an example source code is provided to demonstrate 
the implementation of the proposed procedure (see 
http://www.stanford.edu/~bakerjw/random-
fields.html). 

Given that a simulation procedure is available, 
the challenge is then to use this approach at multiple 
scales in a computationally efficient manner. A brute 
force technique would be to simulate everywhere at 
the finest scale of interest and then up-sample these 
simulations in regions of lesser interest (i.e., regions 
where the simulated properties do not vary signifi-
cantly, or where the field’s properties will not signif-
icantly affect the calculations of interest). This ap-
proach may be feasible because the random field 
simulation step is generally less expensive than the 
finite element analysis step, so the computational 
burden of simulating data and then later discarding it 
may not be significant (Durlofsky et al. 1997; Tu-
reyen and Caers 2004, 2005). When the scales of in-
terest vary over several orders of magnitude, howev-
er, then the computational expense of directly 
simulating all properties at the fine scale, only to 
then discard most of them, may become significant.  

An alternative that will be considered is to first 
produce simulated properties at the coarsest scale of 
interest and then iteratively simulate at finer scales, 
conditional on the coarse-scale random field simula-
tions. This iterative simulation approach has recently 
been previously used by the authors (Chen et al. 
2010). The advantage of this approach is that fine-
scale simulations are produced only at locations 
where they are needed. For example, if the coarse 
scale random field simulation produces a region of 
weak or potentially unstable material, then addition-
al simulations at progressively finer scales can `fill 
in' more detail at this critical region. Or if the finite 
element analysis for soil instabilities indicates that 
strains are localizing in a particular band (as in Fig-
ure 1), then supplemental random field simulations 
can be generated and the finite element mesh can be 
updated to incorporate the needed fine-scale details 
in this particular region. The above approach is well 
suited for this adaptive refinement, so the only fur-
ther input needed is how to identify the locations 
where refinement would produce the most benefit 
for later analyses.  

3.1 Pre-specified refinement geometry 

One option, used by Chen et al. (2010) is to pre-
specify the geometry where high resolution is 
needed based on knowledge of the problem to be 
studied. For example, Figure 3 shows a coarse scale 
and refined geometry for a footing analysis problem. 
It is known a priori that the soil directly underneath 
the footing has the strongest influence on the capaci-
ty of the footing, and so that region is refined in Fig-
ure 3b.  

 



 
Figure 3. Refinement of a porosity simulation to improve foot-
ing reliability calculations, in the case where the region to be 
refined is known prior to simulation. (a) Initial coarse scale si-
mulation. (b) Simulation with refined grid in area known to af-
fect footing capacity (adapted from Chen et al. 2010). 

3.2 Adaptive refinement 

In some other applications, the regions that would 
benefit from refinement may not be known prior to 
simulation. In these cases, an adaptive refinement 
technique may be advantageous. In regions where 
the simulated grid takes a relatively constant value, 
finite element calculations will not benefit from a 
finer mesh. On the other hand, regions with large 
gradients of property values will be more accurately 
represented in finite element calculations if a finer 
mesh is used. For this reason, a potentially useful 
simulation technique is to generate a coarse scale 
field of values, and then refine regions with strong 
heterogeneity. Other regions, whose refinement 
should not affect the resulting predicted mechanical 
behavior significantly, can be left at the original 
coarse scale. 

To quantify heterogeneity within a block that is a 
candidate for refinement, a heterogeneity index can 
be defined as the maximum absolute difference in 
property values among grid points within that block. 
Mathematically, an index, I, for a grid point, can be 
computed as  
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where zi,j is the property value at grid location i,j and 
the location indices i and j are as denoted in Figure 
2. Grid points can be refined if I>threshold, where 
the threshold value can be varied depending upon 
the heterogeneity level of interest or the fraction of 
grid points that are desired to be refined. To illu-
strate, Figure 4 shows a coarse scale simulation, and 
Figure 5, Figure 6 and Figure 7 show simulations re-
fined using the criterion of equation 3 with the hete-
rogeneity threshold level varied so that 10%, 20% 
and 30% of the grid points are refined. 

 
Figure 4. Original coarse scale simulation. 

 
Figure 5. Simulation with 10% of grid points refined (maxi-
mum difference criterion). 

 
Figure 6. Simulation with 20% of grid points refined (maxi-
mum difference criterion). 

 
Figure 7. Simulation with 30% of grid points refined (maxi-
mum difference criterion). 



An alternative metric to quantify heterogeneity is 
the sample variance of the grid points within a 
block. This can be computed as  
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Figure 8, Figure 9 and Figure 10 show simulations 
with 10%, 20% and 30% of the grid points refined, 
respectively, based on identifying the points with the 
largest inhomogeneities using equation 4. If more 
broad scale variation is of interest, the variance over 
more than just adjacent grid points can be computed 
as follows 
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where k is an integer specifying the size of the block 
to be considered, n is the number of grid points in 
the block, and  
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Figure 8. Simulation with 10% of grid points refined (variance 
criterion). 

 
Figure 9. Simulation with 20% of grid points refined (variance 
criterion). 

 
Figure 10. Simulation with 30% of grid points refined (va-
riance criterion). 

The above figures show the refinement results 
for a relatively small field, but the conditional simu-
lation and adaptive refinement procedure scales rela-
tively easily to larger fields. Figure 11 shows a si-
mulation of a 30x20 field with 30% of grid points 
refined using the variance criterion This simulation 
took twenty minutes on a standard desktop computer 
using a Matlab implementation, but the computa-
tional expense could be reduced through further op-
timization of the code. The source code for the cur-
rent implementation is provided at 
http://www.stanford.edu/~bakerjw/random-
fields.html.  

When performed over several spatial scales, the 
computational expense associated with computing 
heterogeneity scores for all potential blocks can be 
substantial. It is expected that this can be reduced if 
needed using approximate search/optimization ap-
proaches, and statistical prediction of heterogeneity 
scores using simplified results such as the hetero-
geneity score from a subsample of grid points within 
a block. 

 
Figure 11. Adaptively refined grid at a slightly larger scale. 

The above figures and equations illustrated hete-
rogeneity calculations for a single property, to 
schematically demonstrate the calculations for a 
simple example. The same procedures can be per-
formed if the geomechanics problem of interest is 
dependent upon a vector of spatially varying proper-



ties (such as permeability and strength). If more than 
one property is to be considered, then a weighted 
sum of differences or variances across each element 
in the vector can be used as the heterogeneity metric 
(Tureyen and Caers 2005). 

Finally, it should also be noted that the above 
adaptive refinement approach is easily implemented 
into the finite element software developed by the au-
thors (Chen et al. 2010). Another refinement tech-
nique considered by the authors was to refine the 
simulations after an initial finite element calculation 
was performed, and to refine in regions of stress, 
strain or deformation concentrations. This approach 
is still under consideration by the authors, due to the 
challenges involved in implementation. 

4 CONCLUSIONS 

This manuscript outlined a modeling approach used 
to simulate spatially correlated fields of random va-
riables, and refine the discretization adaptively (i.e., 
without pre-specifying the refinement locations prior 
to beginning the simulations). The procedure relies 
on transforming the random variables of interest to 
Gaussian random variables, and then relying on the 
properties of Gaussian fields to simulate additional 
values conditional upon previously specified varia-
ble values. The procedure has been implemented for 
the analysis of geomechanics problems, but is appli-
cable to other problems where spatially varying ran-
dom variables are used as inputs. The software used 
to produce these results is easily adaptable for other 
geometries and refinement strategies, and the source 
code has been provided on the authors’ website 
(http://www.stanford.edu/~bakerjw/random-
fields.html) for use by other researchers.  
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