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Abstract: Quantification of seismic collapse risk of structures requires consid-
eration of uncertainties in seismic loading and in modeling of structures. In this
paper, we discuss recent efforts to quantify stochastic properties of structural
modeling parameters. Results include development of a new technique to es-
timate stochastic dependence among model parameters, an assessment of the
impacts of these correlations on structural reliability, and a discussion of the im-
plications of these findings. The results further confirm the importance of consid-
ering model parameter uncertainties when evaluating structural collapse risk, as
expected given the significant uncertainties associated with modeling this phe-
nomenon. Further, the results illustrate several practical approaches for better
estimating and propagating these uncertainties in practical structural response
assessments (i.e., without dramatically changing analysis approaches currently
used in earthquake engineering).

1 Introduction
Seismic risk analysis requires quantification and propagation of uncertainties in order to quan-
tify the probability of adverse outcomes. Significant effort has been devoted to quantifying and
assessing uncertainty in ground shaking and structural model parameters, but much less atten-
tion has been given to stochastic dependence among parameters [1]. A number of studies have
performed risk analysis with assumed dependence among parameters [2, 3, 4, 5, 6].
To consider dependence, we utilized the concentrated plasticity model proposed by Ibarra et
al. [7], and shown in Figure 1. The ‘backbone’ model has five parameters: capping plastic
rotation (θcap,pl), secant stiffness to 40% of the component yield moment (EIst f ), yield moment
(My), capping moment (Mc), and post-capping rotation (θpc). A sixth parameter (γ) governs
deterioration under cyclic loading. This model is often used when simulating sidesway collapse
in frame structures [e.g., 8, 9, 10].
Predictive models for these parameters find their marginal distributions to be lognormal (with
the exception of Mc which is strictly greater than My and so requires a mild transformation to
be modeled as a lognormal random variable [11]. We make the additional mild assumption that
the joint distribution of their logarithms is multivariate normal; dependence among parameters
can then be quantified by correlation coefficients. We thus discuss correlation coefficients for
model parameters exclusively below.
When modeling a complete structure, these concentrated plasticity elements are utilized at the
ends of beams and columns (Figure 2). The structural model then requires the six component
parameters to be specified at the many locations throughout the structure.
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Figure 1: Ibarra et al. [7] model for moment versus rotation of a plastic hinge in a structure, with the
five backbone model parameters labeled.

Predictive models for mean values and standard deviations of these parameters have been cal-
ibrated from component test data [12, 13], and predict values as a function of component ge-
ometry, axial load, etc. Of interest here is the correlation among parameter values. Note that
correlation exists between parameters for a given component, as well as from component-to-
component; we refer to these as within- and between-component correlations, respectively.

2 Estimating correlations
Gokkaya et al. [11] proposed the following method for estimating correlations. A set of ob-
served parameter values from a large set of tests are considered, where there are groups of
components analogous to a set of components in a building. Predictive equations for means
and standard deviations of those parameter values are needed as well (in this study they were
already available, but in principle could be developed in conjunction with the correlations).
For the data set considered below, there are multiple tests performed by individual laborato-
ries, and here we refer to these as ‘test groups.’ Most of these test groups have specimens with
similar dimensions, and with fixed steel yield strength and area ratio of longitudinal reinforc-
ing steel. The primary differences among the tests within a test group are the level of axial
load and transverse reinforcement. These variations are analogous to variations we anticipate
among components in a real-world building. Given these features, we make the assumption that
model parameter values observed from tests in a single test group will show similar stochastic
dependence to model parameter values among components in a real building (resulting from
similarities in environmental conditions, workmanship, etc.). With this assumption, we then es-
timate model parameter correlations within test groups, as described below, in order to estimate
correlations for building models.
We compute prediction residuals by comparing the observations from the test data to model
predictions:

lnyk
i j = ln ŷk

i j + ε̃k
i j (1)

where i and j represent the test group and test number, respectively, and the superscript k in-
dicates the random variable of interest. Random variable k from the test specified by i and j is
associated with observed value yk

i j, predicted value ŷk
i j, and residual ε̃k

i j.
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Figure 2: Illustration of locations in a structural model with concentrated plasticity elements, indicating
within- and between-component correlation.

A one-way random effects model is applied to residuals from Equation 1 to assess the correla-
tion structure of the model parameters [14]. The test groups are treated as a random effect, and
logarithmic residuals of each random variable, ε̃k

i j, are considered without any further transfor-
mation, leading to the following equation:

ln
(

yk
i j

)
− ln

(
ŷk

i j

)
= ε̃k

i j

= µk +αk
i + εk

i j

(2)

where µk is the mean of the data, and αk and εk represent between- and within-test-group vari-
ability, respectively. The αk and εk terms are independent random variables with zero means and
variances σ2

k and τ2
k , respectively. These variances are estimated from the regression procedure.

From Equation 2, and the definition of correlation, the correlation coefficient for the logarithms
of the model parameters k and k′ within a given component is:

ρlnyk
i j,lnyk′

i j
=

ραk
i ,α

k′
i

σkσk′+ρεk
i j,ε

k′
i j

τkτk′

√
σ2

k + τ2
k

√
σ2

k′+ τ2
k′

(3)

where all of the required correlation coefficients and standard deviations needed to evaluate
this formula can be estimated from the random effects regression results. Similar results can be
derived for between-component correlations [11].
When this approach was applied to concrete beam-column test data, between-component cor-
relations of like parameters showed high values (i.e., My, θcap,pl , EIst f /EIg and Mc/My have
correlations of 0.7 or greater). This implies that values of these parameters across components
will tend to take similar values.
Within a component, correlations of model parameters are small. Correlation between Mc/My
and My, and between Mc/My and θcap,pl , was approximately 0.3, and other parameter pairs had
smaller correlations.
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3 Impact on seismic reliability
3.1 Analysis procedure
To evaluate the impact of the above parameter correlations, seismic reliability analyses were
performed. Monte Carlo simulations of building models were generated (where the six parame-
ter values discussed above were randomized to have appropriate variance/covariance structure).
Each realization of the structure was then subjected to an incremental dynamic analysis, increas-
ing the amplitude of the ground motion (as measured by an intensity measure, im) until a failure
was observed. For the results below, failure was defined as exceedance of a peak story drift
ratio somewhere in the building. The im causing failure is influenced by variability in ground
motion properties among ground motions with that im value, and by uncertainty in structural
behavior (quantified by the parameter uncertainty discussed above). The analysis results are
quantified by a fragility function estimating the probability of failure (F) at a given IM level,
im (P(F |IM = im)), and parameterized here by a lognormal cumulative distribution function:

P(F |IM = im) = Φ
(

ln(im/θ)
β

)
(4)

where Φ() is a standard normal cumulative distribution function, and θ and β are distribution
parameters estimated from the analysis data.
The mean annual frequency of failure (λ f ) is then obtained by integrating the collapse fragility
function with the ground motion hazard curve for the site of interest [15], as given in Equation
5.

λ f =
∫ ∞

0
P(F |IM = im)

∣∣∣∣
dλIM(im)

d(im)

∣∣∣∣d(im) (5)

where λIM(im) is the mean annual rate of exceeding the ground motion im and dλIM(im)
d(im) is the

slope of the im hazard curve at im.

3.2 Analysis results
The above procedure was performed for a number of reinforced concrete frame buildings. For
each building, a number of approaches to model parameter uncertainty were also considered.
A ‘median model’ case set all parameters to their median predicted values, and considered
no parameter uncertainty. A ’no correlation’ case considered all parameters uncertain, but un-
correlated (i.e., independent, given the multivariate Gaussian distribution considered). A ’full
correlation’ case considered all parameters uncertain, and perfectly correlated. Finally, a ’partial
correlation’ case considered all parameters uncertain, and partially correlated with correlation
coefficients estimated from the procedure of Section 2. The partial correlation case is consid-
ered the best estimate of structural reliability, and the other cases were considered to evaluate
the importance of incorporating correlations and to assess the accuracy of potential simplified
correlation representations.
Figure 3 shows example results from this procedure. These results are for a modern four-story
three-bay reinforced concrete frame. The building is assumed to be located in Los Angeles, was
designed to satisfy 2003 IBC and ASCE 7-02 design standards [16, 17]. An OpenSEES model
of the building, with a first-mode elastic period of 0.94s, was used for analysis [18, 2]. The 44
far-field ground motion components from FEMA-P695 were used as input ground motions [19].
These results show that parameter uncertainties are not particularly important for moderately
nonlinear response (i.e., story drift ratios < 0.03), as all modeling approaches gave comparable
answers. But for more severely nonlinear response, the results varied more dramatically. At a
story drift ratio of 0.1 (generally associated with sidesway collapse), the predicted exceedance
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rate varied by a factor of 2.5 between the median model case and the full correlation case. The
(benchmark) partial correlation case produced results between these two extremes, and was best
approximated by the no correlation case. A number of other structural performance metrics were
considered (e.g., median and log-standard-deviation of response at a given im level), and the
accuracy of simplified correlation representations varied depending upon the metric of interest.
A broader set of analyses of this type produced a number of other findings [20]. The example
building here had regular strength and stiffness distribution over its height, and so variations in
parameter values generally did not change the collapse mechanism; for other structural mod-
els (e.g., those with a soft story) the collapse mechanism could change depending on a given
realization of parameter values. This has important implications for structural engineers, as it
indicates that a structural model with median model parameters may not indicate all plausible
collapse mechanisms that could be present if one explicitly considers the uncertainty in the
structural models representation of the building.
A general finding was that model uncertainty in general became more important as the degree of
nonlinearity in the building increased. This is intuitive in that structural models (and associated
model parameters) are less well understood at severe deformation demands. It also highlights
that conclusions about the importance of model uncertainty require consideration of the limit
state being considered; reference studies considering uncertainty in elastic model parameters,
moderately nonlinear (or non-deteriorating) structures did not give an indication of the impor-
tance of model uncertainty on collapse capacity, as was observed in this study.
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Figure 3: Mean annual frequency of exceedance of maximum story drift ratio using the considered cor-
relation models (adapted from [11]).

4 Conclusions
This paper summarizes findings from recent studies on a new technique for estimating depen-
dence among model parameters; this approach uses random effects modeling of parameters
estimated from a database of experimental component tests, in order to quantify the degree to
which parameter variability is shared across components or across parameters within a compo-
nent. Groups of component tests that are conducted in similar conditions, and are investigating
the impacts of particular properties of components that can effectively represent different loca-
tions in a structure, are suitable for this estimation approach. To illustrate the impacts of this
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modeling techniques, results from a case study analyses are presented. More detailed results
and discussion are available in the papers cited above, and in [21].
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