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Abstract. Atmospheric rivers (ARs) are a class of me-
teorologic phenomena that cause significant precipitation
and flooding on the US West Coast. This work presents
a new Performance-based Atmospheric River Risk Analy-
sis (PARRA) framework that adapts existing concepts from
probabilistic risk analysis and performance-based engineer-
ing for application in the context of AR-driven fluvial flood-
ing. The PARRA framework is a chain of physically based
models that link the atmospheric forcings, hydrologic im-
pacts, and economic consequences of AR-driven fluvial flood
risk together at consistent “pinch points”. Organizing around
these pinch points makes the framework modular, meaning
that models between pinch points can be updated without af-
fecting the rest of the model chain, and it produces a proba-
bilistic result that quantifies the uncertainty in the underlying
system states. The PARRA framework can produce results
beyond analyses of individual scenario events and can look
toward prospective assessment of events or system changes
that have not been seen in the historic record.

The utility of the PARRA framework is demonstrated
through a series of analyses in Sonoma County, CA, USA.
Individual component models are fitted and validated against
a historic catalog of AR events occurring from 1987 to 2019.
Comparing simulated results from these component model
implementations against observed historic ARs highlights
what we can learn about the drivers of extremeness in dif-
ferent flood events by taking a probabilistic perspective. The
component models are then run in sequence to generate a
first-of-its-kind AR flood loss exceedance curve for Sonoma
County. The prospective capabilities of the PARRA frame-
work are presented through the evaluation of a hypothetical
mitigation action. Elevating 200 homes, selected based on

their proximity to the Russian River, was sufficient to reduce
the average annual loss by half. Although expected benefits
were minimal for the smallest events in the stochastic record,
the larger, more damaging ARs were expected to see loss
reductions of approximately USD 50–75 million per event.
These results indicate the potential of the PARRA framework
to examine other changes to flood hazard, exposure, and vul-
nerability at the community level.

1 Introduction

Atmospheric rivers (ARs) are long (> 2000 km) and narrow
(500–1000 km) corridors of strong horizontal water vapor
transport, with water concentrated mostly in the lowest 3 km
of the atmosphere (Ralph et al., 2018). ARs are the primary
vector for moving moisture from the tropics to the midlati-
tudes, responsible for up to 90 % of longitudinal water trans-
port while covering only 10 % of the earth’s surface (Zhu
and Newell, 1998). ARs are crucial to the stability of Califor-
nia’s water resources: in just a hundred hours of rain per year
they can deposit up to half of the state’s annual water sup-
ply (Lamjiri et al., 2018). However, this gift comes at a price.
ARs cause well over three-quarters of all extreme precipita-
tion events in California and over 90 % of the state’s record
floods (Lamjiri et al., 2018), leading to almost USD 660 mil-
lion in average annual losses (Corringham et al., 2019).

One particularly devastating AR event was the Great Flood
of 1862. Central California received over 3 m of precipita-
tion in just 43 d between December 1861 and January 1862,
and cities from San Francisco to San Diego set precipita-
tion records that still stand today. Based on this catastrophe,
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the US Geological Survey (USGS) created a hypothetical
AR scenario named ARkStorm with a return period of ap-
proximately 500–1000 years (Porter et al., 2011). The study
found that California’s flood control infrastructure, mostly
built to withstand 100- or 200-year return period events, was
woefully underprepared for this disaster scenario, and that
much needed to be done in terms of both mitigation in-
vestment and emergency planning to prevent an economic
catastrophe. The ARkStorm report concluded with a call for
an “end-to-end stochastic model of severe weather, physi-
cal impacts, and socioeconomic consequences” (Porter et al.,
2011).

This paper presents a novel performance-based risk analy-
sis framework that integrates meteorologic, hydrologic, and
engineering models to assess AR-induced fluvial flood risk.
The Performance-based AR Risk Analysis (PARRA) frame-
work probabilistically models ARs from inception all the
way to economic consequences, as first outlined a decade
ago in the ARkStorm report. The core goal of the PARRA
framework is to provide a conceptual outline to link re-
search related to the atmospheric forcings, hydrologic im-
pacts, and economic consequences of AR-induced flood risk.
It is (a) physically based, meaning that it supports precise
and consistent modeling of the sequence of processes from
inception to impacts; (b) modular, meaning that individual
component models can be modified without affecting the rest
of the sequence; (c) probabilistic, meaning that the full un-
certainty quantification at each step is carried through the
model sequence to assess confidence in the final results;
and (d) prospective, meaning that the framework can be
used to assess “what-if” questions about events that have
not yet occurred. These characteristics set it apart from pre-
vious scenario-based and statistical analyses of AR-driven
losses and allow for a more comprehensive evaluation of AR-
induced fluvial flood risk.

1.1 Disciplinary context

Prediction of flood damage and loss due to ARs requires
disciplinary expertise spanning meteorology, hydrology, en-
gineering risk analysis, and more. Most previous research
modeling ARs has focused on two pathways: the first linking
atmospheric forcings to hydrologic impacts, and the second
linking hydrologic impacts to economic consequences.

The first physical process to consider is the transforma-
tion of atmospheric phenomena into precipitation and runoff.
Considerable effort has been invested into understanding the
climatology of ARs, through collection of meteorological
field data (Lavers et al., 2020), improvements to existing nu-
merical weather prediction models (Nardi et al., 2018; Mar-
tin et al., 2018), and intercomparison between AR detection
algorithms (Shields et al., 2018). Researchers have described
the particular climatology of ARs affecting California and
the US West Coast (Waliser and Guan, 2017; Guirguis et al.,
2018). Characterizing these features and their spatial and

temporal distributions allows us to better connect AR events
with their hydrological impacts, namely extreme precipita-
tion (Chen et al., 2018; Huang et al., 2020) and runoff (Kon-
rad and Dettinger, 2017; Albano et al., 2020).

Translating from hydrologic impacts to economic conse-
quences is generally a multi-step process, and in the litera-
ture there are both specific models for portions of the pro-
cess and multi-model sequences. For example, hydrologic
routing softwares determine the shape of the event hydro-
graph at a given point along the river based on a precipitation
event (e.g., Bartles et al., 2022), and hydrodynamic solvers
generate 2D maps of the resulting inundation (e.g., Brun-
ner, 2020; Bates and De Roo, 2000). These tools are gen-
erally designed for practitioners to assess the consequences
of the “100-year event”, which is the hydrological event with
a 1 % annual probability of occurrence. The 100-year event
is a term with a long history in planning and engineering
design and is generally set as the standard that flood con-
trol infrastructure must be built to withstand. In the US, the
Federal Emergency Management Agency (FEMA) has been
defining flood risk in these terms for decades, through the
Federal Insurance Rate Maps (FIRMs) that delineate the 100-
year floodplain and through their open-source loss estimation
software Hazus-MH (FEMA, 2006). Other regional loss as-
sessment tools include those from the US Army Corps of En-
gineers Hydrologic Engineering Center (e.g., CEIWR-HEC,
2016, 2012) and FloodFactor (Bates et al., 2020), a commer-
cial product from First Street Foundation.

1.2 Methodological frameworks

Some studies have gone beyond domain-specific solutions to
capture the entire chain of processes from atmospheric events
to economic loss (Dominguez et al., 2018; Felder et al., 2018;
Porter et al., 2011). However, these previous works have fo-
cused on the consequences of one specific disaster scenario
rather than the full spectrum of AR flood risk in a given loca-
tion. Corringham et al. (2019) subsequently connected ARs
directly to their economic impacts and produced the first esti-
mate of total flood loss attributable to ARs in the western US.
Although this was an important step in understanding the
consequences of these storms, it included no physical mod-
eling of the processes connecting ARs to losses. The frame-
work proposed here provides a structure to overcome these
challenges. The PARRA framework is an organized sequence
of component models that connect AR occurrence to the
damage and losses that result from AR-driven flooding. Cap-
turing these physical connections with disciplinary models
of atmospheric forcings, hydrologic impacts, and economic
consequences allows for a greater depth of understanding of
the underlying phenomenological drivers.

The idea of “model chains” or “model sequences” is born
from probabilistic risk assessment, a field that originated in
the regulation of nuclear reactors (NRC, 1975). Probabilistic
risk assessment frames risk as a function of likelihood times
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consequence. The overall risk at a site is the product of the
likelihood and consequence of a given outcome, integrated
over all possible outcomes in the event space (Baker et al.,
2021). The report that first introduced probabilistic risk as-
sessment relied on logic trees to organize these possible out-
comes (NRC, 1975). Since then, more complex models and
combinations of models have been adopted to improve the
representation of the event space. The use of multi-model se-
quences is now common in natural disaster risk assessment
and has grown in popularity as a way to address flood risk
(Apel et al., 2004; Felder et al., 2018; Uhe et al., 2021). The
insurance industry in particular has embraced model chains
to create catastrophe risk models for an array of natural haz-
ards (Pinelli and Barbato, 2019). Although the insurance
models prove the viability and utility of the proposed con-
cept, they are often limited by legal or proprietary constraints
and so are not useful for generating public data or performing
research. Therefore, the PARRA framework is defined using
the language of performance-based engineering, which fo-
cuses on the variables organizing the model sequence rather
than the component models themselves.

Performance-based engineering (PBE) refers to design-
ing a system to meet a target performance objective with
a specified reliability rather than satisfying prescriptive re-
quirements. Rather than defining the models that must be
linked together, PBE frameworks are designed around “pinch
points” where only a small amount of information must be
passed from one step to the next (Garrick, 1984). The first
PBE framework was introduced to estimate losses to build-
ings in future earthquakes (Krawinkler, 1999). The success
in earthquake engineering led to development of PBE frame-
works for other hazards, including wind (Ciampoli et al.,
2011), hurricanes (Barbato et al., 2013), fire (Guo et al.,
2013), and corrosion (Flint et al., 2014). Condensing the
models down to a reduced set of pinch points at designated
steps within the model chain dramatically improves the flexi-
bility of the framework and helps to organize research efforts
into interchangeable and modular components.

2 Framework description

The PARRA framework is composed of six component mod-
els connected by pinch points. Component models are the
physical processes that make up the chain of events from
AR occurrence to flood loss; pinch points are the points in the
modeling chain where information is passed between com-
ponent models. We first develop the overall structure of the
framework and then introduce the specific pinch points and
component models.

At a fundamental level the PARRA framework is an im-
plementation of the law of total probability, which states

that P(A)=
n∑
i=1
P(A|Bi)P (Bi). In this equation P(A|Bi)

represents the conditional probability of event A given that

event Bi has occurred and P(Bi) represents the probability
of event Bi out of some set of n mutually exclusive, collec-
tively exhaustive events. Summing these probabilities over
all possible instances of Bi gives us the total probability of
event A.

Equation (1) modifies the statement of the law of total
probability to better fit the context of natural hazard assess-
ment.

λ(DV> x)=

∫
AR

P(DV> x|AR) · λ(AR) dAR, (1)

where λ(DV> x) is the rate of the decision variable (DV)
exceeding some specified threshold x, i.e., how frequently
losses exceed US x dollars; P(DV> x|AR) is the probabil-
ity of DV exceeding x conditioned on the inducing event AR;
and λ(AR) is the occurrence rate of that inducing event. The
right side of the expression is integrated over all possible in-
ducing events in the sample space. We evaluate λ(DV> x)

at a range of x values to obtain the loss exceedance curve,
which is developed further in Sect. 4.3.

We first replace the generic variables with new variables
representing pinch points, which we elaborate on later in this
section. B becomes the atmospheric river event AR and A
becomes the decision variable DV. P(DV> x) is the com-
plement of the cumulative distribution function for DV, start-
ing at 100 % probability of exceedance for low values of x
and moving to a probability of zero as x increases. P(DV>

x|AR) represents the probability of the decision variableDV
exceeding some threshold value x conditioned on the induc-
ing event AR.

We then transform the summation into an integral and
move to calculating the occurrence rate λ, which represents
a continuous state variable rather than the probability P of a
discrete event. Probabilities are defined with respect to pre-
determined time periods, and the probability of seeing an
AR event in the next week, month, or year are all differ-
ent quantities. Calculating the occurrence rate λ offers sim-
ilar information about the underlying phenomenon of inter-
est (AR event frequency) without imposing an arbitrary time
limitation.

Equation (1) forms the theoretical basis for the con-
struction of a performance-based probabilistic framework
for ARs. However, it is difficult to explicitly calculate
P(DV> x|AR) in order to evaluate the equation, because the
pathway from ARs to flood loss involves many complex at-
mospheric, hydrologic, and economic processes. Therefore,
we expand this probability statement by defining intermedi-
ary pinch points that decompose the calculations into a series
of component models.

Pinch points are the “links” in the model chain that mark
the end of one physical process and the start of another,
depicted by the arrows in Fig. 1. The pinch points in the
PARRA framework are: AR, atmospheric river (some mea-
sure of intensity for a specific AR event); PRCP, precipitation
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Figure 1. PARRA framework flowchart. Graphical depiction of the PARRA framework, as presented mathematically in Eq. (2). White boxes
represent component models. Arrows represent pinch points: an arrow pointing toward a box indicates a required component model input,
and an arrow coming out of a box indicates a component model output. The background colors broadly represent existing research domains.

(accumulated rainfall at the location or watershed of inter-
est); HC, antecedent hydrologic conditions (some measure
of the pre-existing water balance within the watershed); Q,
streamflow (the inflow hydrograph for the study area of in-
terest); INUN, inundation (the height of water at buildings
or locations of interest within the study area); DM, damage
measure (damage ratios at buildings or locations of interest
within the study area); and DV, decision variable (some met-
ric of impact or consequence for the study area). Each of
these pinch points is explained in greater detail in Sect. 2.1.

Component models are representations of discrete physi-
cal processes in the series of events connecting ARs to flood
losses, depicted by white boxes in Fig. 1. The six component
models are: AR occurrence/magnitude, precipitation, hydro-
logic routing, inundation, depth–damage curves, and loss es-
timation.

We combine the pinch points and component models to
form Eq. (2), which represents the PARRA framework in its
entirety.

λ(DV> x)=

∫ ∫ ∫ ∫ ∫ ∫
P(DV> x|DM)

· f (DM|INUN)

· f (INUN|Q)

· f (Q|PRCP,HC) · f (HC)

· f (PRCP|AR) · λ(AR)

dDM dINUN dQ dHC dPRCP dAR, (2)

where variables AR, PRCP, HC, Q, INUN, DM, and DV rep-
resent pinch points and the conditional probability expres-
sions represent component models. The component models
of the form f (Y |X) are conditional probability density func-
tions that describe the distribution of results from numerical
analyses. The component model P(DV> x|DM) measures
the probability of pinch point DV exceeding the loss thresh-
old x conditioned on DM. The PARRA framework is exe-
cuted by starting with the outermost integration in the equa-
tion and moving inward, as each component model is con-
ditioned on the one(s) preceding it in the model chain. This
equation is also represented visually in Fig. 1.

In practice, Eq. (2) and other similar performance-based
frameworks often cannot be reduced to a closed form equa-
tion. Therefore, they are typically solved through Monte
Carlo simulation. Each one of the component models is im-
plemented as a numerical analysis that produces a best-fit
projection for the next pinch point variable in the model se-
quence plus some characterization of the uncertainty in that
projection. Rather than explicitly parameterizing the uncer-
tainty at every step, we define empirical relationships based
on the overall distribution of the historic record, then gener-
ate Monte Carlo samples to produce multiple stochastic re-
alizations of each pinch point variable. These stochastic re-
alizations of potential system states are propagated through
the model chain to build an empirical distribution of expected
loss. A more in-depth discussion of framework implementa-
tion and Monte Carlo simulation can be found in Sect. 5.1.
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2.1 Pinch point variables

The pinch points presented in Sect. 2 are conceptual descrip-
tions of the intermediate system states between AR occur-
rence and flood loss where only a limited amount of infor-
mation must be transferred to the next step. Pinch point vari-
ables are low-dimensional numerical vectors representing the
information recorded at each pinch point (Garrick, 1984).
The following paragraphs expand upon the conceptual pinch
points and introduce the specific dimensions and measure-
ment units that are used in this paper for each pinch point
variable.

The pinch point variable representing an atmospheric
river event (AR) is characterized as a vector with two ele-
ments: the maximum recorded integrated water vapor trans-
port (IVT; kg m−1 s−1) and the duration (h) of sustained
IVT exceeding 250 kg m−1 s−1. These were chosen as met-
rics of interest because of their connection to impacts. Based
on maximum IVT and duration, the bivariate AR intensity
scale proposed by Ralph et al. (2019) ranks ARs from 1 to
5 to qualitatively summarize their expected severity (from
weak to exceptional) and potential consequences (from ben-
eficial to hazardous). Category 1 ARs are classified as pri-
marily beneficial storms, replenishing the water supply with-
out causing adverse effects. Category 5 ARs are classified as
primarily hazardous with a high likelihood of flooding and
damage.

Precipitation (PRCP) measures the amount of water re-
leased by the AR as measured at the ground surface, gen-
erally recorded as a height or depth. Only precipitation as-
sociated with ARs is included in this analysis. Precipitation
is variable in both space and time and can potentially be
summarized in several ways. In this work we define the pre-
cipitation pinch point variable as a scalar value represent-
ing the storm total accumulated rainfall averaged across the
spatial extent of the upstream watershed. This simplification
could be modified or eliminated in future implementations
of the precipitation component model, as addressed further
in Sect. 5.3.

Hydrologic conditions (HC) refer to the saturation state
before the storm, i.e., how much water is already present
in the watershed system. Previous research has found an-
tecedent soil moisture to be an important factor in predict-
ing which precipitation events will lead to flood events (Cao
et al., 2019). Therefore, the pinch point variable representing
antecedent hydrologic conditions is a scalar value measuring
the average soil moisture in the upstream watershed.

The streamflow hydrograph (Q) is the timeseries of flow
measurements vs. time recorded at the study area inlet for the
duration of the AR event. Instead of storing this entire vec-
tor of flow vs. time values, we parameterize the hydrograph
with three variables: Qp, peak streamflow (m3 s−1); tp, time
to peak streamflow (h); and m, a unitless shape parameter.
This parameterization process is discussed in more detail in
Sect. 3.4.

Inundation (INUN) is the surface water depth at locations
of interest within the study area. These values should be zero
or positive-valued only, as they represent a height of water
above the ground surface. The vector of heights at N loca-
tions of interest is stored for the next component model.

The damage measure (DM) is defined in this work as a
damage ratio, or the expected cost to repair a building di-
vided by the total value of that building. The damage ratio is
assumed to be purely a function of water depth with respect
to the first-floor elevation. The result of the depth–damage
calculation is a length N vector of the same size as INUN,
where 0 signifies no damage and 1 signifies a repair cost
equal to the value of the building.

Finally, the decision variable (DV) is some actionable
measure of AR impacts. In this work we define DV as
household-level monetary losses; however, DV could alter-
natively represent any other metric that is calculated as a
function of the damage measure (DM), such as the number of
displaced persons or the time to full recovery. The expected
loss for each structure is the value of exposed assets, namely
building and contents valuations, multiplied by the damage
ratio. The result is a length N vector that represents the ex-
pected loss for each location of interest.

2.2 Component models

The pinch points in the PARRA framework are linked by
component models, or representations of discrete physical
processes. Each component model generates an expected
distribution of values for the next pinch point variable in
the sequence conditioned on the value(s) preceding it. It
is important to note that, excepting the hydrologic routing
model f (Q|PRCP,HC), all models are conditioned on only
one variable. The hydrologic routing model differs from the
others because, like the event characteristics (AR), the an-
tecedent hydrologic conditions (HC) are framework inputs
provided by the user to represent an initial system state. All
other pinch point variables represent calculated variables.
Conditioning on a minimal number of variables is critical to
achieving the objective of modularity because it reduces the
data demands at each step of the modeling process.

Throughout this paper we distinguish between component
models, which have been presented thus far in a theoretical
sense, and component model implementations. The compo-
nent model implementations are the choices made by users
of the PARRA framework about how a particular physical
process will be represented, including what type of model
to use (i.e., statistical vs. dynamical), the temporal and spa-
tial resolution of analysis, etc. The state of atmospheric and
hydrologic modeling is ever changing, and the “best” imple-
mentation choice depends on the modeler, the study area, and
the intended end use (Baker et al., 2021). We have intention-
ally presented the PARRA framework in this section without
tying the component models to specific implementations.
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The PARRA framework has scientific value as an inter-
nally consistent and logically sound structure to connect at-
mospheric phenomena to community-level impacts. It en-
ables the communication of ideas and results across disparate
research fields, isolates the uncertainty associated with dif-
ferent processes within the model chain, and introduces new
avenues for interdisciplinary collaboration. By contrast, im-
plementing the PARRA framework for any given location
imposes constraints, but also opens the door for practical in-
sights. Site-specific implementations of the PARRA frame-
work and component models are what quantify the proba-
bilistic range of potential risk outcomes and generate action-
able insights for stakeholders within case study communities.

3 Case study: Sonoma County

We describe a proof-of-concept application of the PARRA
framework for the lower Russian River in Sonoma County,
CA, USA. Flood losses in Sonoma County have totaled over
five billion dollars in the last 40 years, with over 99 % of
that due to ARs (Corringham et al., 2019). Sonoma County
also has the highest proportion of state disaster assistance
payouts in California (34 %), more than six times the second
highest county (Sonoma County, 2017). Because of its loca-
tion and its extensive history of AR-induced flooding (Ralph
et al., 2006), Sonoma County is an excellent place to per-
form a case study demonstration of the PARRA framework.
The case study is used to discuss implementation choices for
each one of the component models introduced in the previ-
ous section and to illustrate the potential value and insights
that can be provided by the PARRA framework.

The vast majority of AR-induced flooding in Sonoma
County is the result of fluvial flooding from the lower Rus-
sian River, which has overtopped its banks 36 times in
the last 80 years (Rogers, 2019). The Russian River flows
110 miles (177 km) through Mendocino and Sonoma coun-
ties, draining a watershed that covers 1485 square miles
(3846 km2). The main tributaries within Sonoma County that
flow into the Russian River are Dry Creek, which joins just
south of Healdsburg; Mark West Creek, which joins around
Forestville; and Austin Creek, which joins between Monte
Rio and the Pacific Ocean. The Laguna de Santa Rosa is a
protected wetlands complex that serves as an important over-
flow area for flood control. A map of the case study area and
surrounding landmarks is included as Fig. 2.

Within Sonoma County we use the PARRA framework
to examine the drivers and impacts of historical AR events.
Each of the six subsections below corresponds to one of the
pinch points defined in Sect. 2 and is divided into two parts.
The first part of each subsection describes the user choices
made to represent the study area within each component
model. Although we include many of the specific details re-
lated to fit and validation of these model implementations,
the focus is on the overall workflow and how to function-

Figure 2. Map of Sonoma County. The shaded box indicates the
study area, and the labels highlight notable hydrologic elements and
riverside communities. A map of California with Sonoma County
shaded in dark gray is included for geographic context.

ally apply the PARRA framework. The second part of each
subsection compares simulated Monte Carlo realizations of
pinch point variables with observed data. These comparisons
can be seen as a forensic reconstruction rather than an at-
tempt to replicate the observed values. We focus on the new
knowledge gained from the model implementations about
how the observed values fall within the range of “what might
have been”.

We present two types of case studies to showcase the
breadth and depth of insights that are possible in a model-
by-model analysis. For breadth, we compare and contrast ob-
served vs. simulated precipitation values for four different
AR events. We examine storms with varying AR intensity
categories to determine which storms displayed “average”
behavior for their category and which exceeded predicted im-
pacts. For depth, we focus the discussion for all other pinch
points on a single Category 3 AR from February 2019, re-
ferred to as the February 2019 event. This event’s recency,
combined with its severe impact, means that datasets unique
to this event are available to compare many of the individ-
ual component model implementations against ground-truth
observations, allowing for a more focused analysis. Compar-
isons and results for additional storms can be found in the
supplemental code release referenced at the end of the paper.

3.1 Atmospheric river (AR)

3.1.1 Component model implementation

The first step of the case study was to create a catalog of
historic ARs affecting the study area. We started with IVT
records from MERRA-2 (Gelaro et al., 2017), which records
IVT at 6 h intervals on a grid of 50 km× 50 km cells. We
then used the detection algorithm from Rutz et al. (2014) to
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Table 1. Statistics of the Sonoma County historic catalog by AR intensity category.

Category Events Mean values

Maximum IVT Duration Precipitation Peak flow Time to
(kg m−1 s−1) (h) (mm) (m3 s−1) peak flow (h)

1 238 464 16 19 85 19
2 67 597 35 51 199 22
3 49 665 56 81 214 21
4 20 849 75 156 513 23
5 8 1139 75 179 471 24

Figure 3. Summary of Sonoma County historic catalog. Each point
represents one AR event recorded in Sonoma County between 1988
and 2019 (n= 382). The Ralph et al. (2019) intensity categories are
represented by the background colors.

identify landfalling ARs in each grid cell and recorded the
maximum IVT and duration for each. Because AR activity
occurs almost exclusively during the first half of the water
year (1 October–1 April), we kept only ARs that occurred
within those annual ranges.

A rectangular study area was defined as shown in Fig. 2
to encompass the lower Russian River, starting at USGS
gage 11463500 near Geyserville and ending at the out-
let to the Pacific Ocean. We followed the process out-
lined by Albano et al. (2020) to take ARs identified on the
50 km× 50 km MERRA-2 grid and downscale them to the
area of interest to create a catalog of historic AR events.
The generated catalog contains 382 AR events recorded in
the Russian River watershed over a 32-year period spanning
water years 1988–2019. The maximum IVT and duration of
these events are displayed in Fig. 3. The historic catalog is
assumed to accurately represent the climatology of the re-
gion, although future work could expand upon this catalog to
include the characteristics of storms not yet seen or recorded
in Sonoma County.

We also collected additional information about each AR,
including precipitation (Chamberlain, 2021), streamflow
(De Cicco et al., 2021), and more. Precipitation values are

the storm total cumulative precipitation areally averaged over
the inlet watershed, and peak flow and time to peak flow were
both calculated based on data from USGS gage 11463500
(study area inlet). Table 1 summarizes the statistics of some
of these additional parameters as a function of the Ralph et al.
(2019) AR intensity categories.

3.1.2 Case study events

Because we are focusing on case study events, we used real
observed maximum IVT and duration values from the his-
toric catalog as inputs to the precipitation model.

3.2 Precipitation (PRCP)

3.2.1 Component model implementation

We used the historic catalog generated in the previous sub-
section to estimate a statistical relationship between the pre-
dictors (maximum IVT and duration) and the outcome (storm
total precipitation averaged over the watershed of interest).
The goal in quantifying this relationship was to be able to
generate simulated precipitation realizations that are consis-
tent with the historic climatology of the region.

We implemented a weighted least squares (WLS) linear
regression to predict precipitation as a function of maximum
IVT, duration, and an interaction term between the two. We
chose WLS over ordinary least squares methods because of
the heteroskedasticity in the residuals, which can be identi-
fied by visual inspection of Fig. 4a and b. Even after apply-
ing weights to correct for the heteroskedasticity there were
still some extreme precipitation events in the historic catalog
that were not well represented by a Gaussian error model.
We therefore characterized the standard errors with a mix-
ture model: 90 % of residuals were calculated using the WLS
standard errors, and 10 % were calculated with a distribution
fitted to the largest 10 % of AR events (Bartolucci and Scac-
cia, 2005; Soffritti and Galimberti, 2011). Regression coeffi-
cients are reported in Eq. (3), and Fig. 4a and b show the re-
gression line plotted over the historic catalog data at selected
values of maximum IVT and duration.
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Figure 4. Precipitation component model implementation. Scatter-
plots of (a) maximum IVT vs. precipitation and (b) duration vs. pre-
cipitation, with the fitted WLS regression line shown for values
specified in the respective legends. (c) Q–Q plot of observed vs.
simulated precipitation including uncertainty for all AR events in
the historic catalog.

E [PRCPi]=−3.52+ 0.0212 · IVTi − 0.504 ·DURi

+

(
2.74× 10−3

)
· IVTi ·DURi, (3)

where E[PRCPi] is the expected total precipitation for
event i, and IVTi (maximum IVT) and DURi (duration) are
the two elements of the pinch point variable ARi .

Because our goal was to match the overall distribution of
historical precipitation, we calculated goodness of fit met-
rics that focus on success in replicating distribution shape
rather than individual events. Figure 4c shows a quantile–
quantile (Q–Q) plot comparing a prediction from the fitted
regression including errors against the observed distribution
of precipitation from the historic catalog. Visually, the sim-
ulated results fall very close to the parity line on this plot,

which indicates good distributional fit. A more quantitative
metric of distributional fit is the two-sample Kolmogorov–
Smirnov (K–S) test, which is a nonparametric test designed
to measure the goodness of fit between two empirical dis-
tributions. We calculated the test statistic dPRCP such that
a value of dPRCP > 1 would reject with 95 % confidence
the null hypothesis that the two datasets are drawn from
the same underlying probability distribution. Comparing the
observed vs. simulated distribution yielded a test statistic
of E[dPRCP] = 0.478< 1, which is well under the rejection
threshold for the null hypothesis.

3.2.2 Case study events

We present a comparison of observed vs. simulated precip-
itation values for four AR events. Figure 5a and b are the
two most recent Category 3 (strong) ARs in the historic cat-
alog, and Fig. 5c and d are the two most recent Category 5
(exceptional) ARs. The dashed lines mark the recorded pre-
cipitation totals for each event and the tick marks along the
top of the panel show the recorded totals from all ARs in the
historic catalog in the same intensity category. For each event
we generated 1000 Monte Carlo realizations of precipitation
given the observed maximum IVT and duration and plotted
the resulting distribution as a histogram. The histograms rep-
resent realizations of potential precipitation if another AR oc-
curred in Sonoma County with the same characteristics. We
do not expect the observed dashed lines to fall in the center
of the simulated distributions; rather, the observed values can
be thought of as random samples from the simulated distri-
butions, and comparing the two offers new insights into the
character of specific ARs.

For example, Fig. 5a and c show two impactful storms for
Sonoma County, from February 2019 and January 2017 re-
spectively. The February 2019 event caused approximately
USD 155 million in total damage (Chavez, 2019) and the
January 2017 event caused approximately USD 15 million
(County of Sonoma, 2017a). Although both events had pre-
cipitation totals in excess of 200 mm, the precipitation rel-
ative to the event-specific maximum IVT and duration was
far higher in February 2019 than in January 2017. The Jan-
uary 2017 event was a Category 5 AR, meaning that it had
the greatest potential for hazardous impacts. Conditioned on
the intense atmospheric conditions, though, the observed pre-
cipitation was near the mean of the simulated distribution in
Fig. 5c.

Figure 5a shows the predicted precipitation distribution for
a Category 3 AR (mixture of beneficial and hazardous im-
pacts) with the same maximum IVT and duration as was ob-
served in February 2019. By all accounts, though, the Febru-
ary 2019 event was a very hazardous storm with severe im-
pacts for communities in the study area. The observed pre-
cipitation is at the upper tail of what we would expect for
a Category 3 event in both the observed distribution (shown
in the tick marks at the top of the plot) and the simulated
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Figure 5. Precipitation realizations for case study events. Distribution of simulated precipitation realizations including uncertainty for
AR events occurring in (a) February 2019, (b) January 2019, (c) January 2017, and (d) October 2016. Events are labeled by their Ralph
et al. (2019) intensity category (panels (a) and (b) vs. panels (c) and (d)) and impact level (panels (a) and (c) vs. panels (b) and (d)). The
observed precipitation for each event is marked by a vertical dashed line, and the tick marks along the top of each panel show how the
observed values compare with precipitation totals from other AR events in the same intensity category.

distribution (shown in the histogram). Therefore, we infer
that the precipitation is likely one of the drivers that led
this particular AR to become a damaging event. In summary,
the PARRA simulation results provide evidence that the Jan-
uary 2017 event was a moderate precipitation conditioned on
extreme AR hazard whereas the February 2019 event was
an extreme precipitation conditioned on a more moderate
AR hazard. These are two distinct pathways that ARs can
take to generate significant consequences.

We perform a similar comparison between Fig. 5b (Jan-
uary 2019) and Fig. 5d (October 2016). Neither of these was
an “impactful” storm: there were no state or federal disaster
declarations, limited news coverage, and no reported loss to-
tals. Both events had observed precipitation totals of about
90 mm, less than half the amounts seen in Fig. 5a and c. The
observed precipitation total was in the middle of the simu-
lated distribution for the Category 3 event in January 2017
but was on the low end for the Category 5 event in Octo-

ber 2016. The simulated results indicate that the AR event
in October 2016 could have produced far more precipitation
in the study area, and potentially far greater consequences,
than what was actually realized. An interesting line of future
research would be to examine these “near misses” to under-
stand what factors drive certain events to produce extreme
impacts and not others.

3.3 Hydrologic conditions (HC)

3.3.1 Component model implementation

To characterize antecedent hydrologic conditions we used
the Climate Prediction Center (CPC) Soil Moisture dataset
(van den Dool et al., 2003). This simulated dataset reports the
monthly average soil moisture as an equivalent height of wa-
ter (mm) found in the top meter of the subsurface. Although
this does not necessarily represent the true soil moisture in
Sonoma County, the dataset has global coverage at a 0.5◦
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latitude× 0.5◦ longitude resolution and reports monthly val-
ues back to 1948, which covers the full spatial and temporal
extent of the historic catalog.

Soil moisture values were matched with AR events in the
historic catalog, and based on these records the antecedent
hydrologic conditions model was characterized as a lognor-
mal distribution with µln = 4.18 and σln = 0.432. When sim-
ulating future events we sample soil moisture from this distri-
bution under the assumption that soil moisture records from
past ARs implicitly capture the effects of seasonality on both
AR occurrence and soil moisture. It is worth restating that
the historic catalog generated for Sonoma County only con-
siders ARs during the 6-month wet season, so by construc-
tion only soil moisture values from October to April were
included in this fitted distribution. The distribution of soil
moisture values would shift downward if values from the dry
season were included.

3.3.2 February 2019 case study event

We used the “observed” soil moisture for the February 2019
event (140 mm) as input for the streamflow component
model, the next step of the model chain. This was a 96th per-
centile soil moisture among all ARs in the historic catalog,
indicating that the subsurface was already quite saturated in
the study area when the AR made landfall.

3.4 Flow (Q)

3.4.1 Component model implementation

As mentioned in Sect. 2.1, the streamflow hydrograph (Q) is
characterized in terms of three parameters: the peak stream-
flow (Qp), the time to peak streamflow (tp), and the hydro-
graph shape parameter (m). Equation (4) from the National
Engineering Handbook (NRCS, 2004, Chap. 16) converts
these three parameters into the full streamflow hydrograph
for further analysis.

Q
Qp
=

(
t

tp

)m
exp

[
m

(
1−

t

tp

)]
, (4)

where Q is the instantaneous streamflow timeseries recorded
at USGS gage 11463500 (the study area inlet) at a vector
of time values t , and Qp, tp, and m are constant parameters
defined for each AR event.

We step through the fit and calibration of each of these pa-
rameters starting with Qp. Rather than using a complex hy-
drologic routing model, we implemented a simplified method
to estimate Qp by calculating runoff as an intermediary vari-
able. Runoff, the portion of precipitation that flows over the
ground surface rather than contributing to evapotranspiration
or infiltration, was calculated for each event in the historic
catalog using the empirical curve number method (NRCS,
2004, Chap. 10). An ordinary least squares linear regression
was then fitted to the historic catalog to estimate Qp as a

function of precipitation, runoff, and an interaction term be-
tween the two. We used the same mixture model introduced
in Sect. 3.2 to capture the long tails of the residual distribu-
tion, with 90 % of errors calculated based on the bulk of the
historic catalog values and 10 % calculated based on the ex-
tremes. The regression form is shown in Eq. (5), and the Q–
Q plot for this regression fit is shown in Fig. 6a. We again val-
idated regression fit by comparing the shape of the observed
vs. simulated distribution rather than comparing individual
records. The K–S statistic for the ordinary least squares re-
gression fit was calculated to be E[dQ] = 0.889< 1, so we
conclude that the regression produced an acceptable fit to the
data with 95 % confidence.

E
[
Qp,i

]
= 8.99+ 0.363 ·PRCPi + 11.6 ·Ri
− 0.0162 ·PRCPi ·Ri, (5)

where E[Qp,i] is the expected peak streamflow at USGS
gage 11463500 during event i, Ri is the watershed average
runoff, and PRCPi is the watershed average total precipita-
tion.

The time to peak streamflow tp was calculated based on the
distribution of observed values in the historic catalog, which
was found to be well represented by a lognormal distribution
with µln = 2.94 and σln = 0.443. This distribution is shown
in Fig. 6b.

For the hydrograph shape parameter we chose m= 4.0,
which was recommended by the National Engineering Hand-
book (NRCS, 2004, Chap. 16) and was found to be a rea-
sonable approximation for this section of the Russian River
through comparison with observed streamflow records.

3.4.2 February 2019 case study event

The hydrograph at USGS gage 11463500 (study area inlet)
recorded a peak streamflow of Qp = 1130 m3 s−1 and a time
to peak streamflow of tp = 41 h. Given the February 2019
observed precipitation and antecedent soil moisture, we gen-
erated 1000 Monte Carlo realizations from the streamflow
model and compared the predicted streamflow hydrograph
from the calibrated component model implementation with
the observed hydrograph from the February 2019 event. Us-
ing observed data as input rather than the simulated distribu-
tions from Sect. 3.2 and 3.3 allows us to isolate the uncer-
tainty associated with this specific step of the model chain in
isolation.

The complex shape of the observed streamflow timeseries
in Fig. 6b is a function of the unique watershed response as
well as the spatial and temporal heterogeneity of the input
precipitation. By contrast, the simulated distribution is based
on the unit hydrograph method, which assumes that the pre-
cipitation distribution is uniform and that all runoff enters the
channel at a single location. This limits our ability to capture
certain kinds of behavior, such as the early peak seen in the
observed streamflow timeseries in Fig. 6c. The early peak
could be due to catchment processes that cause a lagged trib-
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Figure 6. Streamflow component model. All values are calculated with respect to USGS gage 11463500 (study area inlet). (a) Q–Q plot
of observed vs. simulated peak streamflow (Qp) values for all events in the historic catalog. (b) Observed values from the historic catalog
values vs. the fitted lognormal distribution for time to peak streamflow (tp). The dashed line indicates the observed time to peak value for the
February 2019 event. (c) Distribution of simulated streamflow hydrograph realizations for the February 2019 event. The left axis represents
observed hourly precipitation and the right axis represents streamflow. The observed hydrograph timeseries is shown as a dashed black
line. The solid line represents the median of the simulated realizations, and the dark and light gray shaded areas represent the 50th and
90th percentile prediction intervals respectively. The horizontal dark red line indicates the National Weather Service flood flow for USGS
gage 11463500 (39.7 ft or 665 m3 s−1).

utary response, input from direct surface runoff, spatial vari-
ation in precipitation intensity and duration, or any number
of other mechanisms. We include the observed hyetograph at
the top of the plot in Fig. 6b to show just one aspect of the
natural variability that affects the observed timeseries.

Despite the simplification imposed by the unit hydrograph
method, many metrics of interest are reasonably well char-
acterized by the simulated timeseries. The observed peak
streamflow (1130 m3 s−1) is at the 43rd percentile and the ob-
served floodwave duration (81 h) is at the 67th percentile of
the respective simulated distributions. Recall from Sect. 3.2
that the observed precipitation was notably high conditioned
on the observed atmospheric conditions. We now note that
although the observed streamflow may have been high for a
Category 3 event, it was in the middle of the simulated distri-
bution conditioned on the observed precipitation. Therefore,

we conclude that the hydrologic routing was likely not one
of the physical processes contributing to the “extremeness”
of the February 2019 event.

3.5 Inundation (INUN)

3.5.1 Component model implementation

The inundation model accepts a hydrograph at the inlet to
the study domain, routes water through the river channel, and
distributes it through the floodplain based on site-specific in-
formation defined by the user. We used the hydrodynamic
model LISFLOOD-FP (Bates and De Roo, 2000), referred
to as LISFLOOD, to perform these calculations as it is
lightweight and computationally efficient yet capable of cap-
turing hydrologic processes over complex terrain. The model
grid was defined with 925 000 cells at 40 m× 40 m resolu-
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tion. LISFLOOD has several parameters, including flood-
plain roughness, channel roughness, channel shape, and hy-
drologic boundary conditions, that must be specified by the
user to best represent the study area. We chose 20 parameters
of interest within the LISFLOOD environment, generated
500 Latin hypercube sample sets of these 20 parameters, and
calculated inundation maps for each sample set. We then con-
ducted sensitivity testing to determine best-fit parameters for
the subset of “sensitive” parameters that were determined to
significantly impact inundation results. Best-fit values were
chosen such that when the 100-year peak flow value from
USGS StreamStats (USGS, 2019) was given as input, the
LISFLOOD inundation extent matched the 100-year flood-
plain from the FEMA National Flood Hazard Layer (NFHL)
(FEMA, 2022) along the Russian River. We adopted the ac-
curacy metrics from Wing et al. (2017) used for validation of
their nationwide flood hazard map and referred to their values
as benchmarks of acceptable performance. Overall, the fitted
LISFLOOD model was able to reach a critical success index
of 69 %, which means that when either the FEMA NFHL or
the LISFLOOD model predicted inundation, the prediction
of the LISFLOOD model was correct over two-thirds of the
time.

Despite its efficiency, the runtime of LISFLOOD was
found to be prohibitive for Monte Carlo analysis, which in-
volves repeated iterations of the same calculations. There-
fore, we calibrated and used a low dimensional surrogate
model to quickly and accurately reproduce the results of the
hydrodynamic simulation. Surrogate models are popular for
testing multiple scenarios, exploring uncertainty, and mak-
ing near-real-time predictions without the time and computa-
tional expense of high-fidelity model runs (Bass and Bedient,
2018; Razavi et al., 2012). One thousand LISFLOOD runs
were conducted over a range of Qp and tp values to populate
the parameter space. We used the inverse distance weight-
ing spatial interpolation method to generate new inundation
maps based on this existing database of LISFLOOD runs.
Based on a specifiedQp and tp, the spatial interpolator identi-
fies the “closest” points in parameter space and weights them
based on distance to produce a best-fit estimate of the LIS-
FLOOD inundation map. The hyperparameters of the surro-
gate model, which control the size of the search neighbor-
hood, the distance weighting power function, and the rela-
tive importance of Qp vs. tp, were fitted by 10-fold cross-
validation. The error metric was the root mean squared er-
ror (RMSE) of all LISFLOOD grid cells. Replacing the LIS-
FLOOD hydrodynamic simulation with this new surrogate
model significantly reduced the computational demand of the
PARRA framework while maintaining high levels of accu-
racy. The final fitted surrogate model reduced the runtime of
a single inundation calculation from hours to seconds and
had a median RMSE of 3.5 cm, which is a tolerable tradeoff
when compared with the 3 cm median relative vertical accu-
racy reported by the digital elevation model. Additional in-
formation, including data, documentation, and reproducible

code to replicate the fit and calibration of both LISFLOOD
and the surrogate model, can be found in the supplemental
code release, which is referenced in the “Data and code avail-
ability” section at the end of this paper.

The gridded inundation maps from the surrogate model
were overlaid with building information to estimate in-
undation heights at locations of interest, namely residen-
tial buildings in Sonoma County. We used building foot-
prints from 2019 SonomaVegMap LIDAR data (County of
Sonoma, 2017c) and building parcel information from the
2021 Sonoma County Clerk Recorder Assessor (County of
Sonoma, 2020) to identify residential locations within the
study area and estimated a count of about 41 000 homes.

3.5.2 February 2019 case study event

Given the February 2019 observed hydrograph at USGS
gage 11463500 (study area inlet), we used LISFLOOD to
generate a simulated inundation map for the February 2019
event. Because the N -dimensional inundation pinch point
variable INUN contains significantly more data than we have
generated thus far, we explore three strategies to compare the
observed and simulated inundation maps. The first focuses
on the height of the river within the channel. There were four
USGS gages downstream of the study area inlet that recorded
stage heights at 15 min intervals during the February 2019
event, as shown in Fig. 7a. Each of the timeseries plots in
Fig. 7b compares the observed vs. simulated stage height in
the channel at one of these four locations.

Outside of the channel there exists little recorded informa-
tion about floodplain inundation resulting from the Febru-
ary 2019 event. However, the Geographical Information Sys-
tems (GIS) branch of the Permit and Resource Manage-
ment Department in Sonoma County has made available
some of the results from their internal inundation model-
ing of the lower Russian River (County of Sonoma, 2017b).
These maps, rather than representing specific scenario flood
events, are indexed to stage heights at the Guerneville bridge
(USGS gage 11467002, Fig. 7a). Together, they constitute a
suite of design events that model stepwise increases in in-
undation severity across the Russian River watershed. We
chose the inundation map from the design event that most
closely matched the peak stage height observed at USGS
gage 11467002 during the February 2019 event, referred to
as “the Sonoma GIS map”. Although we cannot expect a
perfect match, as there are specifics of hydrograph shape
and site conditions from the February 2019 event that are
not captured in an idealized design event, we assume that
the Sonoma GIS map serves as a reasonable representation
of the true inundation observed during this AR. Our LIS-
FLOOD model was able to reproduce the Sonoma GIS map
with a critical success index of 68 %, which indicates that the
observed inundation is within the range of what we would
reasonably predict given the observed hydrograph. Figure 7c
shows the spatial extent of flooding from both sources.
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Figure 7. Inundation component model. (a) Locations of USGS gages with available stage data for the February 2019 event. (b) Comparison
of observed vs. simulated streamflow at selected USGS gage locations for the February 2019 event. The y axis represents the water surface
height above the datum of the gage, as recorded in the USGS National Water Information System. The gray shaded areas indicate the days
with sustained AR conditions. (c) Comparison of “observed” (Sonoma GIS) vs. simulated inundation extent for the February 2019 event.
The dotted lines denote the extent of the Sonoma GIS map, which is slightly smaller than the PARRA study area and does not include the
Laguna de Santa Rosa.

As a third and final comparison strategy we calculated
the number of buildings inundated in both the Sonoma GIS
map and the LISFLOOD model as a proxy for flood impacts.
News reports following the February 2019 event estimated
that about 1900 homes were damaged (Chavez, 2019). When
overlaid with residual building locations, the Sonoma GIS
map estimated 1678 buildings with nonzero flood height, and
the LISFLOOD model estimated 1380.

3.6 Damage measure (DM)

3.6.1 Component model implementation

The damage measure (DM) is the ratio of expected build-
ing repair costs to building value and is computed from
inundation using a two-step process. First, the first-floor
water level at each building is calculated by taking the
inundation height relative to the ground surface (INUN

from the previous component model) and subtracting the
height of the foundation. Foundation height information was
collected at an aggregate level from Hazus-MH (FEMA,
2006), and then assigned to individual buildings based
on the distribution of foundation types and heights within
that building’s census tract. The foundation options were:
basement (6 ft= 1.83 m below grade), slab (1 ft= 0.30 m
above grade), crawl space (3 ft= 0.91 m, 4 ft= 1.22 m above
grade), piers (5 ft= 1.52 m, 6 ft= 1.83 m above grade), or
piles (7 ft= 2.13 m, 8 ft= 2.44 m above grade).

Second, the first-floor water level was converted to a dam-
age ratio using a depth–damage curve. We chose two sets of
relationships: Hazus-MH depth–damage curves, which are
widely used in engineering applications, and the beta dis-
tributions from Wing et al. (2020), which capture the un-
certain and bimodal nature of residential flood damage on
a household scale. A comparison of the damage ratios pre-
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Figure 8. Damage component model. (a) Depth–damage rela-
tionships from Wing et al. (2020) and from Hazus-MH. The
light gray areas represent the shapes of the beta distributions for
the five defined curves (1 ft= 0.30 m, 2 ft= 0.61 m, 3 ft= 0.91 m,
4 ft= 1.22 m, 5 ft= 1.52 m, 7 ft= 2.13 m), and the gray line follows
the distribution means. The black line is the Hazus-MH depth–
damage function for single-story residential buildings without a
basement. (b) Damage ratio distributions for inundated buildings
based on 1000 Monte Carlo realization, using Hazus-MH (top
panel) and Wing et al. (2020) (bottom panel) depth–damage rela-
tionships and grouped by safety category.

dicted by these relationships at various water depths is pro-
vided in Fig. 8a.

3.6.2 February 2019 case study event

Because there was little available in the way of site-specific
damage information, we used building safety as a proxy
variable to facilitate investigation of observed vs. predicted
damage. Sonoma County performed over 2000 building in-
spections as part of the Rapid Evaluation Safety Assess-
ment (RESA) that immediately followed the February 2019
event (County of Sonoma, 2019). Buildings were assigned
colored tags based on these rapid inspections: green tags in-
dicated that the structure was safe to enter, yellow indicated
some risk, and red indicated an imminent safety threat. The
RESA tags are categorical measures of safety and are thus an
imperfect analog to the continuous damage ratios estimated
by the damage model. A building may have been tagged as
unsafe for reasons beyond just inundation (i.e., roof dam-

Table 2. RESA tags and inundated buildings in the study area fol-
lowing the February 2019 event.

Untagged Tagged/ Tagged/
safe unsafe

Number of
10 513 820 433

buildings

Inundated
469 788 421

buildings

Percentage
4.46 % 96.10 % 97.23 %

inundated

age or downed trees), and conversely a building that expe-
rienced nonzero inundation may still have been deemed safe
to enter. Despite these limitations, comparing tagged build-
ings with our prediction of damaged buildings provides some
intuition that damage is being predicted where actual damage
was likely to have occurred.

We matched 1253 of the RESA tags to residential build-
ings along the Russian River and aggregated them into
three safety categories: untagged, tagged/safe (green), and
tagged/unsafe (yellow+red). Using the Sonoma GIS map
from the previous subsection we estimated how many build-
ings within the study area saw nonzero inundation at the
ground surface (not accounting for foundation height). We
see in Table 2 that 96 %–97 % of all tagged building locations
were predicted to have some level of inundation, compared
with less than 5 % for untagged building locations. This is
consistent with our expectations, because by definition any
building with a RESA tag was one that was identified as
a top priority for safety inspection and was therefore much
more likely to have experienced inundation than an untagged
building.

Figure 8b shows the expected distributions of damage ra-
tios by safety category among the inundated buildings in the
study area, as a function of the Hazus-MH (top panel) and
Wing et al. (2020) (bottom panel) damage relationships. Al-
though the shapes of the damage ratio distributions are no-
tably different, we see overall increasing levels of damage
with increasing tag severity. Of the small proportion of un-
tagged buildings that saw nonzero inundation, most were
predicted to receive little to no damage, and the tagged/un-
safe category saw more severe damage outcomes than the
tagged/safe category. These plots show that we are, in a broad
sense, capturing more intense damage where we expect to do
so.

3.7 Decision variable (DV)

3.7.1 Component model implementation

The final component model in the PARRA framework con-
verts the building-level damage ratios to a decision vari-
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able. The decision variable (DV) is some measurement of
the impact or consequence of a hazard event. The conse-
quences of flooding are traditionally described using the
two axes of direct vs. indirect and tangible vs. intangible
(Merz et al., 2004). This creates four categories: direct tan-
gible (e.g., structural damage), indirect tangible (e.g., busi-
ness interruption costs), direct intangible (e.g., loss of life),
and indirect intangible (e.g., post-traumatic stress). The deci-
sion variable of interest for this case study is direct tangible
loss, specifically the estimated total repair cost of residential
buildings.

Losses were estimated for each building by multiplying
the damage ratio times the expected value of the building as
determined from Sonoma tax assessor roll data (County of
Sonoma, 2020). Tax assessor data have some inherent limi-
tations in California owing to Proposition 13, which in many
cases prevents assessments from directly tracking property
values, so we applied correction factors at a census tract level
such that the median from the tax assessor roll matched the
median value of owner-occupied housing units reported by
the American Community Survey (ACS). When used in con-
junction with the ACS correction factors, the high-resolution
tax assessor dataset allows us to match valuations to inun-
dated buildings at a household level and more precisely esti-
mate resulting losses.

3.7.2 February 2019 case study event

It was not possible to validate the loss model individually
as we have done for all preceding component model imple-
mentations. With neither damage ratios nor loss information
at the household level, we had no accurate input data and
no observed response data to compare against the simulated
output. Instead, we present a fully probabilistic estimate from
the entire PARRA framework in the next section.

4 Results

In this section we utilize the framework to move beyond in-
dividual component models to capture the broad spectrum of
potential AR-driven fluvial flood losses in Sonoma County,
starting with scenario events and moving to a characteriza-
tion of the full distribution of AR flood risk. We define and
report metrics of interest for community loss assessment,
then consider how the framework can be used to evaluate
potential mitigation policies.

4.1 Scenario events

We consider loss distributions for the Category 3 AR from
February 2019 and the Category 5 AR from January 2017,
both introduced in Sect. 3.2. Given the observed maximum
IVT and duration values and the “observed” soil moisture
values for our scenario events, we ran all of the component
models in sequence and generated 10 000 probabilistic loss

Figure 9. PARRA simulated loss results. Observed vs. simulated
losses for (a) the Category 3 February 2019 event, (b) the Cate-
gory 5 January 2017 event, and (c) a modified version of the Febru-
ary 2019 event with perfect information about expected precipita-
tion. In each plot the vertical dashed line marks the observed loss
estimate.

realizations to estimate the distribution of potential loss out-
comes. These are the flood losses that could have occurred
for each event if any realizations of the other pinch point vari-
ables had been different, i.e., if the precipitation total had
been lower (see Fig. 5), if the streamflow peak had lasted
longer (see Fig. 6), etc. We compare the observed vs. simu-
lated losses and examine how the losses were spatially dis-
tributed within the study area.

The histogram of simulated loss realizations for the Febru-
ary 2019 event is shown in Fig. 9a. The observed maximum
IVT was 620 kg m−1 s−1 and the observed duration was 57 h.
The vertical dashed line marks USD 91.6 million, the esti-
mate of true losses experienced by residential buildings in
Sonoma County (Chavez, 2019). The PARRA framework es-
timates this historical event to have been an 89th percentile
loss event based on the driving AR characteristics. We have
previously stated that the February 2019 event was a moder-
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ate storm in atmospheric terms that generated severe hydro-
logic and economic effects. There is significant bias at work
in the selection of this case study event, because by definition
the noteworthy events in the historic catalog are those with
the highest impacts. If we understand the true loss to be only
one stochastic realization out of the set of all possible losses
that could have occurred as a result of the February 2019 ini-
tial conditions, and we consider that the event was selected
because of the severity of its observed impacts, it is reason-
able that the observed loss estimate comes from the upper tail
of the simulated distribution. Note also that although the loss
for the February 2019 event was higher than expected for its
AR characteristics and antecedent conditions, approximately
10 % of simulations produced even more extreme losses. Our
results indicate that the observed loss of USD 91.6 million is
not necessarily the worst-case scenario.

Figure 9b shows the simulated and observed loss results
for the Category 5 AR occurring in January 2017. This event
had a maximum IVT of 1173 kg m−1 s−1 and a duration of
78 h, much larger than February 2019. This AR was one of
the first major precipitation events in the 2017 water year,
which came after multiple years of drought conditions in
northern California. The observed loss thus falls at the low
end (7th percentile) of what was expected for an AR of this
magnitude. The January 2017 event was also the first in a se-
ries of strong to exceptional ARs that lasted about 6 weeks
and had severe statewide consequences, notably a damag-
ing overflow event at the Anderson Dam in San Jose and a
spillway failure at the Oroville Dam that led to emergency
evacuation of almost 200 000 people. The 2017 AR sequence
underscores the importance of initial conditions in the mod-
eling of extreme events in northern California. Although the
PARRA framework captures initial soil moisture conditions,
it does not currently capture sequential and compounding
events. This could be included in future implementations of
the PARRA framework and is an interesting potential avenue
for future exploration.

Because of the probabilistic nature of the PARRA frame-
work, its strength lies not in the reproduction of specific past
events, but in quantifying total risk and assessing the rela-
tive differences between alternative decision pathways. The
results in Fig. 9a assume that no information is known about
the storm other than the maximum IVT, duration, and soil
moisture. However, AR forecasts now typically include an
estimate of the total expected regional precipitation. If we
had perfect information about total precipitation (i.e., we
could predict in advance exactly what the observed value
would be) we could start the PARRA framework at the pre-
cipitation pinch point PRCP and run all subsequent com-
ponent models in the sequence probabilistically. Figure 9c
is therefore an exploration of a “what-if” scenario where
losses are conditional on the observed precipitation value
from February 2019 rather than the AR characteristics. Al-
though the observed USD 91.6 million loss estimate is simi-
larly extreme in this case (91st percentile event vs. 89th) and

Figure 10. Spatial distribution of PARRA losses. Spatial distribu-
tion of mean losses due to the February 2019 event, aggregated to
the census block group level.

the tail behavior of the two distributions is about the same,
the body of the distribution in Fig. 9c shifts to larger losses,
and the probability of seeing zero-loss events nearly disap-
pears. Calculating the differences between the loss distribu-
tions conditioned on different sets of input information can
serve to quantify the value of more accurate AR forecasting
tools for the study area.

Figure 10 shows the spatial distribution of building losses
from the February 2019 event, averaged across all Monte
Carlo realizations and aggregated to the census block group
level. Losses are concentrated along the banks of the Russian
River with hotspots near Healdsburg, Guerneville, and the
mouth of the river near the Pacific Ocean. These locations
received warnings and evacuation orders before and during
the storm event. Although these particular communities are
already known to have high vulnerability to flooding, the
PARRA simulation results offer a new way to quantitatively
prioritize investments in flood mitigation, from emergency
communications to infrastructure projects to high-resolution
modeling.

4.2 Average annual loss

To represent the full spectrum of AR hazard we move from
examining case study events to analyzing the whole his-
toric catalog. The first metric of interest for summarizing
and communicating probabilistic risk is the average annual
loss (AAL), or the long-run average of expected loss per year.
The AAL is widely used in the insurance sector to price poli-
cies and is a convenient and well-known metric for summa-
rizing risk.

We generated 38 200 simulated loss realizations in our
study area: 382 events in the 32-year historic catalog times
100 realizations per event. This produced a synthetic stochas-
tic record representing 3200 (32× 100) years of poten-
tial AR losses. To calculate the AAL we rank-ordered the
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stochastic record, assigned each event a 1
3200 annual rate of

occurrence, and summed the product of event rate times ex-
pected losses as described in Eq. 6. This calculation produces
an empirical estimate of the AAL due to AR-induced flood-
ing (Grossi and Kunreuther, 2005; Baker et al., 2021).

E[DV] =
38 200∑
i=1

dvi · λ (ari) , (6)

where ari is one event in the stochastic record, dvi is a sample
realization of the decision variable representing the expected
losses due to event i, and λ(ari)= 1

3200 is the annual rate of
occurrence.

The mean AAL estimated from the stochastic record
for AR-induced flood losses to residential structures is
USD 111 million, with 90 % confidence that it lies between
USD 92 million and 132 million. We compared this with an-
other loss estimate based on claims from the National Flood
Insurance Program (FEMA, 2021). We collected flood in-
surance claims within the census tracts that overlap with the
study area for the years 1979–2018, then estimated the flood
insurance penetration rate in these census tracts by dividing
the average annual number of policies by the total number
of households as determined from the American Community
Survey. The average annual loss for the study area is then the
average annual insured loss divided by the insurance penetra-
tion rate, which is found to be USD 121 million. It is impor-
tant to acknowledge the significant uncertainty around both
of these estimates that stems from the difficulties in char-
acterizing the types of low-probability, high-consequence
events that cause damaging impacts. However, we can use
this comparison to confirm that the PARRA framework is
able to broadly capture the magnitude of AR-induced losses
along the lower Russian River.

4.3 Loss exceedance curve

The second metric is the loss exceedance curve, which mea-
sures the expected annual rate of occurrence for a range of
possible losses. The loss exceedance curve was introduced
in Sect. 2 as the final outcome of the PARRA framework.
This curve is the desired end product of a probabilistic risk
assessment, summarizing information about expected likeli-
hood and consequence across a range of potential risk events.
It also provides insight into the character of the risk, such
as whether frequent small events or a few rare events dom-
inate the AAL. To our knowledge no loss exceedance curve
has ever been created for AR-induced flood risk in Sonoma
County.

We use the synthetic stochastic record generated above as
a modeled representation of the event space. The loss ex-
ceedance curve is estimated by evaluating Eq. (7) at a range
of x values. The result is shown as the black line in Fig. 11.

λ(DV> x)=

38 200∑
i=1

I (dvi > x) · λ (ari) , (7)

Figure 11. AR flood loss exceedance curve for Sonoma County.
Loss exceedance is shown before and after the hypothetical mitiga-
tion action of elevating 200 households to reduce the AAL by half.

where I (dvi > x) is the binary indicator function measuring
whether the loss for event i exceeds the specified threshold x.
Equation (7) is the empirical approximation of Eq. (1), using
sample realizations of dvi in place of an analytical P(DV>

x|AR) (Baker et al., 2021).
With the loss exceedance curve we can examine risk

thresholds such as the “100-year event” (0.01 annual rate
of occurrence). This event, marked by the horizontal dashed
line in Fig. 11, has a loss of USD 225 million. Figure 11
also indicates that the loss associated with the February 2019
event, USD 91.6 million, has an annual occurrence rate of
λ= 0.095 (approximately a 1-in-11 year event).

4.4 Mitigation analysis

A benefit of taking a performance-based approach is the abil-
ity to set a specified performance objective, such as loss re-
duction, and determine what changes can be made to the haz-
ard, exposure, and vulnerability to reach that target. Working
backward to design a system that meets a set performance
target is a powerful and unique capability of performance-
based frameworks. Here, we demonstrate the performance-
based aspect of the PARRA framework through a hypothet-
ical mitigation analysis. We define a target loss reduction
threshold of reducing the AAL by half, and we assess the
effectiveness of home elevation as a pathway to meet that
threshold. We then quantify the effects of the system changes
on the shape of the loss exceedance curve to highlight the
framework’s capability to prospectively assess events with-
out historical precedent.

Sonoma County is well aware of its flood risk and
since 1995 has spent almost USD 60 million in 2019-
adjusted dollars through the FEMA Hazard Mitigation As-
sistance Program to acquire or elevate 542 private properties
(FEMA, 2021). We explored the benefit of a hypothetical ex-
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tension of the home elevation program and estimated how
many homes would need to be elevated in order to reduce
the AAL by half, from USD 111 million to USD 55 million.
We ranked homes in order of increasing distance from the
Russian River, elevated them one by one, and iteratively cal-
culated the new AAL until it fell below the target threshold.
We found that this strategy would require elevating approxi-
mately 200 additional homes in order to achieve the perfor-
mance target. This is not necessarily the most efficient or ef-
fective possible strategy, but it illustrates in a straightforward
manner how prospective evaluations can be performed.

The resultant change between the original and mitigated
loss exceedance curves is shown in Fig. 11. The horizon-
tal distance between the original and mitigated curves rep-
resents the benefit of mitigation at a specified rate of occur-
rence λ. For the most frequent events (λ > 1) this distance
is relatively small, but the benefit increases for larger events.
The 100-year loss estimate drops from USD 225 million to
USD 169 million, a difference of over USD 50 million dol-
lars. The expected benefit of mitigation increases for events
with smaller rates of occurrence, reaching over USD 75 mil-
lion for the largest events in the record.

In addition to understanding the difference in expected
loss at a constant return period, we can also pick a con-
stant loss value and examine how the return period of that
event has changed. For example, the February 2019 case
study event had a flood loss of USD 91.6 million, which was
originally a 1-in-11 year loss. The new estimated occurrence
rate for an event similar to the February 2019 case study is
λ= 0.0413, or a return period of approximately 24 years.
This analysis indicates that there is significant potential ben-
efit to continuing investment in home elevations as a flood
loss mitigation strategy in Sonoma County. These types of in-
sights can help community members and stakeholders make
more informed decisions about their level of flood risk and
the effect of potential mitigation actions.

5 Discussion

Implementing a large, complex, multi-disciplinary model se-
quence such as the PARRA framework involves challenges
and compromises, but offers significant potential for novel
insights. In this section we highlight the more subtle bene-
fits of a probabilistic, performance-based approach and dis-
cuss some of the practicalities involved in implementation
and validation.

5.1 Framework implementation

The PARRA framework represents one end of the continuum
between stochastic and deterministic modeling. It will not
perform as well as a high-fidelity multi-scale physics model
calibrated to a given set of input forcings for a specific sce-
nario event, and it is not intended to replace existing mod-

els designed for that use case. However, it is impossible to
scale the granular analysis performed by deterministic mod-
els to produce a probabilistic estimate of flood risk across a
range of potential AR events (Apel et al., 2004; Savage et al.,
2016). The PARRA framework thus serves a fundamentally
different purpose within the literature of risk – if determin-
istic modeling gives us the best possible representation of a
single tree, then the PARRA framework aims at characteriz-
ing the shape and scale of the entire forest.

A key functionality of the PARRA framework is its ability
to track and quantify uncertainty across multiple component
models. Each component model implementation produces a
best-fit estimate and a range of uncertainty for the output
pinch point variable of interest through Monte Carlo simula-
tion. The benefit of Monte Carlo simulation is that the com-
ponent models do not need to be resolved into analytical dis-
tribution functions; instead, pinch point variables are calcu-
lated directly using the component models, then propagated
through the full equation to produce an empirical distribution
of total loss. However, a downside is the computational effort
involved in generating these realizations, especially for time-
or resource-intensive component models.

We came up with several practical solutions to mini-
mize the computational expense of the PARRA framework
and bring it into the range of procedural feasibility without
compromising accuracy. Two of those solutions are high-
lighted here. First, we implemented a functional program-
ming paradigm in R to run the framework and leveraged
parallelization and high-performance computing resources
to speed calculations. Second, we limited computational
costs of individual component models by relying on sta-
tistical relationships rather than high-fidelity physical mod-
els (e.g., f (Q|PRCP,HC), Sect. 3.4) and implementing sur-
rogate models to replace expensive calculation steps (e.g.,
f (INUN|Q), Sect. 3.5). The repetitive nature of Monte Carlo
simulation means that savings in any one component model
lead to multiplicative effects when running the entire frame-
work in sequence.

5.2 Validation data

The PARRA framework is a risk analysis tool that is glob-
ally applicable and can be used to assess AR flood risk at any
scale. However, the implementation of the framework in any
location will inherently be case-specific, and local insights
require models calibrated to local conditions. In the Sect. 3
case study significant effort went into finding validation data
for the Sonoma County study area, both for the overall com-
ponent model fit/calibration and for the specific case study
events under consideration. The datasets collected as part of
this project varied widely both in spatial and temporal reso-
lution and in ease of access. Atmospheric information, pre-
cipitation, and streamflow timeseries data were all readily
available from academic or governmental institutions. Most
of these institutions were involved not only in data collection
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but also in the curation and maintenance of web architectures
that allowed easy navigation of these datasets. Gridded maps
of inundation extents, though not available for many histor-
ical events, are becoming more prevalent as remote sensing
moves this particular task from one that must be completed
on-the-ground to one that can be automated and released in
near real time. Damage and loss data, though, are still pri-
marily recorded at the local level through surveys, home in-
spections, and other resource intensive methods. Difficulties
surrounding data collection and individual privacy concerns
mean that there are far less publicly available data for analy-
ses of these steps of the model sequence. As a consequence,
moving from inundation to damage and from damage to loss
are the most uncertain aspects of flood risk assessment owing
to great uncertainty in the physical mechanisms and the doc-
umented difficulties in validating against observed data (Apel
et al., 2009; Gerl et al., 2016). Therefore, these would be the
hardest component models to implement in a new location if
the PARRA framework is applied elsewhere.

Two potential pathways could help to close this data gap.
First, insurance companies often have extensive information
about flood damage and loss at a household level, but ow-
ing to the legal challenges and the need to retain compet-
itive market advantage there are few opportunities for ac-
cess. New models for academic–industry data-sharing part-
nerships could help further research in this area. Second,
Sonoma County, like a growing number of cities and coun-
ties nationwide, maintains an open data portal that proved to
be invaluable to this project. Expanding the quantity of these
data offerings, and adding damage and loss estimation data
at the local level, would improve the outputs of analytical
modeling efforts and in turn produce more relevant findings
for community level decision making. In return, implement-
ing the PARRA framework with fine-resolution local data
provides communities with much more relevant information
than they would be able to gain from a large-scale regional
or global flood risk assessment.

5.3 Component model alternatives

The case study developed in Sect. 3 shows only one possi-
ble implementation choice for each component model. All
models are imperfect representations of the physical world,
and there will always be some nuance lost when moving
from theory (the framework) to practice (the implementa-
tion). There are multiple possible methods to characterize
some of the pinch points that would improve fidelity to the
underlying physical processes but would increase computa-
tional demand and therefore constrain the representation of
the true uncertainty. These inherent tradeoffs between dif-
ferent types of error are unavoidable, but point to a major
strength of the PARRA framework: that the user is able to ex-
plicitly define their own optimization criteria and choose the
component model implementations that best suit their per-
sonal expertise, resource constraints, and end goals.

Another core strength is the framework’s modularity,
meaning that the model chain does not need to be recalibrated
or built from scratch to examine a different implementation
choice. As long as connections between the pinch points are
maintained then any of the component model choices can
be modified or replaced with relatively little friction. For ex-
ample, the linear regression used for the precipitation com-
ponent model implementation could be replaced with a nu-
merical weather prediction scheme that explicitly captures
the effects of additional factors such as AR orientation. The
precipitation pinch point variable itself could be modified to
represent the full spatial distribution of precipitation rather
than an areal average. The depth–damage relationships used
for the damage model could be replaced with an assembly-
based vulnerability model, such that the damage to a build-
ing is measured as the sum of all damage to its component
parts. Many substitutions and modifications to the compo-
nent model implementations are possible and could be real-
ized without changing the underlying structure or the output
metrics produced by the PARRA framework.

6 Conclusions

This paper introduced the Performance-based Atmospheric
River Risk Analysis (PARRA) framework to quantify AR-
induced flood risk. The framework captures the physical pro-
cesses connecting atmospheric forcings, hydrologic impacts,
and economic consequences of AR-driven fluvial flooding.
Using a performance-based engineering paradigm, this ap-
proach offers several benefits. It quantifies the uncertainty
surrounding the physical processes by following a deliber-
ate, ordered simulation procedure. It connects multiple phys-
ical processes in sequence by constructing a chain of discrete
component models that link together at defined pinch points.
Pinch points in the model chain serve to facilitate intercom-
patibility across different disciplines and to better understand
the complexity of the hazard and risk.

Section 3 discussed the fit and calibration of five individ-
ual component models: precipitation estimation, hydrologic
routing, inundation modeling, depth–damage relationships,
and loss estimation. We demonstrated the uncertainty quan-
tification capabilities and the modularity of the component
models through case studies of historic AR events affecting
the lower Russian River in Sonoma County. We performed
step-by-step comparisons between each of these component
models and ground-truth data from the case study AR events
to show how the differences between the observed and sim-
ulated values produced new insights into what drove certain
events toward extreme consequences and not others.

In Sect. 4, we ran a fully probabilistic simulation of a
damaging February 2019 AR event using only the observed
AR characteristics and antecedent soil moisture as input and
examined both the probabilistic range and the spatial dis-
tribution of the predicted losses. We also used the PARRA
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framework to generate a first-of-its-kind loss exceedance
curve for the lower Russian River to understand the full spec-
trum of potential loss events rather than a single scenario
event or a long-term annual average. We quantified the re-
duction in flood risk from a hypothetical mitigation decision:
when 200 homes were elevated above the 100-year flood el-
evation, the average annual loss was reduced by half, and the
average benefit for events with return periods of 100 years
or longer was found to be USD 50–75 million per AR. Sec-
tion 5 highlighted additional nuances about implementation
and validation for potential users of the PARRA framework
to consider.

Although the case study showed examples of the specific
insights that can be gained from implementing the compo-
nent models for a community risk assessment, the theory
and scientific merit of the PARRA framework stand on their
own, independent of the specific benefits and tradeoffs in-
herent in any local implementation. We have proposed a new
method for the structured assessment of AR-driven flood risk
that is physically based, modular, probabilistic, and prospec-
tive. The PARRA framework is ideally suited to performing
a forward-looking evaluation of potential impacts for events
outside of the historic record, or events that have not yet
occurred but could in an evolving climate. It can similarly
be used to estimate changes in future flood risk due to land
use shifts, population change, and more. The framework pre-
sented here has been shown to work in a real-world imple-
mentation and has the potential to greatly expand our under-
standing of the risks associated with AR-induced flooding.

Code and data availability. Readers are encouraged to explore the
supplemental code release associated with this paper, available at
https://doi.org/10.5281/zenodo.5765811 (Bowers, 2022). All data
used for the historic catalog and for the case study are free and pub-
licly available. Selected sources are included below.

Watershed boundaries and hydrography information were re-
trieved from the USGS National Map at https://apps.nationalmap.
gov/downloader/ (USGS, 2022).

Census boundaries and designations were retrieved from the
US Census Bureau using the R package tigris (https://CRAN.
R-project.org/package=tigris; Walker, 2021).

Precipitation data came from the CPC Hourly US Precipita-
tion dataset, provided by the NOAA/OAR/ESRL PSL in Boul-
der, CO, USA, and retrieved using the R package rnoaa (https:
//CRAN.R-project.org/package=rnoaa; Chamberlain, 2021).

Streamflow data were retrieved from the USGS National
Water Information System using the R package dataRetrieval
(https://doi.org/10.5066/P9X4L3GE; De Cicco et al., 2021) .

The bare earth digital elevation model for the study area was
retrieved from Sonoma Veg Map at https://sonomavegmap.org/
data-downloads/ (County of Sonoma, 2014).

The 100-year return period streamflow at USGS gage 11463500
(study area inlet) was calculated using the USGS StreamStats ap-
plication at http://streamstats.usgs.gov/ (USGS, 2019).

The 100-year calculated inundation extent for Sonoma County
was retrieved from the FEMA National Flood Hazard Layer at https:

//www.fema.gov/flood-maps/national-flood-hazard-layer (FEMA,
2022).

Predicted inundation maps for the lower Russian
River are available from the County of Sonoma at
https://sonomacounty.maps.arcgis.com/home/item.html?id=
9d8d63558c6b4124b000e6476a0a020d (County of Sonoma,
2017b).

Building footprints are available from the County of Sonoma
at https://sonomacounty.maps.arcgis.com/home/item.html?id=
0f5982c3582d4de0b811e68d7f0bff8f (County of Sonoma, 2017c).

Building occupancy classes and valuations are available
from the County of Sonoma, Clerk Recorder Assessor at
https://sonomacounty.maps.arcgis.com/home/item.html?id=
2202c1cd6708441f987ca5552f2d9659 (County of Sonoma, 2020).

Rapid Evaluation Safety Assessment (RESA) tag informa-
tion following the 2019 flood event in Sonoma County was re-
trieved from Permit Sonoma at https://permitsonoma.org/divisions/
engineeringandconstruction/building/resa2019flooding (County of
Sonoma, 2019).

Median values of owner-occupied housing units by census tract
were retrieved from the American Community Survey using the
R package censusapi (https://cran.r-project.org/package=censusapi;
Recht, 2020).

Information about National Flood Insurance Program claims and
policies and about the FEMA Hazard Mitigation Assistance pro-
gram was retrieved from the OpenFEMA data platform at https:
//www.fema.gov/about/openfema/data-sets (FEMA, 2021).

All figures with color were generated using the roma scientific
color map from Crameri et al. (2020).
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