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SUMMARY

The behavior of particulate media, such as sands, is encoded at the granular-scale and hence methods
for upscaling such behavior across relevant scales of interest—from granular-scale (∼1mm) to field-
scale (>1m)—are needed to attain a more accurate prediction of soil behavior. Multi-scale analysis is
especially important under extreme conditions, such as strain localization, penetration, or liquefaction,
where the classical constitutive description may no longer apply. In this paper, internally consistent
probabilistic models for undrained shear strength and Young’s modulus are developed at multiple scales,
and incorporated into a simulation framework where refinement of the material description to finer scales
is pursued only as necessary. This probabilistic simulation approach is then coupled with the finite element
method. Numerical examples are presented to show how the performance of the geosystem is influenced
by taking into account multi-scale random fields. Copyright � 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well known that material inhomogeneities exist at different length scales in geomechanical
problems. Two types of inhomogeneities can be identified: (1) inherent inhomogeneities, which are
those resulting from fluctuations in material properties, such as permeability or strength and (2)
induced inhomogeneities, which are those imposed by a physical phenomenon (e.g. deformation)
that alters the characteristics of the medium. Figure 1 shows typical scales relevant to granular
materials. All the information pertaining to granular systems, including inhomogeneities, is encoded
at the granular scale and propagated or upscaled through all the way to the field scale. It should be
pointed out that the spatial randomness at the macroscale might be of a different stochastic nature
than that of the grain scale, e.g. randomness in macroscopic Young’s modulus versus randomness
in particle elasticity. Although the scale of interest in this paper is still within the continuum
domain, properties within this domain of interest may be fundamentally influenced by grain-scale
properties.

Inherent inhomogeneities are commonly modeled through the use of random field theory and the
finite element method (FEM). The effect of inhomogeneities on mechanical behavior of engineering
problems has been studied by many researchers at a single scale. For instance, at the site scale,
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Figure 1. Multi-scale nature of granular materials. After [1].

Griffiths and Fenton [2], Griffiths et al. [3], and Popescu et al. [4] have simulated shallow foundation
resting on soils with spatially varying properties. It has been shown that inherent inhomogeneities
of soil strength can greatly modify the basic form of failure mechanism of the foundation. More
recently, Andrade et al. [1] have coupled advanced elastoplastic models with geostatistical tools
to simulate the mechanical behavior of anisotropic samples of sands and showed that meso-scale
inhomogeneities in the porosity trigger global instabilities that are responsible for a significant
reduction in the load-carrying capacity of the samples. They have also observed that the upscaling
of porosity fields delays the predicted onset of localization due to local averaging over mesh
elements. In dealing with material inhomogeneities and their effects on geosystems across scales,
the conventional methods need to be extended. Along this line, a multi-scale stochastic FEM
has been recently developed [5–7]. In this approach, the original boundary value problem of
random heterogeneous materials is decomposed into a slow (coarse)-scale deterministic BVP
and a fast (fine)-scale stochastic BVP. The slow-scale problem is solved first using standard
FEM and the solution is used as input for fast-scale BVP. In this paper, we propose methods
to characterize random fields and to couple them with finite elements (FEs) at both coarse and
fine scales.

Parallel to the development of modeling material inhomogeneities utilizing random field theory
and the FEM, multi-scale methods have become the subject of intensive research during the past
decade, especially for modeling heterogeneous materials. According to the taxonomy introduced
in [8], multi-scale methods can be classified into four types, i.e. hierarchical, concurrent (strong
coupling), semi-concurrent (weak coupling), and hybrid hierarchical-semiconcurrent. One of the
motivations for these methods is to bypass the prohibitive computational cost of modeling macro-
scopic structures using more accurate micro-scale constitutive models. One such example is the
FE2 approach (e.g. [9, 10]) for modeling composite materials. In the FE2 method, macroscopic
constitutive equations at a material point are replaced by FE simulations of periodic microstructures.
A strongly coupled multi-scale method was proposed [11–13] for analyzing nonlinear inelastic
behavior for heterogeneous structures, where the macroscopic constitutive law is replaced by micro-
scale FE computation at element level rather than at the material point. The above-mentioned
methods deal with material behavior that is generally described by continuum constitutive laws
at different scales. More recently, Andrade and Tu [14] and Tu et al. [15] proposed a frame-
work coupling discrete element method with the FEM for behavior prediction in granular media,
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where the phenomenological hardening laws at the macroscale are bypassed and the key material
parameters are extracted from granular structures directly. While our paper focuses on material
behavior described by continuum constitutive models, it is possible to extend it to couple with
discrete models given the work done by Andrade and Tu [14] and Tu et al. [15].

In multi-scale models, the micro–macro relation is a key component. Various algorithms have
been proposed in establishing micro–macro relations based on different assumptions dealing with
either weakly coupled (e.g. [16, 17]) or strongly coupled (e.g. [11, 18]) scales. In the weakly
coupled case, the micro- and macroscales can be fully separated and a representative volume
element (RVE) or unit cell is typically used to represent the microstructure. In the strongly coupled
case, the characteristic length of microscale is finitely smaller—rather than infinitely smaller—
than that of macroscale. In this paper, we consider the case where different scales are strongly
coupled and propose the use of a concurrent multi-scale scheme [8], where displacements from
the macroscale are passed onto microscale as boundary conditions and the averaged stresses are
passed back to macroscale. The assumptions here are that the strain and the stress, at an arbitrary
material point in the macroscopic domain, are the volume average of the strain and stress fields
over the microscopic domain, respectively.

A corresponding consideration in multi-scale modeling is the description of the underlying
material properties at multiple scales. In this work, material properties (e.g. undrained shear strength
and Young’s modulus) are assumed to be random but varying spatially in a somewhat smooth
manner. Mathematically, this means that these properties can be quantified as random variables at
a particular location, and that the value of these variables at multiple locations can be described by
joint probability distributions characterized using random fields modeling. Spatial dependence for
the non-Gaussian fields is introduced by first transforming the variables of interest to have marginal
Gaussian distributions, and then introducing dependence among these transformed variables through
linear correlation coefficients—a procedure commonly used in the field of Geostatistics (e.g. [19]).
Material properties at the coarse scale are defined by averaging values at the corresponding fine-
scale locations; using this assumption, means, variances, and spatial correlations at the coarse
scale are then derived to be internally consistent with the fine scale. A second important piece
of multi-scale random fields is Monte Carlo simulation of realizations of the field at multiple
scales. Thus, an iterative simulation procedure is adopted where simulated values are obtained
at individual locations conditional on all previous simulations. This procedure is beneficial here
because it allows one to first simulate the field at only the coarse scale, then add simulation points at
the fine scale probabilistically consistent with the previous coarse-scale realizations. Furthermore,
these conditional fine-scale simulations need not be performed immediately after the coarse-scale
simulation, allowing one to start with a coarse-scale simulation, perform initial analysis on the
system (either mechanics analysis or some other analysis of the soil properties), and then refine
the scale of that simulation without having to start over or generate a new simulation of the field.
This adaptive refinement is expected to have important practical advantages in some situations.

The paper is organized as follows. Section 2 provides a description of the random material
properties of interest at the fine scale, including probability distributions and spatial dependence.
The conditional simulation procedure described in the previous paragraph is also introduced.
In Section 3, a multi-scale description of the random field is introduced, and the probability
distributions and correlations at that scale are derived under the assumption that coarse-scale values
are averages of corresponding fine-scale values. Strategies for multi-scale simulation are then
discussed, including the feasibility of simulating entire fields at the coarse scale, and then refining
that simulation by adding conditional simulations at the fine scale as desired. In Section 4, a
multi-scale framework for coupling random fields and the FEM is proposed. Two main ingredients
of the framework, e.g. element-splitting technique and concurrent information-passing scheme,
are discussed in detail. In Section 5, numerical examples are presented where FE simulations of
a strip footing utilizing the proposed framework are carried out. The undrained shear strength is
treated as the random variable for bearing capacity analysis; the Young’s modulus is treated as
random for settlement analysis. Of particular interest is the impact of different degrees of fine-scale
discretization on the overall performance of the geosystem.
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2. CHARACTERIZATION OF MATERIAL PROPERTIES

The adopted approach for parameter simulation relies on classical random field models and Monte-
Carlo methods modified to account for various scales of resolution throughout the sample. One
of the challenges of this work is maintaining the appropriate spatial variability across scales.
Characterization of both the distribution and spatial correlation of undrained shear strength, Su, and
Young’s modulus, E , at the finest considered scale—the mesoscale—are detailed in this section.

2.1. Distribution of the soil properties

Beta, gamma, and lognormal distributions are all commonly used in the literature to model soil
properties. While no sufficient data exists supporting one type over another, Popescu et al. [4] have
observed that the values of soil strength in shallow layers are positively skewed. Based on these
findings the lognormal distribution is used to describe each parameter, which can be represented
by the following probability density function (PDF)

fY (y)= 1

y�lnY
√
2�

exp

(
−1

2

[
ln y−�lnY

�lnY

]2)
(1)

where fY (y) is used to denote the PDF and the values of �lnY and �lnY are the mean and standard
deviation of the natural log of the parameter Y , and are chosen depending on the parameter to
be modeled. In this paper, the parameters (�, �) used for undrained shear strength and Young’s
modulus are (100, 50) kPa and (100, 50) MPa, respectively. Selection of these values is discussed
in Section 5. Note that Y is used to denote the random variable and y is used to describe a specific
numerical value of that variable.

The random variable can also be described in the form of a cumulative distribution function
(CDF)

FY (y)=�

(
ln y−�lnY

�lnY

)
(2)

where FY (y) denotes the CDF of Y and �( ) denotes the CDF for the standard normal distribution.
A PDF from Equation (1) is plotted in Figure 2 alongside a histogram of simulated values. The
histogram has the same general shape, but some variation is expected due to the finite number of
realizations shown here.

0 100 200 300 4000

0.002

0.004

0.006

0.008

0.01

0.012

Su Su

f Y
 (

y)

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

140

160

180

N
um

be
r 

of
 o

bs
er

va
tio

ns

(a) (b)

Figure 2. (a) Probability density function for undrained shear strength and (b) histogram of simulated
values of undrained shear strength.
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2.2. Normal score mapping

Realizations of the random variable at each point within the sample are dependent upon the values
of the surrounding points (spatial relationships are considered in detail in the following section).
For variables having Gaussian distributions, this joint dependence is fully described by pairwise
linear correlation coefficients and the associated analytical equations are quite tractable. This is
generally not true for non-Gaussian distributions where the associated model is not fully defined
by a linear correlation coefficient, and thus a so-called normal-score mapping may be used to take
advantage of the desirable Gaussian properties. In the next section, when working with fields of
dependent variables, all the computations will be done using correlated Gaussian fields having a
mean of zero and variance of unity. Each value in those standard Gaussian fields will then be
transformed to have the target distribution of Equation (1) using the relationship

y= F−1
Y (�(z)) (3)

where F−1 is the inverse CDF of the target distribution given in Equation (2), �( ) again denotes the
CDF for the standard normal distribution, z represents a simulated value from the standard Gaussian
distribution, and y is the transformed value coming from the target distribution. Figure 2(b) was
created by simulating standard Gaussian samples (z) and transforming them using Equation (3),
illustrating the validity of this transform. Note that in the particular application considered here,
because Y is lognormally distributed, the transformation between Gaussian Z and lognormal Y
can be performed by simply taking logarithms and exponentials, but this formulation is provided
for generality.

It is assumed here that the spatial dependence introduced using this Gaussian correlation model
and mapping technique is appropriate for describing the dependence of the variable being studied.
Practical experience with this approach suggests that it is often a reasonable approximation [19],
and because the distributions used here are not strongly non-Gaussian it is expected that depen-
dence structure will not be significantly affected. When this transformation dramatically alters the
distribution shape, the approximation may be less appropriate, although its practical advantages
still make it a popular technique in those cases despite the approximation.

2.3. Spatial correlation

The probabilistic model of the previous section describes the distribution of a parameter value at
a single location. To consider multiple locations in a specimen where the values at each location
vary somewhat, spatial dependence must be taken into account. In this section, we will develop the
mathematical tools for characterizing that dependence and simulating realizations of these random
fields.

Spatial correlation is described here at the finest considered scale—the mesoscale—using a form
of covariance known as a semivariogram, �(h), which is equal to half the variance of the difference
between two random variables separated by distance h

�(h)= 1
2Var[Z(u)−Z(u+h)] (4)

where Z(u) is the distribution of the Gaussian random variable at location u. The vector distance
h accounts for both separation distance and orientation and may be defined by a scalar measure.
To simplify the relationship between distance and semicovariance, we define a scalar distance
measure

h=
√(

h1
a

)2

+
(
h2
b

)2

(5)

where h1 and h2 are the centroidal separation distances along the field’s major and minor axes,
respectively, corresponding to vector distance h, and a and b specify how quickly spatial dependence
decreases along those axes. When the ‘a/b’ ratio equals unity the sample is isotropic, meaning
correlation decreases with distance equally in all directions. Skewing this ratio will result in banding
of the sample.
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Figure 3. Empirical and specified correlations versus distance for a given
realization of undrained shear strength.

The semivariogram is often used in geostatistics instead of covariance because it requires second-
order stationarity of only the increments and not the underlying process. Here the two may be used
interchangeably because both requirements are assumed to be satisfied, but semicovariance is used
for the simulations because we are building on previous work that uses this formulation [19].

To generate samples consistent with a given semicovariance structure, we must specify a function
that provides the semicovariance in Equation (4) for a given h. The samples above are generated
according to the exponential semivariogram

�(h)=1−exp(−h) (6)

Correlation, �, at a distance h is determined directly from the value of the semivariogram

�(h)=1−�(h) (7)

Note that the above equations describe spatial dependence of the Gaussian-distributed variables
(Z) rather than the transformed variables having the final target distribution (Y ). It is, therefore,
necessary to verify that the desired spatial dependence relationship is upheld after the transformation
of Equation (3) is performed. Figure 3 compares the specified model to the empirically calculated
correlation of a simulated isotropic sample pre- and post-transformation (the procedure used to
generate these data will be described in the following section). The slight difference between the
specified correlation and the empirical correlation of the Gaussian data is due to the finite sample
size. The difference between empirical correlation for the transformed data and the Gaussian data is
due to the transformation. In this particular case the characteristics of the semivariogram are upheld
well through the transformation from the Gaussian distribution to the lognormal distribution, but it
is known that this correspondence will not always hold true for other marginal distributions [20].

2.4. Simulation

Given the specified correlation model from the previous section, we would now like to simulate
sample data having that correlation structure. A sequential approach is taken here for the simu-
lation procedure consisting of simulating each value individually, conditional upon all previously
simulated values. While spectral-based simulation approaches are often preferable for random field
simulation due to their stability and computational tractability, here a sequential correlation-based
approach is utilized. It is believed that this approach will be particularly valuable if one desires to
do adaptive refinement at fine scales; because it is not necessary to specify a priori the locations
requiring fine-scale resolution, one can simply add additional fine-scale data, conditional upon all
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previously simulated data, as the need arises. An additional advantage of this approach is that it
allows real data points to be incorporated. No such measurements are included here, but may be
used in future work to ‘anchor’ the simulated samples more closely to actual data. This would
be accomplished by beginning the simulation with the field data included as previously generated
variables, as outlined below, so that all simulated points are conditional upon them.

The first step in the sequential simulation process is to generate a single realization of a standard
normal variable. All subsequent realizations are then conditional upon all previous realizations,
represented by the joint distribution[

Zn

Zp

]
∼N

([
0

0

]
,

[
�2n Rnp

Rpn Rpp

])
(8)

where ∼N (l,R) denotes that the vector of random variables has a joint normal distribution with
mean vector l and covariance matrix R, Zn is the next realization to be simulated, and Zp is
a vector of all previously defined or simulated points. The mean vector and covariance matrix
have been partitioned to clarify several equations below. The subscripts n and p in the partitions
represent ‘next’ (as in next point to be simulated) and ‘previous’ (as in all previously simulated
points), respectively.

Individual terms inside the covariance matrix are defined by

COV[Zi , Z j ]=�Zi ,Z j
·�Zi ·�Z j (9)

where Zi and Z j refer to two locations within the random field at any scale with standard deviations
�Zi and �Z j , respectively, and �Zi ,Z j

is the correlation coefficient between them.
Given the above model, the conditional distribution of next realization to be simulated is given

by a univariate normal distribution with updated mean and variance

(Zn|Zp=z)∼N (Rnp ·�−1
pp ·z,�2−Rnp ·R−1

pp ·Rpn) (10)

Once simulated, Zn becomes a fixed data point in the vector Zp to be conditioned upon by
all subsequent realizations. This process is repeated until all the values in the field have been
simulated.

3. MULTI-SCALE CONSIDERATIONS

One of the challenges of this work is maintaining appropriate spatial variability across several
scales. This paper describes two scales of interest. The finer scale is denoted as scale 2, whereas
the coarser scale is denoted as scale 1, and is defined as the average of all fine-scale points within
its area. This relationship is visually represented in Figure 4 and is mathematically written as

Z1,a = 1

n
�n
i=1Z2,ai (11)

where the subscript a refers to the area in Figure 4 denoted as ‘a’. All variables in the previous
section were described at the fine scale. The effect of this relationship on moments of the random
variables and their spatial relationships is described below.

Equation (11) implies that the (transformed) material properties at the coarse scale are the
average values of the properties over corresponding areas at the fine scale. This relationship allows
for explicit derivation of variances and spatial correlations of coarse-scale material properties, and
the same averaging model will be used in the FE formulation. The optimal number of fine-scale
elements to include in a coarse-scale element is likely to be problem dependent, as it balances
benefits of computational efficiency with potential loss of fine-scale resolution. There are also
considerations to be made with respect to the transformation between the target and normal
distributions at the coarse scale, which is discussed in Section 3.2. Implications of the degree of
resolution from a mechanics standpoint are explored in Section 5.3.
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Figure 4. Graphical representation of material properties at 2 scales.

3.1. Moments and correlation for multiple scales

At the fine scale only, simulation of random fields is relatively straightforward. As discussed above,
individual values in the field follow the standard Gaussian distribution with zero mean (�Z2 =0),
unit standard deviation (�Z2 =1), and correlation coefficients specified by Equation (7). These
values are inserted into Equation (10) to perform sequential simulation of correlated fields.

Inclusion of a coarser scale requires more careful consideration. Means, standard deviations,
and correlations are computed for coarse-scale z1 values using the fine-scale information along
with the definition of Z1,a (Equation (11)). Taking the expectation of this definition yields the
mean of Z1,a

�1= E[Z1,a]= 1

n

n∑
i=1

�2,i =0 (12)

Accordingly, if the variance of fine-scale z2 values is unity and the mean of coarse-scale z1
values is zero as shown above, then the coarse-scale variance, �Z1,a , can be computed as the
expectation of Equation (11) squared (the variance is equal to the expectation of Z2

1,a in this case,
since the mean of Z1,a is zero)

�2Z1 = E[Z2
1,a]−0= 1

n2

n∑
i=1

n∑
j=1

�z2i z2 j ·�z2i ·�z2 j (13)

Correlation must be defined between all considered scale combinations. Expanding the definition
of covariance and rearranging Equation (9) to solve for correlation gives

�Zi ,Z j
= COV[Zi , Z j ]

�Zi �Z j

(14)

where Zi and Z j refer to two elements within the random field at any scale with means, �Zi and
�Z j

, and other terms as defined in Equation (9). Making the appropriate substitutions at each scale
and simplifying yields the definition of correlation between two Z1 elements (Equation (15a)) or
between a Z1 element and a Z2 element (Equation (15b))

�Z1a,Z1b =
∑n

i=1
∑n

k=1 �Z2ai ,Z2bk∑n
i=1

∑n
j=1�Z2ai ,Z2a j

(15a)

�Z2,Z1a =
∑n

i=1�Z2,Z2ai �Z2ai√∑n
i=1

∑n
j=1�Z2ai ,Z2a j �Z2ai�Z2a j

(15b)

where subscripts a and b refer to two different local averages as shown in Figure 4, and where scale
2 correlation was defined earlier in Equation (7). These results are comparable to corresponding
results for Local Average Processes in Random Fields modeling [21], but differ slightly here in
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Figure 5. Correlation versus distance at all scales.

that they are defined for averages of discrete values rather than a continuous process. These results
are used in later calculations and are needed to ensure consistency with the FEM.

Figure 5 compares correlation versus the normalized scalar distance measure between all combi-
nations of scales. Note how averaging of the fine-scale points effectively increases correlation for
a given distance relative to the fine scale. Nonlinear variation of correlation across the coarse scale
puts more emphasis on fine-scale elements in closer proximity, which slightly increases correlation
for a given centroidal distance. If correlation were to somehow vary linearly with distance, the
correlations would be identical at all scales. This is similar to what occurs with fractal geometrical
variations, although that type of correlation structure is not as easily incorporated into this spatial
correlation characterization.

Also note how the correlation between a fine-scale element and a local average is not unity at a
distance of zero, which is expected by the definition of inter-scale correlation given by Equation
(15b). In this figure, each element at the coarse scale is subdivided into 16 fine-scale elements.
If each element at the coarse scale comprised only a single fine-scale element, the correlation
between scales at a distance of zero would be unity.

3.2. Normal-score mapping at the coarse scale

Figure 2 above verified that the target distribution is satisfactorily obtained through transformation
at the fine scale, but it must be also verified that the mapping is consistent across scales. The
challenge is that the variable Y1 at the coarse scale is defined as the average of the fine-scale y2
values within the coarse cell, but in the sections above, multi-scale averaging has been performed
on the Gaussian variables Z . When mapping back the averaged (coarse-scale) z1 values to coarse-
scale y1 values, we need to ensure that the distribution of Y is identical to what would be attained
without this normal-score mapping.

There are several possibilities for performing this mapping at the coarse scale. In the first case,
we do the transforming of the simulated z2 values at the fine scale to get fine-scale y2 values, and
then average those fine-scale y2 values to get a coarse-scale y1 value

y1= 1

n

n∑
i=1

F−1
Y2

(�(z2,i )) (16)

This transformation would be guaranteed to ensure the averaging properties of Y , but it is not
practically feasible as we will not simulate fine-scale y2 values at all locations (this would eliminate
the benefit of multi-scale simulation). It therefore becomes necessary to perform the transformation
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directly on the coarse-scale y1 values. Nonetheless, this method is used here as a benchmark for
comparison of the other methods.

In a second case, we perform the transformation directly on the coarse-scale z1 simulations,
using the CDF of Y1

y1= F−1
Y1

(
�

(
z1
�Z1

))
(17)

In this mapping, we first re-normalize z1 by dividing by its variance (it has mean zero, and
the average of Gaussian variables is Gaussian, so no other normalization is necessary). We then
transform it using the standard Gaussian CDF and the CDF of Y1. Note that the CDF of Y1 is
not the same as the CDF of the fine-scale Y2. This transformation is also guaranteed to ensure the
averaging properties of Y , as we have explicitly used the desired marginal distribution of Y1 in
the transformation, but it requires the additional step of finding the marginal CDF of Y1. In most
cases this cannot be done analytically, but it is possible to estimate it through a relatively simple
simulation procedure.

When estimating Y1 for Equation (17), several alternatives are considered which vary in goodness
of fit depending on the defined distribution of Y2 and the number of fine-scale y2 elements in
each coarse-scale y1 element. Realizations of Y2 are first simulated and averaged. From here it is
possible to compute the empirical CDF of Y1 (this will be called Equation (17) alternate 1), which
should generally be a good approximation if sufficient realizations are generated, but in order to
have the convenience of a functional form two more methods are examined. As more fine-scale
y2 elements are included in each y1 element, it becomes more appropriate to approximate Y1 as
Gaussian with estimated parameters (Equation (17) alternate 2). With fewer fine-scale y2 elements
included in each y1 element—and when the distribution of Y2 is similar to Gaussian—it may
instead be appropriate to approximate Y1 by the same form as that of Y2, first taking care to update
the parameters to reflect the effect of Equation (11) (Equation (17) alternate 3).

As a third transformation case, we simply use the fine-scale transformation but input coarse-scale
z1 values

y1∼=F−1
Y2

(�(z1)) (18)

The z1 values have less than unit standard deviation (Equation (13)), so putting them through this
transformation will result in coarse-scale y1 simulations where value in the tails of the distribution
is less likely. This is as desired due to the averaging process. There is no guarantee, however,
that the y1 values will have the desired marginal distribution in this case. Note that due to the
central limit theorem, the marginal distribution of Y1 will tend towards Gaussian as more fine-scale
elements are included in the average. In particular, the quality of the approximate transformation of
Equation (18) depends upon the similarity of the fine-scale distribution to a Gaussian distribution.
This tendency may need to be accounted for by explicitly using the revised coarse-scale distribution
in the mapping (Equation (17)). This is the simplest mapping of the above three cases, but the
lack of guaranteed match with the desired marginal distribution is a disadvantage.

Figure 6 depicts empirical CDFs of coarse-scale elements obtained by three different methods.
As mentioned above, the transformation of Equation (16) is considered the benchmark, but it is
not feasible in this multi-scale context for obtaining coarse-scale values in the target distribution.
It is obvious from the figure that in this case it is most appropriate to approximate the marginal
distribution of Y1 as lognormal (mapping by Equation (17) alternate 3 using the same form as Y2
with the mean and standard deviation updated by Equations (12) and (13)). It is worth noting that
this method works well for this particular fine-scale distribution and number of elements included
in the coarse scale, but it is not guaranteed to work in a general sense, so a similar check is
recommended for each particular distribution of Y2 and degree of refinement.

An illustration of the case where it is not adequate to use the form of Y2 for Y1 is represented
in Figure 7. Here, the y2 values (for a hypothetical distribution of porosity) follow a truncated
exponential model. As soon as these fine-scale y2 elements are averaged to form a coarse-scale
y1 element, the extreme values of the distribution become much less likely. Thus, it is clearly
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Figure 7. Empirical CDFs of simulations produced using several transformation approaches at the coarse
scale (scale 1). The fine-scale (scale 2) properties are modeled as truncated exponential.

inappropriate to approximate the functional form of the coarse scale as that of the fine scale
(either by Equation (18) or Equation (17) alternate 3). Instead, Figure 7 suggests that the best
approximation of the true marginal CDF of Y1 is the empirical CDF obtained as described above.
Transformations performed directly on coarse-scale y1 elements would be achieved by interpolating
between the points derived for the empirical model. Note that the curves for Equations (16) and
(17) alternate 1 are identical here because the same empirical model is used to visually represent
each transformation. The purpose of including an additional example is to emphasize that in general
it is advisable to evaluate all or most of these transformation options for the coarse scale: what
works well in one situation may not work at all for another.

3.3. Implementation

The methodology here is based on defining parameters at the finest scale of consideration. The
simulation will initially generate a coarse-scale resolution of the sample, then an empirically
determined set of these are further refined to the fine scale. For refinement, the same conditional
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framework described above is used with care taken to specify appropriate values of variance and
correlation. The fact that the simulation begins at the coarse scale and works toward higher resolu-
tion should not result in a field any different than starting with a fine-scale field and subsequently
averaging those elements together.

In the context of multiple scales, the sequential simulation process described above has the
benefit of adaptive refinement (as introduced in Section 2). If deemed necessary at any point in time,
any element can be broken down into its fine-scale components without consideration of sequence.
A powerful implication of this is that the number of scales need not be limited to 2; while the
above definitions explicitly consider two scales, they are easily expanded to more. The finest scale
is always the scale at which the soil property’s CDF and spatial correlation are defined, and any
number of averaging scales can be defined relative to the fine scale using recursive applications of
the equations above for coarse-scale properties. If it is desired to specify soil properties at the coarse
scale, then the above multi-scale definitions and results of Figure 5 can be used to approximately
invert for the fine-scale properties that result in the desired coarse-scale properties. With this
approach, it may not even be necessary to specify in advance the number of scales to consider.

Even in the two-scale case presented here, computational expense can prove significant. As the
size of Zp increases, the computational demand of Equation (10) grows geometrically due to the
need to invert ever-larger matrices. It therefore becomes desirable to limit the size of Zp each time
Equation (10) is evaluated. To achieve this, one option is to determine a maximum distance along
each axis for which to consider previously generated realizations. Another is to limit the total
number of previously simulated realizations to consider correlations with (keeping only those with
the highest correlations). The latter approach is adopted for this research. The motivation for these
approaches is that distant soil values have little impact on the distribution of Zn , and that even
nondistant points are ‘shielded’ from having an effect if there are many closer values with stronger
correlations. These and other approaches are documented for single-scale conditional simulations
[19], and appear to be generally applicable to multi-scale simulations as well.

Figure 8 shows that limiting the maximum number of previously generated elements with which
to correlate to 125 does not adversely affect the specified spatial relationship significantly where
correlation is significant. Correlation is indirectly upheld at distances greater than a radius inside
which the maximum number of elements will fit. Some variations from the specified correlation
are expected due to the finite sample size, but the discrepancy (relative to that in Figure 3) is
more obvious when the maximum number of elements included in the operations precludes direct
correlation. The threshold at which the additional discrepancy arises depends on the maximum
number of points allowed in Zp (with the discrepancy going to zero as an infinite number of
points are allowed), so that this number can be varied to optimize the tradeoff between gained effi-
ciency and lost accuracy.

As the simulation begins to refine coarse-scale elements, numerical instabilities must also be
considered. As defined, the average value of all fine-scale z2 values within a z1 element must
equal the originally simulated z1 value. As a coarse-scale element is subdivided, the conditional
variance given by Equation (10) will tend to decrease. For the last realization of Z2 to be simulated,
only one value exists such that the average is preserved, so that the conditional variance for
that element will theoretically be zero. In practice, however, it is likely that the exact value will
be slightly nonzero due to numerical approximations, so the simulation framework used for this
research automatically sets this value appropriately. Failure to set this value manually may result
in a negative (though extremely small) variance, which in turn results in an imaginary standard
deviation after the inversion of Equation (10), and therefore unrealistic realizations of Z2.

4. FRAMEWORK FOR COUPLING RANDOM FIELDS AND THE
FEM AT MULTIPLE SCALES

In this section, a multi-scale framework that couples random fields and the FEM is presented.
The formulation of the framework is based on the assumption that the strain and the stress
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Figure 8. Empirical and specified correlations versus distance for a given realization of undrained shear
strength, with the maximum number of conditioning elements to be considered limited to 125.

at an arbitrary material point in the coarse-scale domain are the volume average of the strain
and stress fields over the fine-scale domain. In this paper, we focus on problems with material
behavior being described by continuum constitutive theories. We utilize FEs at both the macro-
and microscales. The kinematical constraints on the fine-scale domain are first discussed. Then,
the main ingredients used to construct the framework, i.e. the element-splitting technique and the
concurrent information-passing scheme are proposed.

4.1. Kinematical constraints on the fine-scale FEs

Derivation of the kinematical constraints on fine-scale elements is based on the assumption that
strain at an arbitrary point at the coarse scale is the volume average of the strain fields over the
fine-scale domain. Here, we follow the discussion from [22]

e1 = 1

meas(�)

∫
�
e2(x)d� (19a)

e2 = ∇su2 (19b)

where e is the strain tensor, u is the displacement vector, subscripts ‘1’ and ‘2’ refer to macro-
(coarse) and micro (fine)scales, respectively, ‘meas(�)’ is the measure of �, which equals to the
volume (in 3D) or the area (in 2D) of the fine-scale domain, and ∇s is the symmetric gradient
operator. Only displacement fields that satisfy Equation (19) are said to be kinematically admissible.
Furthermore, the fine-scale displacement field, u2, can be split into the sum of a linear displacement,
e1x2, where x is a position vector, and a displacement fluctuation, ũ2, i.e.

u2= e1x2+ ũ2 (20)

The corresponding fine-scale strain field is then written as

e2= e1+∇sũ2 (21)

Substituting Equation (21) into Equation (19a), we have the kinematical constraint on displacement
fluctuation as

1

meas(�)

∫
�

∇sũ2 d�=0 (22)
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Figure 9. The multi-scale framework for coupling the FEM and random fields.

Depending on the choice of displacement fluctuation field ũ2 that satisfies Equation (22), we can
further constrain the fine-scale displacement field. In this paper, we choose the case where the
kinematical constraint on the fine-scale mesh is ũ2=0. Following Equation (20), we have

u2= e1x2 (23)

For displacement fields that satisfy Equation (23), it can be shown that the Hill’s energy condition

e1 :r1= 1

meas(�)

∫
�
e2 :r2 d�

is satisfied [23].

4.2. Element-splitting technique

In order to take into account material property fluctuations at higher resolution, the domain of
interest at coarse scale needs to be further discretized. In the FEM, the domain of interest is
discretized by coarse-scale elements. Naturally, the first step is to split coarse-scale FEs where
needed. Consider a typical coarse-scale quadrilateral element as shown in the upper left corner of
Figure 9. So-called ‘ghost nodes’ are first generated using the interpolation function as

xg=N·xFE node (24)

where xg is the position vector for ghost nodes, N is the interpolation function, and xFE node is the
FE nodal position vector.

The element is then subdivided into tributary areas based on the generated ghost points and the
existing FE nodes, e.g. shadow area in the coarse-scale element in Figure 9. Each of these tributary
areas defines a domain for the finer scale, which is then further discretized using a new FE mesh.
Therefore, each Gauss point at the coarse scale can be linked to a fine-scale mesh through element
splitting. The information passing between these two scales will be described in the next section.

At this point, material properties at different levels of resolution will be needed and hence the
method described in Sections 2 and 3 is utilized. The levels of resolution at the FE and the random
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field are set to match each other at each scale. Moreover, each material point in the random field
is set to be at the centroid of an FE so that each element has constant material properties.

4.3. Concurrent information-passing scheme

Once the domain is discretized, a systematic way to access information at multiple scales is needed.
Here, we propose using a concurrent information-passing scheme where essentially displacements
from coarser scale are passed onto the finer scale as boundary conditions and the averaged stress
is passed back from the finer scale up to the coarser scale.

The first step of this scheme is to precondition the fine-scale mesh by a homogeneous state of
strain en1 and internal variables nn1, which correspond to the converged state at previous time station
tn of the coarse-scale Gauss point, i.e.

e02= en1; n02=nn1 (25)

where the superscripts ‘0’ refers to the initial substep at the fine-scale computation and ‘n’ refers
to the nth time step at coarse-scale computation.

This precondition step is necessary for the fine-scale computation to start from the same state
as the corresponding Gauss point at the coarse scale. Following Equation (23), displacements �u
are imposed on the fine-scale FE mesh by

�u2=�e1 ·x2 (26)

where �u2 is the applied displacement boundary condition on the fine scale, �e1 is the strain
increment of the coarse-scale Gauss point, and x2 is the position vector of the fine-scale mesh.
Equation (26) means that the fine-scale displacement field is constrained to follow the coarse-
scale displacement field at the boundary. The imposed displacements define a new boundary value
problem, where the domain is the tributary area of the coarse-scale element.

Then, the fine-scale stress r2(x) is computed from the constitutive equation with the prescribed
strain e02 and the boundary condition �u2. Upon the completion of the fine-scale FE computation,
the coarse-scale stress is then obtained by the homogenization equation, i.e.

r1= 1

meas(�)

∫
�
r2(x)d� (27)

As we employ FEs at both scales, we rely on the Newton–Raphson iterative algorithm to solve
nonlinear problems. A consistent tangent operator (CTO) is needed for nonlinear FE analyses. In
general, the CTO is defined as

c := �r
�e

(28)

where r and e are stress and strain tensors, respectively.
When we invoke the multi-scale computation for a particular coarse-scale element, to compute

the corresponding CTO for the coarse scale, we use Equations (27) and (28), and take into account
the assumption that a homogeneous state of strain and strain increments are applied:

c1 : = �r1
�e1

= 1

meas(�)

∫
�

�r2
�e2

:
�e2
e1

d�

= 1

meas(�)

∫
�
c2 : Id�

= 1

meas(�)

∫
�
c2 d�

(29)

where I is the fourth-order identity matrix.
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Finally, the averaged stress and CTO are passed back to the Gauss point at the coarse scale
for global stiffness and residual matrices assembly. Figure 9 summarizes the above-described
multi-scale framework.

The above-described scheme will allow one to systematically refine the domain of interest
and passing information from field scales all the way to specimen and mesoscales. The selective
refining strategy, on the other hand, would allow for a more efficient solution where details are
only resolved when necessary. The idea here is to zoom into zones where intense deformation is
taking place. Identifying those ‘key areas’ is a nontrivial task and may require an error estimator
and an adaptive algorithm, which is beyond the focus of this paper. Here, we will loosely define
such key areas through the deterministic study. For the footing problem shown later, we know
a priori to a good extent where the intense deformation occurs.

5. NUMERICAL SIMULATIONS

In this section, we present numerical simulations of a typical footing problem utilizing random
fields and the FEM at multiple scales. The geometry of the problem is 20×8m, which is discretized
by a coarse-scale FE mesh. A rough rigid footing on cohesive weightless soil is modeled with width
of the footing (B) being 4m. A Drucker–Prager model [24] is used to describe the elasto-perfectly
plastic behavior of the soil. The friction angle in the following simulations is set to be zero for
simplicity. Soil properties needed in the mechanical model are Young’s modulus E , Poisson’s
ratio �, and the undrained shear strength Su. Both the bearing capacity and the settlement of the
footing will be analyzed. Su and E could be modeled as cross-correlated random fields for higher
accuracy, e.g. via suitable correlation functions. However, it is known that Su is the dominant
factor in bearing capacity analysis, while E is the dominating factor in settlement analysis. To
simplify the analysis and to focus on the effect of randomness across different scales, Su is treated
as the only spatially correlated random variable in the bearing capacity analysis with constants
(deterministic) E and �, while E is treated as a correlated random field in settlement analysis with
Su and � being constant and deterministic.

The objective of this footing problem is to utilize the above-described framework to study the
effect of random fields on the performance of the geosystem in a multi-scale context. In particular,
the influence of considering finer scale random fields will be analyzed. In the following simulations,
three length parameters are of particular interest to the analysis, i.e. a, L1, and L2, where a
is the parameter related to spacial correlation (Equation (5)) and larger value of a indicates a
more smoothly varying field; L1 is the size of a coarse-scale element, which is a constant in this
paper (L1=0.5m); and L2 is the size of a fine-scale element, which depends on the degree of
discretization. The degree of discretization (ds) indicates how quickly a coarse-scale cell will be
refined. For example, ds=4 means a 1×1 cell at the coarse scale will be refined to 4×4 smaller
pieces at the fine scale.

5.1. Deterministic study

A deterministic study was first carried out using single-scale FEs (at the coarse scale) to obtain
the deterministic bearing capacity and settlement, and to identify possible ‘key areas’ that will
be linked to fine-scale information. Material properties used are Young’s modulus E=100MPa,
Poisson’s ratio �=0.3, and the undrained shear strength Su=100kPa.

Typical load–displacement curves are shown in Figure 10. Here, failure is said to occur when
further loading no longer increases the bearing pressure (within a very small tolerance). It can
be seen from Figure 10 that as the mesh is refined, the bearing capacity will converge to the
value calculated by Prandtl’s solution, q f =NcSu=514kPa. Taking into account both accuracy
and efficiency, we choose a coarse-scale mesh of 40×16 elements, as shown in Figure 11, for
all simulations in the following sections. The deterministic bearing capacity for this mesh is
qd =556.27kPa, which is about 8% higher than that given by Prandtl. For rigid rough footing
condition simulated here, the footing nodes settle vertically by the same amount with no rotation.
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Figure 10. Load–displacement curves for a strip footing on homogeneous soil.

Figure 11. The coarse-scale finite element mesh (40×16) and the area linked to the finer scale.

When loading pressure on the footing equals 300 kPa, the deterministic settlement �det equals to
0.012m, which can be normalized by the width of the footing, i.e. �det/B=0.003. In simulations
utilizing random fields, the settlement at 300 kPa loading pressure will be obtained and compared
with this deterministic value.

Figure 12 shows the deviatoric strain contour at failure. Intense deformation occurs at the edge of
the footing and failure surfaces are clearly formed. The ‘key area’ is therefore chosen to encompass
the intense deformation zone and the failure surfaces, as shown in the dashed box in Figure 11. The
geometry of this area is 12×4m. Also shown in Figure 11 are different levels of discretization.

5.2. Influence of multi-scale random fields on bearing capacity

In this section, the multi-scale random fields and the FEM are incorporated to simulate the footing
problem. An initial coarse-scale random field for the undrained shear strength is generated using
40×16 grids and hence matching the FE resolution. Three coarse-scale correlation length parame-
ters (normalized), i.e. a/L1=0.5, 1.0, and 2.0 will be considered when generating random fields. In
the ‘key area’, the fine-scale resolution will be different depending on the degree of discretization.
Three particular cases with ds=1, 4, and 8 are considered. The coarse-scale FE mesh will be split
accordingly as shown in Figure 11 to match the random field resolution.
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Figure 12. Deviatoric strain contour at failure for a deterministic study.

Material parameters for generating lognormally distributed random fields are the mean �=
100kPa, which equals to the shear strength value used in the deterministic study, and the standard
deviation �=50kPa, which gives the coefficient of variation (COV) a value of 0.5. Constant
material properties are Young’s modulus E=100MPa and Poisson’s ratio �=0.3.

The initial random field simulation will first generate a coarse-scale resolution for the entire
domain. This field will be referred to as ‘coarse-scale random field’. Within the ‘key area’, the
framework described in Section 3 will be used to resolve the coarse-scale points down to finer pieces
according to specified degree of discretization. The generated random field after this refinement
process will be referred to as ‘multi-scale random field’. Through comparison of these two types of
random fields, we will show how considering finer scale information will influence the mechanical
behavior of the whole system.

Typical realizations of initial undrained shear strength fields for different degrees of discretization
are shown in Figure 13 for a/L1=2.0. Coarse-scale random fields are on the left column and
corresponding multi-scale random fields are on the right column. The degree of discretization
increases from top to bottom.

Although the same material parameters, i.e. � and �, are used for generating every random field
in this paper, they are defined at different length scales for different degrees of discretization. For
every realization, we can compute the mean and standard deviation of each generated random field
as well as the averages of those mean and standard deviation values, as shown in Figures 14 and
15. Moreover, those averaged values can be used in approximating mean bearing capacities [25].

The idea is to start from the simplified bearing capacity equation, where soil is assumed to be
weightless, then

q f = SuNc (30)

If we assume Prandtl’s solution for frictionless soil (as is the case in this paper) holds, then Nc is
constant (Nc =5.14). Take natural logarithm of Equation (30)

lnq f = lnSu+ lnNc (31)

The mean of lnq f is therefore

�lnq f
= �lnSu +�lnNc

= ln�Su −
1

2
ln

(
1+ �2Su

�2Su

)
+ lnNc (32)

Then the mean of q f can be approximated as

�q f
=exp{lnNc+ ln�Su − 1

2 ln(1+�2Su/�
2
Su)} (33)

This approximated analytical mean value of bearing capacity will be plotted with the results
obtained by FEM computation as will be shown later.
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Figure 13. Initial undrained shear strength fields for a/L1=2.0 with different degrees of discretization:
from top to bottom: ds=1, 4, and 8, respectively, with the left column being coarse-scale random fields

and the right column being multi-scale random fields.

(a) (b)

(c)

Figure 14. Mean for the generated initial undrained shear strength: (a) ds=1; (b) ds=4; and (c) ds=8.
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(a) (b)

(c)

Figure 15. Standard deviation for the generated initial undrained shear strength:
(a) ds=1; (b) ds=4; and (c) ds=8.

Figure 16. Load–displacement curves for all simulations.

The load–displacement behavior obtained by random fields and deterministic analyses is shown
in Figure 16 for all simulations. It can be seen that bearing capacities of spatially varying soil are
significantly lower (18% on average) than the corresponding deterministic value.

Figure 17 shows how bearing capacities change with a/L1 for different degrees of discretization.
The first observation is that the mean bearing capacities computed by Equation (33) are in good
agreement with the FEM results especially for multi-scale cases, which shows Equation (33)
can be used as a rough estimation of mean bearing capacities. Also, it can be seen that (1) for
coarse-scale results with the same discretization level, the averaged bearing capacity increases
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(a) (b)

(c)

Figure 17. Bearing capacities for different degrees of discretization: (a) ds=1; (b) ds=4; and (c) ds=8.

slightly as a/L1 decreases, this observation is consistent with the standard deviation curve shown
in Figure 15, where smaller value of a/L1 gives a lower standard deviation and, therefore, a
stronger field and (2) for coarse-scale results with the same a/L1, the averaged bearing capacity
increases with ds. This is because the coarse-scale data point is seen as the average of the fine-
scale points. The averaging process effectively reduces the variability, especially for larger values
of ds, which is shown in Figure 15 where the standard deviations for ds=4 and 8 are smaller
than that of ds=1 for the same a/L1 values. While the mean values are roughly the same for
all simulations, the reduced variability will result in stronger fields that lead to higher bearing
capacities.

Even more important observation in Figure 17 is the effect of using multi-scale random fields.
It can be seen that the mean of the bearing capacities obtained by multi-scale computation is not
influenced as much by either ds or a/L1. This is because the mean of the bearing capacities is
mainly affected by the mean and standard deviation of the undrained shear strength fields, which
as shown in Figures 14 and 15, is not significantly sensitive to either ds or a/L1. Furthermore,
with ds and a/L1 being the same, multi-scale bearing capacity results are, in general, smaller than
coarse-scale ones, especially for smaller values of a/L1. The reason is that, instead of using a local
average of the material properties, multi-scale computations zoom into the specific area to obtain
more detailed fine-scale information, which has roughly the same mean but higher variability than
their coarse-scale counterparts (as shown in Figures 14 and 15). Therefore, this results in weaker
zones that lead to lower bearing capacities. Also, the trend that the difference between coarse-scale
and multi-scale bearing capacities decreases as a/L1 increases is consistent with the trend observed
in the standard deviation of generated data shown in Figure 15. The above observations confirm
that using averaged coarse-scale material properties tends to overestimate the bearing capacity. In
other words, coarse-scale results are less conservative.

Figure 17 shows how the bearing capacities are influenced by multi-scale random fields with
different levels of discretization. However, it does not provide information about how the failure
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Figure 18. Comparison between coarse-scale and multi-scale random fields on failure surface for a/L1=0.5
with ds=1: left column are initial shear strength fields and right column are shear strain contours at

failure. (a) and (b) correspond to coarse scale and (c) and (d) correspond to multi-scale.

Figure 19. Comparison between coarse-scale and multi-scale random fields on failure surface for a/L1=0.5
with ds=4: left column are initial shear strength fields and right column are shear strain contours at

failure. (a) and (b) correspond to coarse scale and (c) and (d) correspond to multi-scale.

surfaces are affected by considering the random field at multiple scales. Such insight is provided
in Figures 18–20, which show the deviatoric strain contours for one particular realization for
a/L1=0.5 with ds=1, 4, and 8. Unsymmetrical failure surfaces can be clearly seen in these figures.
In the literature, e.g. [2–4], effects of single-scale random fields on formation of failure surfaces
are studied. It has been shown that spatially varying soil properties trigger unsymmetrical failure
surface passing mainly through weaker soil zones. Figures 18–20 show clearly these trends. More
interestingly, these figures show that in multi-scale random cases there are more local fluctuations
in the shear strains than in the coarse-scale cases, because higher levels of resolution are taken into
account. This detailed information may lead to effectively weaker spots resulting in lower bearing
capacities.
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Figure 20. Comparison between coarse-scale and multi-scale random fields on failure surface for a/L1=0.5
with ds=8: left column are initial shear strength fields and right column are shear strain contours at

failure. (a) and (b) correspond to coarse scale and (c) and (d) correspond to multi-scale.

5.3. Influence of multi-scale random fields on settlement

In this section, the influence of multi-scale random fields on settlement is analyzed. For this
purpose, Young’s modulus E is treated as the random variable while � and Su are held constant.
Material parameters for generating lognormally distributed Young’s modulus fields are the mean
�=100MPa, which is equal to the values used in the deterministic study, and standard deviation
�=50MPa, which gives a COV value of 0.5. Three correlation length parameters (normalized)
a/L1=0.5, 1.0, and 2.0 are used. The process for generating random fields, the definition of
degree of discretization, and the notation for results are exactly the same as those used in bearing
capacity analysis. We look at the variations in settlement at a pressure level of 300 kPa.

Typical realizations of initial Young’s modulus fields for different degrees of discretization
are shown in Figure 21 for a/L1=2.0. Coarse-scale random fields are on the left column and
corresponding multi-scale random fields are on the right column. The degree of discretization
increases from top to bottom.

Figure 22 shows settlements versus a/L1 for different degrees of discretization. The settlements
are normalized by the width of the footing. Analogous to bearing capacity analysis, it can be
seen that (1) for coarse-scale results with the same discretization level, the averaged settlement
increases as a/L1 increases; (2) for coarse-scale results with the same a/L1, the averaged settlement
decreases with increasing ds; (3) for ds=1, there is no difference between coarse-scale and multi-
scale results as expected; and (4) for ds=4 and 8 cases, higher levels of resolution are taken into
account in multi-scale computations and the results show that the multi-scale random fields yield
larger settlements on average for every value of a/L1, which confirms that coarse-scale results are
less conservative.

Remark 1
Sections 5.2 and 5.3 explore the effects of changing resolution for the specific examples presented
in this paper. Generally, increasing number of fine-scale elements within a coarse-scale element will
result in lower bearing capacity (in bearing capacity analysis) and higher settlement (in settlement
analysis). In this formulation, the correlation length sets the macroscopic size of the elements. In
essence, the element size should be such as to be able to resolve the gradients in the stochastic
field. This is accounted for in our analysis. As for the effect of the RVE size, this formulation does
not determine or sets the size of RVE, this is something that would rather be problem dependent
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Figure 21. Initial Young’s modulus fields for a/L1=2.0 with different degrees of discretization: from
top to bottom: ds=1, 4, and 8, respectively, with left column being coarse-scale random fields and right

column being multi-scale random fields.

and determined by the correlation lengths and the deformation gradient in the problem. Interested
readers may refer to [26] for discussions on selecting the size of the averaging window.

6. CONCLUSIONS

In this paper, we presented a novel method for characterizing multi-scale random fields. CDFs
and spatial correlation for two soil properties of interest, undrained shear strength and Young’s
modulus, were described at the finest considered scale. The relationship between this scale and a
coarser scale was defined and incorporated into a sequential simulation procedure. While two scales
were presented here, including more by expanding the multi-scale definitions is straightforward,
and there is no need to specify the number of scales in advance. Simulations begin at the coarse
scale and work towards higher resolution, but the results are indiscernable from starting at the fine
scale and averaging those elements together. For convenience, a correlated standard Gaussian field
was initially generated and then transformed to the target distribution via normal-score mapping.

We then proposed a framework for coupling the FEM with random fields at multiple scales.
The formulation of the framework is based on the assumption that the strain and the stress at an
arbitrary material point in the coarse-scale domain are the volume average of the strain and stress
fields over the fine-scale domain, respectively. The framework consists of an element-splitting
technique and a concurrent information-passing scheme. A selective refining strategy was used so
that resolution is only increased where necessary.

A total of 720 simulations were performed. Among them, half utilized the proposed multi-
scale framework and the other half utilized coarse-scale random fields for comparison purposes.
Bearing capacity and settlement analyses were performed using the undrained shear strength and
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(a) (b)

(c)

Figure 22. Settlements for different degrees of discretization: (a) ds=1; (b) ds=4; and (c) ds=8.

the Young’s modulus as the random variable, respectively. It was shown that material property
fluctuations, in general, will result in lower bearing capacities, unsymmetrical failure surfaces,
and larger settlements. More importantly, multi-scale results show that higher levels of resolution
result in lower bearing capacities and larger settlements. Or in other words, coarse-scale results are
generally less conservative. These results show how the mechanics of the geosystem is influenced
by multi-scale random fields and the importance of accounting for material inhomogeneities at
different scales.
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