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American Community Survey data are used to build logistic regression models that predict the
capacity of owner households to finance the post-earthquake repair of their homes. Having
high income and a paid mortgage are used as proxies for the ease of access to financing. We
find that households with limited knowledge of English and those with elderly members are
the least likely to have a high income. Households with high income and those who have
recently moved to their current homes are the most likely to have a mortgage. An example
application considering post-earthquake housing recovery in San Francisco is presented. The
example demonstrates a strong disparity in the recovery capacity of households based on
their demographics. The developed models have important implications for post-earthquake
housing recovery as they help to identify the demographics that make households less capable
of repairing their homes after an earthquake.

1 Introduction

Due to the rare nature of earthquakes, our
ability to anticipate the factors that will dic-
tate post-earthquake housing recovery in fu-
ture disasters is limited. For this reason,
it is generally accepted that predictive mod-
els of housing recovery can provide valu-
able insights for recovery planning. Simu-
lation models have been used to investigate
housing recovery after hypothetical earth-
quakes in Jerusalem (Grinberger and Felsen-
stein, 2016), the south Napa (Kang et al.,
2018), Nepal (Longman and Miles, 2019),
Vancouver (Costa et al., 2020), the San Fran-
cisco Bay Area (Markhvida et al., 2020), and
the Lombok region in Indonesia. (Alisjah-
bana and Kiremidjian, 2020). These simu-
lations demonstrate that low-income house-
holds are affected disproportionately and are

less capable of repairing their homes. The im-
pact of income on recovery capacity is rela-
tively intuitive, e.g., wealthier households are
more likely to have the means to repair their
homes. From a housing recovery modeling
perspective, disparities in the recovery capac-
ity of different income groups can be simu-
lated via their ease to access financing for re-
pairs.

However, to inform the development of
housing recovery policies, it is important to
understand the correlation between recov-
ery capacity and a wider range of house-
hold demographics. Studies of previous dis-
asters have demonstrated that housing recov-
ery is made uneven by demographics such
as home ownership (Wu, 2004; Kamel and
Loukaitou-Sideris, 2004; Mayer et al., 2020),
race (Bullard and Wright, 2009; Fussell
et al., 2010; Peacock et al., 2014), immigra-



The 13th International Conference on Structural
Safety and Reliability (ICOSSAR 2021),
June 2125, 2021, Shanghai, P.R. China

J. Li, Pol D. Spanos, J.B. Chen & Y.B. Peng (Eds)
tion status and linguist barriers (Kamel and
Loukaitou-Sideris, 2004; Loukaitou-Sideris
and Kamel, 2004), education (Burton, 2015;
Nejat et al., 2019), family structure (Nejat and
Ghosh, 2016; Nejat, 2018), age (Ngo, 2001;
Henderson et al., 2010), gender (Nejat et al.,
2018) household size (Sadri et al., 2018),
among others. Unlike for income, there are
no simple heuristics to describe the effect
of demographics such as immigration status,
family structure, or race on housing recov-
ery capacity. Empirical studies have demon-
strated that certain groups are less capable of
repairing their homes. However, the mecha-
nisms that lead to differential recovery capac-
ity in previous disasters may not be transfer-
able across space and time. Thus, simulating
the disparity between households due to their
demographics is challenging.

Regression models have been employed to
investigate the demographics that limited the
housing recovery capacity of households in
past events. A recent study by Nejat et al.
(2019) used survey data to build a spatial lo-
gistic regression model to predict the recov-
ery decisions made by households in Staten
Island, New York, in the aftermath of Hurri-
cane Sandy. However, a gap still exists when
the goal is to use simulations to predict the de-
mographics that are are expected to limit the
capacity of households to repair their homes.

To address this gap, this paper develops lo-
gistic regression models that predict house-
hold income and mortgage status, which in
turn are used in housing recovery simulations
as proxies for the ability of the households to
finance home repairs. With this approach, a
wider range of household demographics asso-
ciated with the capacity to quickly recover are
identified. The methodology relies on pub-
licly available information from the American
Community Survey. Thus, it can be applied
to any community for which data are directly
available from the survey. This can inform
targeted mitigation policies, as well as assist
in evaluating their potential benefits.

2 Housing Recovery Simulation

In this section we discuss how the logistic re-
gression models developed in this study can
be incorporated into housing recovery simu-
lations. Figure 1 shows the proposed algo-
rithm for simulating housing recovery, which
is similar to other existing models (Sutley
et al., 2017; Burton et al., 2018; Costa et al.,
2020). Here, the focus is on owner-occupied
single-family buildings because the recovery
of these buildings is dictated by the house-
holds that occupy them. This study assumes
that all households would be willing to repair
their buildings after an earthquake. The algo-
rithm in Figure 1 considers the recovery of a
portfolio of NB damaged buildings is of inter-
est. The time needed to repair building i, Tr,i,
is estimated using a HAZUS-like approach
(FEMA, 2015). However, before repairs can
start, financing, materials, and skilled work-
ers must be procured. The algorithm consid-
ers four sequential decisions, represented as
rhombuses. Decision (1) guarantees that the
state of each building is evaluated on each
time step. Decision (2) checks if building i
has not yet been fully repaired. Next, the
availability of funds is checked in Decision
(3). If financing is obtained, Decision (4)
checks if materials and workers are available
for repairs. If Decision (4) returns ’No’, the
household enters a competition for these re-
sources against other households that have al-
ready obtained financing. If Decision (4) re-
turns ’Yes,’ this means the building can ad-
vance repairs, and the duration of the current
time step, ∆t, is deducted from the total time
need to repair the building, Tr,i. The build-
ing is considered repaired when Tr,i =0. The
algorithm is evaluated repeatedly to simulate
the progress along the timeline of recovery.

Decision (3) in Figure 1 is the main fo-
cus of this study. Funds from insurance, pri-
vate loans, and public loans are considered.
The REDi guidelines (Almufti and Willford,
2013) provide estimates of the times needed
to obtain financing from these three sources.
Insurance payments are the fastest alterna-
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Figure 1. Algorithm for housing recovery simulation illustrating the decisions made by households on damaged
buildings on one time step of the simulation. The highlighted elements indicate the focus of this study.

tive, followed by private loans. Thus, insured
households obtain financing and procure ma-
terials and workers sooner than those that rely
on loans. The number of construction work-
ers in the community is limited and allocated
on a first-come-first-serve basis. Thus, the
households that are the slowest at obtaining
financing may need to wait for repairs to be
completed on other buildings before having
access to certain resources.

Figure 2 shows the semi-heuristic algo-
rithm for repair financing used in this study.
Earthquake insurance take-up rates in Califor-
nia are low, about 10% (Marshall et al., 2018).
The algorithm assumes that only, but not all,
high-income households have insurance. A
deductible equal to 15% of the value of the
building is assumed (Marshall et al., 2018).
If the deductible is below the annual house-
hold income, the household is assumed to be
able to pay it out-of-pocket. Low-income and
moderate-income homeowners, those not in-
sured, and those insured who cannot pay the
deductible out-of-pocket seek a loan. It is

assumed that homeowners with paid mort-
gages can obtain all funds needed for repairs
from a private loan. Furthermore, homeown-
ers with mortgages would depend on public
loans. Homeowners are assumed to need to
obtain all financing before repairs can start.

The algorithm in Figure 2 relates income
and mortgage status to the mechanism used
by a household to finance repairs. This pa-
per develops logistic regression models that
associate a household’s demographic charac-
teristics to the probability that it has a high
income or a mortgage. These logistic regres-
sion models, discussed in the following, allow
for the recovery capacity of specific socioeco-
nomic groups to be partially captured by the
simulation model.

3 Logistic Regression Models

The American Community Survey annually
collects data on the population demograph-
ics and the housing stock of major US cities
and distributes them as Public Use Microdata
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Figure 2. Financing algorithm for housing reconstruc-
tion indicating the logistic regression models for in-
come and mortgage status.

Samples (PUMS). The PUMS files are a set
of records from individual households avail-
able in three formats: 1-year counts, 3-year
counts, or 5-year counts. As per the US Cen-
sus Bureau, the 5-year counts are the best data
for analyses not significantly affected by re-
cency. For this reason, this study employs the
2014-2018 PUMS.

The American Community Survey PUMS
are used in this study to build logistic
regression models to predict if a house-
hold has a high income or a mortgage.
This study focuses on single-family owner-
occupied homes in the city of San Francisco,
for which there are 4878 survey responses
available. Table 1 lists the American Commu-
nity Survey demographics selected as possi-
ble predictors of household income and mort-
gage status. These demographics are selected
because they have been demonstrated to be
correlated with social vulnerability. The vari-

able ’Moved in after 2010’ is aimed at captur-
ing if the household is a long-term resident of
San Francisco or not. Two demographics in
Table 1 are marked with (*) to indicate they
are estimated via proxies. The households
which indicated not to have any member who
fluently speaks English were categorized as
having a limited knowledge of English. The
households which indicated that the language
spoken among household members is Span-
ish are categorized as having a Hispanic back-
ground.

The demographics in Table 1 are collected
in a vector of n predictor variables XXX =
1,X1, . . . ,Xn, and used to fit logistic regres-
sion models. Boolean yes/no data are mapped
into 1/0 variables. Categorical data with c cat-
egories are mapped into c-1 dummy variables.
The probability that a household has a high
income (or a mortgage) given its demograph-
ics, P(HI=yes|XXX), is estimated as

P(HI=yes|X) =
exp(βββ T XXX)

1+ exp(βββ T XXX)
(1)

where βββ = β0, . . . ,βn are the coefficients of
the model, which are fitted using the Least
Absolute Shrinkage and Selection Operator
(LASSO). The LASSO imposes a penalty on
the size of the coefficients βββ , forcing predic-
tors with low predictive power to be selected
out of the final model (Tibshirani, 1996). Due
to the regularization, certain coefficients are
shrunk to zero leading to models with fewer
predictors. Models with fewer predictors
have been shown to be less prone to over-
fitting and to yield better predictions when ap-
plied to new data (Agresti, 2003).

The first logistic regression model esti-
mates the probability that a household has a
high income, i.e., P(HI=yes|XXX). High income
is defined as income higher than 120% of the
median area income, about $115,000 for San
Francisco. Table 2 shows the significant vari-
ables identified by the LASSO and their coef-
ficients. The area under the receiver operating
characteristic curve, i.e., AUC, for the model
in Table 2 is 0.79. The results show that
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Table 1. Household demographics available from the American Community Survey. Demographics marked with
* are estimated from proxies.

Demographic Categories

Building type Single-family or Multi-family
Building year built ≤ 1941, 1940 to 1975, or > 1975
Building value Real number
Household size Integer number
Moved in after 2010 Yes or No
Married couple Yes or No
Children in household Yes or No
Elderly in household Yes or No
Limited knowledge of English* Yes or No
Hispanic background* Yes or No

households with limited knowledge of En-
glish are the least likely to have a high income
as denoted by the high negative value of the
log-odds estimate for this predictor. House-
holds comprised of married couples, with no
elderly, and those who have recently moved
into the city are more likely to have high in-
comes as well. In terms of size, the larger the
household, the more likely it is to have high
income.

Table 2. Regression coefficients for P(HI=yes|XXX). All
predictors are significant at the p < 0.001 level.

Predictor Estimate

Intercept -1.49
Limited knowledge of English -1.76
Elderly in household -0.64
Moved in after 2010 0.57
Married couple 0.87
Building value [M$] 0.38
Household size 0.35

The second model estimates the proba-
bility that a household has a mortgage on
their home, P(mortgage=yes|XXX). Table 3
shows the demographics identified as signif-
icant predictors in this model. Households
with limited knowledge of English and those
with elderly members are the least likely to
have a mortgage. Households with high in-
come and who have recently moved into their

homes are the most likely to have a mortgage.
From the American Community Survey data
it is observed that households with limited
knowledge of English tend to occupy lower-
valued buildings, have elderly members, and
not to be recently movers. Recently mover
households tend to be high-income, younger,
married couples with children who occupied
highly-valued buildings. This helps explains
the counter-intuitive fact that households with
limited knowledge of English tend not to have
a high-income and yet have paid mortgages.
The AUC for the model in Table 3 is 0.73.

Table 3. Regression coefficients for
P(mortgage=yes|XXX). All predictors are signifi-
cant at the p < 0.001 level.

Predictor Estimate

Intercept 0.22
Limited knowledge of English -0.44
Elderly in household -0.69
Moved in after 2010 0.73
Children in household 0.71
High-income 0.74

4 Case Study and Results

This illustrative case study simulates the
housing recovery of single-family owner-
occupied homes in San Francisco after an
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Mw=7.9 earthquake on the San Andreas fault.
All buildings are assumed to be light-frame
wood buildings, i.e., ’W1’ as per the HAZUS
classification (FEMA, 2015). Each household
and building in the simulation is given a set
of demographic characteristics (Table 1) sam-
pled from the population distribution. San
Francisco is comprised of 194 Census tracts.
The attributes of the households are sampled
from Census data for the Census tract it be-
longs to. For example, if Census data indi-
cate that 30% of all households in a Census
tract have a low income, 30% of all house-
holds are randomly assigned as low income.
The use of Census tract data to instantiate the
household demographics allows for the spa-
tial correlations between demographics, e.g.
having a limited knowledge of English and
being a recent mover, to be partially captured.
Although this is outside of the scope of this
study, explicitly accounting for the correla-
tion between these demographics would the-
oretically lead to more refined results. Once
the building and household demographics are
attributed, whether the household has a high
income or a mortgage is then simulated ac-
cording to the probabilities based on Eq. 1
and Tables 2 and 3, using the household char-
acteristics as inputs.

Fragility curves are used to translate the
ground motion intensities estimated at the
centroid of the census tracts into building
damage. The algorithm in Figure 1 is then
used to simulate housing recovery over time.
This case study investigates recovery for a pe-
riod of five years after the earthquake. During
this period, it is assumed that at most 10%
of the buildings that were initially damaged
by the earthquake can be under repairs at the
same time. The 10% ceiling is arbitrarily im-
posed in order to create scarcity of resources.

Figure 3 shows the housing recovery
curves for selected demographics. In each fig-
ure panel the results are deaggregated based
on the categories of the indicated demo-
graphic. The solid lines in these panels are
the number of buildings which are damaged
and have not yet been repaired at a given

time, indicated on the left-hand side ordinate
axis. For example, the black solid line on the
top-left panel indicates that immediately after
the earthquake nearly 17,000 damaged build-
ings are owned by high-income households.
There are more damaged buildings occupied
by high-income households because there are
more high-income households in general, i.e.,
filtering is not accounted for. The slopes of
the solid lines indicate the speed at which re-
covery is progressing. If the rate of change in
these slopes is calculated and plotted against
time since the event, the dotted lines in each
panel are obtained. Note that the ordinate
axes for the dotted lines are plotted on the
right-hand side of each panel. The dotted
lines are not dependent on the number of
buildings damaged in each category, provid-
ing a normalized metric of performance of
housing recovery.

The dotted lines show that the disparity in
the speed of housing recovery is highest be-
tween the high-income and non-high-income
groups. The disparity between income groups
is highest during the first year but is notice-
able throughout the period investigated. Lim-
ited knowledge of English has the second
most noticeable effect on the speed of housing
recovery. This is in accordance with the logis-
tic regression model for high income, which
indicated that households with limited knowl-
edge of English are the least likely to have
high income. Similarly, households com-
prised of married couples fare better because
this is a good predictor of higher income. The
effect of the demographics in the three pan-
els in the bottom is less noticeable. It is also
noted that unlike the effect of high income,
the effect of the remaining demographics is
less pronounced beyond the first year. This is
due to these demographics not being perfect
predictors of having high income.

The results in Figure 3 demonstrate that the
proposed methodology can at least partially
capture disparities in the recovery capacity
of households with different demographics.
These disparities are captured without impos-
ing strict assumptions of the effects that a de-
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Figure 3. Results by selected demographics. The solid lines are the number of homes waiting for repairs, indicate
on the left-hand side ordinate axis. The dotted lines indicate the speed of recovery, measures as the % of repairs
completed per day since the earthquake.

mographic, e.g., Hispanic background, has on
recovery capacity. Household demographics
are simply correlated to income and mortgage
status. If this correlation was not accounted
for, i.e., Hispanic background, income, and
mortgage status of households were assigned
randomly, the dotted lines in Figure 3 would
be parallel.

5 Conclusions

This paper introduces a methodology to as-
sociate a wide range of household demo-
graphics to their ability to finance the post-
earthquake repairs of their homes. Two lo-
gistic regression models fitted from data from
American Community Survey of San Fran-
cisco are developed. These models are then
used to estimate how quickly a household
can obtain financing based on its demograph-
ics, family structure, and income. The speed
at which households obtain financing is used
in housing recovery simulations to determine
when these households can start procuring re-
sources for reconstruction. Thus, the pro-
posed methodology can capture the influence

of household demographics on their recovery
capacity. Quantifying potential difficulty in
recovery provides insights into disaster recov-
ery planning, and helps identify effective ac-
tions to improve housing recovery. The re-
gression models in this paper can be used
to improve the results produced by existing
housing recovery models. Furthermore, the
models are fitted using publicly available data
which are collected for several communities
in the US. It is envisioned that the proposed
methodology can be used to study recovery
capacity of different socioeconomic groups in
any of these communities.
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