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Abstract

A modular framework for assessing the economic, environmental, and social
impacts of structural durability has been proposed and applied to a concrete
structure expected to undergo climate-change-accelerated chloride-induced re-
inforcement corrosion. The proposed performance-based durability engineering
(PBDE) framework comprehensively considers uncertainty, accommodates non-
stationary exposure, and computes quantitative sustainability metrics. Drawing
on previous work in the nuclear risk and earthquake engineering communities,
PBDE’s three analysis stages are de-coupled at pinch-points, allowing the use of
a convolution integral to link uncertainty in exposure, deterioration and repair,
and sustainability impacts. The convolution-based methodology for the PBDE
framework has been compared with traditional Monte Carlo simulation. Results
of the convolution approach were statistically equivalent to brute-force Monte
Carlo analysis using the same number of simulations, and the convolution ap-
proach has advantages in deaggregation, backwards conditioning, and updating
of results to reflect new information or models. Limitations of the convolution
approach are discussed, as are possible techniques for decreasing computational
expense and areas for future work. Potential applications for PBDE include
design code calibration, decision support for climate change adaptation policy,
and sensitivity assessment to direct research.
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1. Introduction

The design and renewal of sustainable and resilient infrastructure pose chal-
lenges to managers operating under funding constraints and changing use and
exposure conditions. Numerous studies note a backlog of infrastructure re-
newal in the United States; reducing this backlog demands efficient allocation
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of resources to address the most critical structures [1]. In the US transporta-
tion sector, the cost of rehabilitating approximately 67,000 structurally deficient
bridges is estimated at $33 billion USD [2]. Approximately 80% of all US bridges
and 50% of structurally deficient bridges were constructed prior to 1960, which
suggests likely growth of the current backlog without implementation of a sub-
stantial preventive maintenance program.

The need for additional infrastructure renewal to adapt to the changing
climate will further stretch resources, and will require balancing costs, envi-
ronmental impacts, and societal risk. Climate change is predicted to increase
the rate of damage caused by corrosion of black steel reinforcement in concrete
structures [3–6], the most common cause of reinforced concrete deterioration
[7]. In the US, over 65% of all bridges and 34% of structurally deficient bridges
have reinforced or prestressed concrete substructures and superstructures; many
other bridges have reinforced concrete decks [2]. Cement and steel production in
the US were estimated to emit 96.5 million metric tons of greenhouse gases (CO2

eq.) in 2011 [8], and cement production comprises approximately 5% of annual
worldwide anthropogenic carbon dioxide emissions [9]. The high environmental
impacts of infrastructure materials create a self-reinforcing cycle: unsustainable
infrastructure design worsens climate change, thereby reducing infrastructure
durability, resiliency, and sustainability, and spurring further, unsustainable, in-
frastructure renewal. To support rational infrastructure management, federal,
state, and municipal agencies in the United States have demanded quantitative
performance metrics for sustainability [10]. Decision-makers must aim to ensure
a low and acceptable degree of natural hazards risk while meeting sustainabil-
ity goals, which in turn requires consideration of uncertainty in efforts to curb
emissions, climate sensitivity, and the impact of climate change on structural
durability and performance.

Due to the importance of providing decision support for infrastructure de-
sign, management, and rehabilitation, many approaches to durability design
have recently been proposed or refined, e.g., [4; 6; 11–17] for reinforced con-
crete structures. Existing durability design approaches balance merits and con-
straints; lack of applicability to multiple types of infrastructure, inability to se-
lect from a variety of models, and inadequate consideration of climate change are
common limitations. Several approaches currently employed by transportation
infrastructure managers may not accurately predict deterioration in changing
use and exposure conditions. These methods are also in many cases insuffi-
cient to assess innovative designs or repair strategies. While researchers have
addressed some limitations, many existing research approaches do not extend
to the fully-probabilistic economic, social, and environmental decision support
data required by operators. A more general and flexible methodology is needed
to tie together research models in a decision-oriented approach.

A framework is proposed herein to circumvent common limitations and
to provide a comprehensive methodology for structural durability assessment.
Drawing on related methodologies used in probabilistic risk assessment for earth-
quake engineering, a performance-based approach is taken [18–20]. Performance-
based approaches emphasize the direct computation of engineering variables of
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Figure 1: Stages and pinch-points of the PBDE assessment. Simulations are performed in
stages based on a limited number of pinch-point variables passed on from the preceding anal-
ysis stage.

interest through the use of mathematical models, rather than the use of pre-
scriptive approaches intended to ensure acceptable performance. The proposed
framework considers uncertainty in all analysis stages, similar to many risk
frameworks in other application domains, yet distinctly new relative to the ma-
jority of durability frameworks.

As first proposed in [21], the framework offers conceptual clarity in assessing
infrastructure performance by separating the contributions of multiple disci-
plines into discrete analysis stages. Robust decision support is provided by
combining the uncertainty associated with each analysis stage. The framework
links a series of conditionally independent analysis stages at “pinch-points,”
where only a few variables are passed from one stage to the next, as shown in
Fig. 1. Stage (1), exposure analysis, links assumptions about future emissions
and weather patterns to simulations of exposure conditions, such as air tem-
perature and precipitation, at the site. Deterioration analysis, stage (2a), uses
exposure condition time series to predict the evolution of detectable damage
measures, such as the presence of cracking, over time. These damage measures
are passed to repair analysis, stage (2b), for simulated inspections to determine
whether or not a repair action, such as cathodic protection or surface treat-
ment, is applied. Finally, in stage (3), impact analysis, an inventory of the
costs, downtime, and environmental impacts of the different repair actions is
used to calculate decision data for combinations of repair timing.

The proposed framework can be applied to different structures and expo-
sures, and its modularity allows models to be interchanged within each analysis
stage with minimal effect on other stages. The comprehensive inclusion of un-
certainty from exposure to final decision data can lead to the accumulation of
large uncertainties in output decision information. However, this uncertainty
can be traced back to its origin through deaggregation and backwards condi-
tioning, and the approach accurately accounts for the randomness inherent to
infrastructure performance. PBDE may be preferred to other approaches when
it is desirable to trace the influence of several sources of uncertainty, to com-
pare the predictions of multiple climate or deterioration models, or to develop
fully-probabilistic descriptions of multi-attribute decision data.

This paper discusses the background of the proposed PBDE framework and
other durability engineering approaches. Descriptions of the methodology and
each analysis stage are followed by an example to illustrate application of the
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framework. Results obtained using the proposed convolution-based methodol-
ogy for the PBDE framework are compared to results using a traditional Monte
Carlo approach. Finally, conclusions regarding the usefulness of the methodol-
ogy, anticipated limitations, and future work are discussed.

2. Background

The proposed framework relates to a broad context of research, including
reliability and risk theory, and decision-support methods. Previous applica-
tions of performance-based design to durability have focused on service life as
a proxy for performance, e.g., [14; 17], or the optimization of more direct per-
formance metrics such as costs [15]. The proposed framework is analogous to
other methodologies developed for performance-based engineering and design,
especially those targeting nuclear risk and earthquake engineering.

2.1. Durability engineering methodologies

Durability engineering methodologies share the goal of improving decisions
made in the design of new structures and repair of existing structures, but
differ widely along three measures. The approaches are split between those
that compute direct decision-making information such as cost, and others that
consider implicit metrics such as service life. Approaches from both implicit
and explicit decision orientations use physics-based, empirical, or survey-derived
deterioration models. Some approaches incorporate uncertainty whereas others
are deterministic. Background on various approaches is given in the following
sections according to the major distinction between service life prediction and
optimization of decision-making information.

2.1.1. Service life prediction

Service life prediction methodologies attempt to ensure acceptable structural
durability by calculating expected service life for different geometries, materials,
and inspection and maintenance strategies. Methods of modeling deterioration
and service life range from empirical models derived from surveyed condition
data to coupled, physics-based, numerical models. Practitioner-oriented guides
to design and rehabilitation tend to use analytical models, but vary from lim-
ited inclusion of uncertainty, e.g., [16; 22], to full consideration, e.g., [17]. Load
and resistance factor design (LRFD) [11], a variety of reliability methods, in-
cluding first order reliability method (FORM) [23], Monte Carlo assessment [6],
and fuzzy set theory [14], among many others, have recently been proposed as
durability design frameworks. These approaches may focus on adequate mate-
rial design [14], or at a combination of material, geometry, and efforts to limit
exposure [24]. Some approaches consider climate change scenarios, e.g., [3–6],
or structural safety, e.g., [6; 23], which are also included within the scope of the
proposed PBDE framework.

Approaches within service life prediction vary in strengths and limitations.
Using service life as a proxy for performance is stable: decision results are not

4



dependent on cost fluctuations or discount rates. Approaches pairing simple de-
terioration modeling with deterministic assessment are easy to implement and
provide preliminary design guidance. Advanced models are capable of simu-
lating service life under a wide variety of exposures, and can be used to assess
innovative materials and repair actions. However, simple models may be inaccu-
rate compared to more sophisticated models, whereas advanced models require
a greater number of parameters that may not be readily available.

2.1.2. Maintenance and repair optimization

Maintenance and repair optimization approaches focus on decision informa-
tion such as costs, environmental impacts, and safety, or utility functions of this
information. Many recent approaches propose methods for optimizing design
and maintenance of reinforced concrete infrastructure, including through use
of Markov chains [12], Bayesian nets [13], renewal theory [25] and cellular au-
tomata [26], among others. These approaches frequently utilize probabilistic de-
scriptions of deterioration derived from surveys of existing structures, and may
require large datasets to produce robust predictions. Discrete Markov chains,
which link a damage state at one time step to the probability of moving into a
more severe damage state at the next time step, are commonly used in bridge
management system software [27]. A hybrid approach has been proposed in [28]
that combines the physics-based modeling of deterioration commonly used in
service life prediction with a Markovian approach more suited to maintenance
optimization.

Like service life prediction approaches, maintenance and repair optimization
methods balance strengths and limitations. In general, these optimization ap-
proaches are practical: they focus on the development of decision information
needed to select maintenance and repair strategies, and can be used to model
a variety of structural elements. However, deterioration models derived from
survey data may not be robust when data is limited, or when new climates or
materials are studied. While hybrid approaches, e.g., [28], are in theory capable
of optimizing maintenance in a changing climate, few studies consider both cli-
mate and impact uncertainty as proposed in PBDE. Furthermore, in some cases
the focus on decision optimization leads to scarce availability of intermediate
information for validation of deterioration predictions. Given the difficulty of
managing large infrastructure networks, maintenance and repair optimization
methods offer valuable insight into possibilities for improving network-level per-
formance.

2.2. Performance-based risk engineering methodologies

Performance-based methods directly evaluate life-cycle outcomes by pre-
dicting and quantifying the range of behavior of engineered systems. Many
probabilistic risk assessment methodologies compute decision-making informa-
tion by combining conditionally independent analyses. Nuclear risk engineering
methodologies, e.g., [18], generally separate an assessment into several analysis
stages, incorporate uncertainty in each stage, and propagate uncertainty to ob-
tain descriptions of decision variables. These techniques were further developed
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in performance-based earthquake engineering (PBEE), where they have been
used to update building codes, design special structures, and to conduct large
scale studies for use in policy [19; 20]. Performance-based methodologies for
earthquake developed by the Pacific Earthquake Engineering Research Center
(PEER) [19] have been adapted to wind [29] and other natural hazards, and are
closely related to the PBDE framework proposed herein. These performance-
based frameworks are significant for their usefulness in guiding code design and
policy, and for their identification of future research needs. In applying PEER
performance-based approaches to climate-influenced natural hazards, care must
be taken to assure that the assumptions used to develop a hazard curve are con-
sistent with non-stationary extreme event risk; the proposed PBDE framework
supports consideration of non-stationary hazards. Other recent work has linked
performance-based assessment of sustainability and natural hazard risk, includ-
ing assessment of repair practices [30]. While performance-based probabilistic
risk assessment is but one of many methods for managing risk [31], it has been
widely and successfully used in civil engineering.

3. Proposed probabilistic framework

The proposed methodology for performance-based durability engineering an-
alyzes a given structure and site in three stages: (1) exposure, (2a) deterioration
and (2b) repair, and (3) impact. The results of these stages are sets of gener-
alized “pinch-point” variables: exposure conditions (EC), damage measures
(DM), repair action timing (tRA), and decision information (DI), respectively.
Deterioration and repair analysis occur in the same stage due to the dependency
of deterioration on previous repair actions. All analysis stages may give rise to
large uncertainties, both aleatory and epistemic, which are incorporated into
the full probabilistic assessment.

Each analysis stage computes a complementary cumulative distribution, de-
noted G, of the probability of exceeding a value of the considered pinch-point
variable. For deterioration, repair, and impact analyses, these distributions are
conditioned on a given value of the pinch-point variable output from the prior
analysis stage. Convolving a series of these conditional distributions using Eq.
1 yields a final distribution for lifetime decision information.

GDI(di) =

∫∫
GDI|tRA

(di|tra) |dGtRA|EC(tra|ec)| |dGEC(ec)| (1)

The incorporation of initial construction decision information, e.g., in order
to compare alternative new designs that vary in up-front and long-term expected
costs, is possible through an additional convolution integral or through Monte
Carlo simulation. Use of the convolution integral assumes that initial decision
information distributions are independent of repair-related decision information,
as in Eq. 2, where f denotes a probability density function (PDF). If the distri-
butions are not independent, Monte Carlo sampling of the initial construction
and repair-related decision information distributions allows computation of the
full lifetime distribution.
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GDI(di) =

∫
GDI,t>0(di− z)fDI,t=0(z) dz (2)

The following descriptions of the analysis setup and stages refer primarily to
models required for predicting chloride-induced corrosion in coastal reinforced
concrete bridges, though the methodology is not limited to this case. Provided
that appropriate deterioration models are available, other structures and mecha-
nisms may be studied, including wood rot in residential housing, façade damage
of historic buildings, corrosion of steel infrastructure, or any other mechanism
in which damage accumulates over time.

3.1. Analysis setup

PBDE assessments require many parameters and assumptions, including:
structural geometry, material properties, weather data, deterioration mecha-
nisms likely to affect the structure, and inspection and repair practices. Key
decisions in analysis setup include the selection of appropriate deterioration
mechanisms and related models, and the determination of the scope of uncer-
tainty to be included. Treating model parameters, material properties, and
structural geometry as random variables may greatly increase the number of
simulations required in deterioration and repair analysis. Preliminary studies
conducted during analysis setup determine an appropriate discretization of the
pinch-point variables and the number of simulations required in each analysis
stage.

3.2. Exposure analysis

Exposure analysis simulates local weather exposure conditions (ECs) at the
studied site. In addition to meteorological data, other causes of deterioration,
including applied loads, can also be modeled, e.g., to study the interaction of
load-induced cracking and transport of aggressive ions. The models used in ex-
posure analysis may take both global-scale inputs, e.g., greenhouse gas emission
scenarios, and local-scale inputs, e.g., ground surface roughness near the site.
The most sophisticated analyses would include emissions models, a global cli-
mate model ensemble, a regional climate model, and models that translate local
weather conditions to exposure conditions acting on the structural surface, e.g.,
wind-driven rain models. The outputs from the exposure models include both
“records” (time series) of exposure to be used in deterioration analysis, and a
probabilistic distribution of the likelihood of experiencing a record consistent
with a characteristic level of severity, i.e., a characteristic exposure distribution
(GEC). Fig. 2 illustrates components of a characteristic exposure condition:

baseline mean annual temperature, described by a generic variable, λ̂, and an-
nual temperature “noise” and trend terms. The three terms are summed to
compute the characteristic exposure condition, increase in mean annual temper-
ature over the lifetime. A distribution of the characteristic exposure condition
can be obtained by weighting different emissions scenarios, e.g., from [32], or by
fitting a distribution to the output of a climate model.
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Figure 2: Representation of example exposure analysis with characteristic distribution of
increase in mean annual temperature and exposure “record” components.

Selection of an efficient and sufficient characteristic condition can present
difficulties. The characteristic exposure condition must allow for simulation of
other exposure condition records consistent with a sampled value. If, for ex-
ample, the selected characteristic condition is increase in mean annual global
temperature, records of local temperature, humidity, precipitation, etc., should
be simulated based on assumptions consistent with the sampled value of the
mean temperature increase. Due to the large variability in local weather, it is
likely that a suite of exposure condition records consistent with a single value
of the characteristic EC is needed to capture exposure uncertainty. An effi-
cient characteristic exposure condition minimizes damage and repair variability
at a given level of exposure, thereby limiting the number of computationally-
expensive deterioration/repair simulations. Substantial research in the PBEE
community has studied methods for the selection of that framework’s analogous
pinch-point hazard variable, and has proposed several alternative candidates
[33].

3.3. Deterioration analysis

Deterioration analysis relates exposure at the site to observable or detectable
structural damage. Records of exposure conditions are passed to one or more
empirical or physical deterioration models to simulate the accumulation of ma-
terial and component degradation. Degradation is linked to damage measures
selected from common visual or special inspection methods, which act as indi-
cators, or thresholds, to trigger repair actions in the concurrent repair anal-
ysis stage. Deterioration analysis outputs simulations of damage measures,
and conditional distributions of the probability of exceeding damage over time
(GDM |EC(dm, t|ec)). These distributions are not included in the calculation of
decision information, but are used in safety and reliability assessments, and are
generally of interest to maintenance engineers.

Several challenges are present in deterioration modeling, including spatial
correlation and multi-mechanism issues discussed in Sec. 3.6, and other issues
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surrounding model selection and the simulation of boundary conditions. In real-
ity, deterioration mechanisms may be tightly coupled, and few physical models
capture the interdependent nature of structural deterioration. Furthermore,
physics-based transport models require methods to compute nonlinear heat,
moisture, and ion surface boundary conditions. Considerable research within
the building physics community has focused on the development of methods to
compute heat and moisture surface conditions [34], which have not been widely
implemented in infrastructure durability research [6]. Sensitivity of infrastruc-
ture deterioration to boundary conditions depends on the sophistication of heat
and mass transport and damage models used, which range in complexity and
degree of coupling. In the modeling of corrosion damage in reinforced concrete,
this range extends from use of apparent Fickian diffusion for chloride transport
[24], to numerical models that fully couple heat and mass transport with cor-
rosion, e.g., [35]. An intermediate de-coupled numerical approach was used to
develop the illustration presented in Sec. 4. In addition to the differing require-
ments for exposure data resolution, model selection typically involves tradeoffs
between accuracy, computational expense, ease-of-use, and availability of re-
quired material parameters. Discrepancies in predictions of deterioration rates
and sensitivity to boundary conditions between different types of heat and mass
transport models have been found in [36]; the proposed PBDE framework offers
a means to assess the importance of these discrepancies through comparison of
decision outcomes.

3.4. Repair analysis

Repair analysis captures the decision-making process of operators in order
to determine when and how a damaged structure or element is repaired. In ad-
dition to the damage measure simulations, inputs to repair analysis include the
proposed inspection timing and practices, a set of possible repair actions, and
information on conditions that will lead to the selection of a particular repair
action. In the method of repair analysis currently used, the input information
is mapped onto a decision tree relating damage measures observed during an
inspection event to the selection of a repair action. The decision tree used in the
illustration example, that of a coastal reinforced concrete structure, is shown in
Fig. 3. While records of repair events are available from repair analysis, the
primary output from this stage is the conditional repair action timing distribu-
tion (GtRA|EC(tra|ec)) calculated from the discrete probabilities of observing a
particular combination of individual repairs, given a value of the characteristic
exposure condition. For example, given two possible repair actions, a repair
timing combination, K, might be denoted tRAK

= { tra1 = 10 years; tra2 = 30
years}.

Several factors may complicate the development of a rational and computa-
tionally efficient decision tree, including the use of life-cycle costing or structural
analysis within the decision tree, operators who do not have set repair practices,
and lack of data or guidelines on what values of damage measures trigger repair.
When the repair actions or damage thresholds are unclear, reviewing past in-
spection and repair records may be helpful. In any case, engineering judgment
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Figure 3: Decision tree for repair actions (RA) cathodic protection (CP), cathodic prevention
after end of CP system functionality, and patch repair. Special and regular inspections occur
at ten and two-year intervals, respectively. Decisions to repair are based on the damage
measures (DM) presence of delamination and finding of an active corrosion state, as well as
the current repair state and required remaining service life (SL).

is required to develop even a “best practices” tree, which leads to a possible dis-
crepancy between PBDE assessment results and actual outcomes. However, if a
rational management practice is planned, PBDE assessment allows comparison
of alternative strategies or designs.

3.5. Impact analysis

Impact analysis links a combination of repair action timing to the economic,
environmental, and social impacts of the repairs. Economic decision information
includes both direct measures, such as the cost of repairs, and indirect measures,
such as economic loss due to building closure or traffic delays. Direct costs can
be obtained through process-based costing [37], where a cost is obtained for each
material or construction action, or through cost estimates for the entire repair
action, i.e., from bid data. Environmental impacts include emission of green-
house gases and other air pollutants, energy use, release of toxic chemicals, and
several additional midpoint indicators. In many cases an inventory of materials,
equipment, and energy used in repair is required for cost and environmental
impact modeling. Indirect costs and social impacts related to structural safety
require additional data on use patterns. The output from impact analysis is a
set of conditional distributions for decision information given repair action tim-
ing (GDI|tRA

(di|tra)). If many repair actions timing combinations and decision
information variables are considered, the number of conditional distributions
may become large, in which case only those conditional distributions reflecting
active combinations of repairs might be computed.

Significant sources of uncertainty are present in the calculation of repair im-
pacts, including: uncertainty in which construction methods contractors will se-
lect; uncertainty in quantities of materials used; variation in material resource al-
location and processing worldwide; uncertainty in the future economy, including
discounting and inflation; uncertainty in the future energy mix and other tech-
nological developments; and uncertain future populations, structure use, and oc-
cupancy. For environmental impact assessment, selection of a method involves
tradeoffs between sources of uncertainty: environmental input-output (EIO)
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models capture the coupled and nested intricacies of environmental impacts but
cannot distinguish between local-level variations, whereas process-based life cy-
cle assessment can capture local practices but requires inventory data that may
not be readily available. Hybrid approaches combine the comprehensive aspects
of economic input-output modeling with the specificity of process-based ap-
proaches, and are commonly used in practice. Cass and Mukherjee [38] discuss
the benefits and drawbacks of the various approaches as applied to pavements.
Several recent bridge life cycle assessments have been reviewed in [39], which
compares six environmental indicators for three real bridges of varying material
and structural form.

In addition to their uncertainty, the some impacts are likely to be correlated,
e.g., an individual repair action might be more difficult to perform than average,
resulting in both high costs and high closure time. PBDE assessment can deter-
mine the effect of partial correlation. Given the numerous and potentially large
sources of uncertainty, the analyst may prefer to take a first-order approach by
assigning independent normal distributions for all initial and ongoing impacts,
allowing direct calculation of (normal) impact distributions for sets of repair
action timing. This first-order method was used in the illustration presented in
Section 4. With some modification, this approach could be used to assess the
sensitivity of results to assumptions of future costs or technology.

3.6. Challenges and mitigation approaches

The breadth of the proposed framework leads to large computational and
data intensity, which must be mitigated to effectively perform PBDE assess-
ment. Models used within exposure and deterioration analysis stages may be
individually computationally intensive, and their combination in PBDE may
lead to lengthy analysis times for a single simulation. Adding to the complexity
is the need to predict exposure and deterioration in multiple, disparate parts
of the structure: repair analysis considers repair actions that may be selected
based on the state of the entire structure, rather than the state of one portion of
one component. This need to consider system states requires additional effort to
select appropriate deterioration mechanisms for each component, again increas-
ing computational expense. To make the PBDE assessment more tractable, the
analyst might use spatial correlation models to simulate random fields [40–42],
sampling techniques [43], or other methods drawn from related performance-
based methodologies.

Furthermore, in-situ exposure rarely matches the assumptions used to de-
velop common single-mechanism deterioration models. Interaction of multiple
deterioration mechanisms frequently accelerates overall deterioration; perform-
ing separate PBDE assessments for different types of damage and adding the
results is not possible. When it is important to capture multiple deterioration
mechanisms, general deterioration approaches, e.g., the use of Markov transi-
tion matrices, may be implemented within the PBDE assessment. The Marko-
vian approach will yield the most realistic results when the studied structure
closely matches conditions used to derive the transition matrices, i.e., for com-
mon structure materials, types, and load patterns, and when climatic conditions
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are expected to remain stable. In no case will a PBDE assessment completely
describe all possible scenarios and impacts, but baseline results can allow for
comparison of alternative designs or repair strategies.

4. Demonstration of methodology and comparison to a Monte Carlo
approach

An idealized reinforced concrete coastal structure was selected to demon-
strate the use of the proposed PBDE methodology and to compare the convolu-
tion method with traditional, “brute force” Monte Carlo simulation. Simplifying
assumptions increased the clarity of the illustration and minimized the compu-
tational expense associated with performing both convolution and Monte Carlo
assessments. Section 6.4 identifies possible extensions to more sophisticated as-
sumptions or models. Results included predictions of the course of damage over
time and final cost and downtime impact distributions. An additional study
used the convolution approach to analyze contributions to decision information
uncertainty, and to update decision information distributions to reflect a change
in the exposure emissions scenario.

4.1. Structure, site, and deterioration mechanism

An idealized reinforced concrete coastal structure was studied for risk of
chloride-induced reinforcement corrosion. The structure was assumed to be
constructed in 2010 with planned demolition in 2090, necessitating inclusion of
potential climate change in exposure analysis. The illustration considers high
and low emissions scenarios combined with global climate uncertainty. The
chosen site of coastal Hilo, Hawaii, and functional unit of a sheltered, vertical
surface, allowed use of ambient meteorological data as surface boundary con-
ditions with minimal error compared to splash zone or tidal exposure. The
moderate temperature and humidity range of Hawaii causes a high degree of
corrosion risk while reducing the potential for multi-mechanism deterioration.
A standard ordinary Portland cement concrete mix design with water-to-cement
ratio of 0.5 and cover depth of 50 mm was studied over a functional unit of a 1
m2 surface area. The selection of a planar element minimized localization and
edge effects, allowing the use of one-dimensional transport models.

4.2. Models used in analysis stages

4.2.1. Exposure analysis models

Increase in the mean annual temperature at year 2090 over the 1970 baseline
served as the characteristic exposure condition. The temperature projections
used in this study were based on a report on climate change in the South Pacific
islands, which accounted for a set of emissions scenarios representing divergent
technology development and adaptation, economic and population growth, and
favored fuel type [32; 44]. In addition to increased mean temperature and sea
level rise, climate change is expected to induce more frequent downpour and

12



extreme high sea level events in this region. Based on “high” and “low” emis-
sions scenarios and climate projections, possible warming in this region ranges
from 1.4 to 3.4℃ by year 2090, relative to a 1970 baseline. Increase in mean
annual temperature at 2090 was modeled as the sum of equally-weighted normal
random variables representing “high” and “low” emissions scenarios, according
to Eq. 3, where N denotes a normal distribution. A power law was assumed
for the functional form of the climate projections in [44]; parameters for the
power law representation of temperature increase (λα) were modeled as func-
tions of the characteristic exposure condition and obtained through regression.
The convolution assessment discretized the exposure condition over the range
1.1 to 3.5℃.

EC ∼ 0.5N (1.80, 0.20) + 0.5N (3.00, 0.13)

λα(tyear) = aec(tyear)
nec

aec(ec) = 5.04e-3ec2 − 3.57e-2ec+ 6.49e-2

nec(ec) = 3.59e-1ec+ 3.33e-1 (3)

The characteristic exposure condition was combined with other parameters
and assumptions to develop temperature, relative humidity, and chloride concen-
tration surface boundary condition records representative of atmospheric coastal
exposure. All surface boundary condition records were computed using Eq. 4
and parameters from Table 1, where the generic variable λ represents any of
the three types of exposure conditions. For temperature, T , local climate pa-
rameters were calculated from 1970-2012 data recorded at Hilo International
Airport, Station ID CCOP:511492, obtained from the NOAA NCDC database
(http://www.ncdc.noaa.gov/). A term (λβ) reflecting natural year-to-year
variation in Hilo’s climate was modeled as a set of zero-mean “noise” (ε) with
standard deviation of 0.475℃, and added to Hilo’s baseline average mean annual
temperature (λ̂). The convolution assessment used the same set of indepen-
dent noise records at each value of characteristic exposure, whereas the Monte
Carlo assessment used a unique, independent noise record for each individual
simulation. In order to characterize seasonal temperature variation (λs), a har-
monic term was added based on regression performed on the meteorological
data. Seasonal variations are not expected to change significantly under rising
mean annual temperature in this region [44]. The approach taken herein of
adding independent terms to reflect global and local climate behavior simplifies
the complex interaction between climate spatial scales.

λ(t) = λ̂+ λα(tyear) + λβ(tyear) + λs(t)

= λ̂+ aec(tyear)
nec + ε(tyear)

+a1 sin(ωt+ b1) + a2 sin(2ωt+ b2) (4)

Annual mean relative humidity, h, and annual mean exposure to surface
chlorides, CCl, were assumed constant both year-to-year and with increasing
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Table 1: Parameters for exposure boundary condition equations

λ λ̂ λα λβ λs

ec ε a1 b1 a2 b2
T [℃] 23.3 1.1–3.5 ∼ N (0,0.475) 1.46 2.64 0 0
h [-] 0.735 0 - 9.49e-3 -0.813 0 0
CCl [%kg/kg cem] 84.6 0 - 57.2 1.24 16.5 0.172

temperature. Relative humidity seasonal variation was based on a regression on
ambient meteorological data. Surface chloride concentration seasonal variation
was based on a combination of survey data and a study of seasonal variation
in marine aerosol salinity, details of which can found in [36]. The annual mean
surface concentration was of similar magnitude to the “high” exposure in [6]
and the “atmospheric coastal” exposure in [4].

4.2.2. Deterioration analysis models

Deterioration analysis modeled chloride transport, reinforcement corrosion
initiation, corrosion propagation, and concrete cover delamination, as shown in
Fig. 4. Use of a temperature- and moisture-dependent Fickian diffusion par-
tial differential equation was amenable to the level of sophistication of exposure
modeling. The diffusion equation was solved numerically, rendering it capable
of predicting transport under non-stationary boundary conditions and prevent-
ing errors associated with commonly-used analytical approximations [45]. The
empirical, stochastic corrosion propagation model is a function of temperature
and chloride concentration. With the exception of corrosion initiation and de-
lamination critical values, the model parameters were deterministic. While the
Monte Carlo assessment sampled stochastic parameters directly from their dis-
tributions, the convolution assessment used an optimized uniform Latin hyper-
cube scheme. Uniform Latin hypercube offers improved sampling efficiency over
brute-force Monte Carlo in building envelope hygrothermal modeling [43]. The
routine to determine an optimal uniform sampling scheme provided in [43] is an
adaptation of the “maximin” optimization algorithm in [46]. A more detailed
description of the deterioration modeling and required parameters is presented
in Appendix A.

4.2.3. Repair analysis models

Inspection was assumed to occur at two-year intervals from 2012 to 2080.
At “regular” inspections repair analysis simulated inspection of the surface for
delamination. Every ten years (2020, 2030, . . . ) nondestructive evaluation of
corrosion rates was simulated. Three repair options were considered: cathodic
protection, ra1, followed by cathodic prevention, ra2, if the remaining service
life was greater than or equal to 20 years, or by patch repair, ra3, when from 10
to 20 years of service were required. Titanium anode mesh cathodic protection,
including removal of the concrete cover and application of repair mortar, was
assumed functional for 30 years, with 2 years of remaining protection after the
end of system life [22; 47]. If indicated, installation of cathodic prevention
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Figure 4: Schematic of deterioration models used in the demonstration.

Table 2: Impact inventory for repair actions assuming a functional unit of a 1 m2 vertical
reinforced concrete surface area

Repair Action Initial Cost Ongoing Cost Downtime
[USD] [USD/yr] [months]

Cathodic protection ∼ N (250, 80) ∼ N (5, 1) ∼ N (24, 6)
Cathodic prevention ∼ N (150, 40) ∼ N (5, 1) ∼ N (6, 2)
Patch repair ∼ N (100, 20) - ∼ N (4, 1)

after the failure of the cathodic protection system was assumed to maintain
sufficient polarization of the reinforcement to prevent active corrosion initiation.
The cathodic prevention system was also assumed effective for 32 years. Patch
repairs using mortar were assumed to occur over one-quarter of the functional
unit (0.25 m2). It was assumed that no repair would occur after failure of the
patch repair or cathodic prevention system, or with less than 10 years remaining
service. The repair tree yielded 51 possible combinations of repair action timing.

4.2.4. Impact analysis models

The assessment focused on two types of readily-characterized decision infor-
mation: cost and downtime for repair. Cost and downtime were modeled using
estimates from [22; 47; 48]. For the assessment herein, downtime was consid-
ered disruption of normal activity rather than complete loss of use, resulting
in relatively long possible downtimes. All decision information was modeled
as normally distributed, with means and standard deviations given in Table
2. Cost and downtime were assumed stationary and uncorrelated. This as-
sumption allowed direct calculation of the parameters of normally-distributed
decision information from the parameters of the individual repair impacts.

4.3. Numerical implementation

The PBDE assessment was carried out in a series of Matlab 2012b scripts.
The range and discretization of time, damage measures, and decision informa-
tion was determined through convergence studies. The final scheme for convo-
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lution resulted in discretization of 10 exposure condition values and 100 dete-
rioration/repair simulations per exposure condition value. The same number
of total simulations (1000) was used for both convolution and Monte Carlo ap-
proaches, although more thorough investigation might have reduced the number
of simulations in either case.

Histograms were used as conditional and final damage measure distribu-
tions. Empirical complementary cumulative distributions were used for all
Monte Carlo approach distributions; the decision information means and stan-
dard deviations were obtained directly from the simulated values. Numerical
convolution of the conditional distributions according to Eq. 1 used a trape-
zoidal integration rule. The Kolmogorov-Smirnov (K-S) test, which allows sta-
tistical testing of non-parametric distribution, was used to compare the con-
volution and Monte Carlo results, using the one-sample or two-sample test as
appropriate. Reported p-values give the probability of observing a value of the
maximum difference (supremum) between two cumulative distribution functions
(CDFs) based on the hypothesis that the distributions are equivalent.

5. Results

5.1. Final results

5.1.1. Exposure analysis results

Exposure analysis results reflected the primary assumption of a combination
of normal distributions for the characteristic exposure condition, increase in
mean annual temperature. Exposure analysis discretized the range of the char-
acteristic exposure condition into 10 values; the resulting distribution is shown
in Fig. 5, along with the empirical distribution obtained from the Monte Carlo
samples, and the original distribution. By the one-sample K-S test, the Monte
Carlo empirical CDF was consistent with the specified distribution, which con-
firmed that a sufficient number of simulations were performed for this variable
(p=0.98).

5.1.2. Deterioration analysis results

Temporal evolution of the probability density function for chloride concen-
tration at 50 mm is shown in Fig. 6. The contour plot was derived from the
convolved data, which branched into eight behavior modes to the Monte Carlo
assessment’s seven modes. From 2010-2020, the dark contour band traces the
path of all simulations as the chloride front reached 50 mm and the concentra-
tion gradually increased. The wavy edges of the contours stem partially from
the harmonic surface chloride concentration variation and partially from the
damage measure discretization. At 2020, a small number of simulations were
repaired with cathodic protection. The 2030 PDF’s tightly banded distribu-
tion at 0.29 %wt/wt cement reflects variation in the mean annual temperature
projection, including the noise term, as the apparent diffusion coefficient was a
function of deterministic parameters and therefore incapable of contributing to
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Figure 5: Characteristic exceedence distributions for increase in mean annual temperature
from 1970 to 2090. Distributions are presented for the “original” distribution and both con-
volution discretization and Monte Carlo sampling, and for an “updated” higher-warming
scenario with convolution discretization only.

the variance. Following the trend of highest density, a set of simulations con-
tinued on the same trajectory until end of service. These simulation’s relatively
high critical chloride concentrations prevented corrosion initiation. The 2030
PDF’s large mass at zero chlorides revealed cathodic protection (CP) repair of
some simulations at this time. Given that a CP system installed in 2030 would
be expected to fail in 2060, with 20 years service remaining, it was inferred
that these simulations were later repaired with cathodic protection (CPre). As
shown in the vertical PDFs at 2050 and 2070, other simulation modes included
later cathodic protection, up until the contours with repair at 2070 and 2080,
which reflect either first application of patch repair, or patch repair after fail-
ure of the CP system. The trend of repair at 10-year intervals suggested that
special inspections for corrosion triggered repair, rather than visual delamina-
tion inspection, which occurred at 2-year intervals. The small bandwidths of all
contours indicated that the separation of the behavior into the different repair
modes was due more to the stochastic corrosion initiation than variation in the
characteristic exposure. The importance of the exposure scenario is discussed
further in Sec. 5.3.

Corrosion rate distributions centered around relatively low rates (< 0.1µA/cm2).
The corrosion rates were on the lower end of the range for airborne chloride expo-
sure in [4]. Due to the low corrosion rates and early repair times, reinforcement
radius loss was negligible and delamination never occurred before 2080, which
explained the lack of repairs following regular inspections.

5.1.3. Repair analysis results

Fig. 7 shows the probability mass function (PMF), p, for the convolution
approach’s eight and the Monte Carlo approach’s seven active combinations. In
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Figure 6: Evolution of probability density function for damage measure (DM) chloride con-
centration at 50 mm as a contour plot. Contours are plotted at fDM = {1.5, 25, 50, 75, 100}.
Probability density functions are plotted horizontally at 1/20 scale against vertical axes at
years 2030, 2050, and 2070.

both assessments the most common combination was no repair (combination
8). Several combinations consisting of only cathodic protection (combinations
4-6) and three multiple-repair combinations (1-3) also occurred. The Monte
Carlo simulation resulted in fewer early repairs (combinations 1-2), and higher
probability mass for combination 3. Investigation of the Latin hypercube and
Monte Carlo samples indicated that several Latin hypercube critical chloride
concentration samples were lower than the smallest Monte Carlo sample. These
early-initiating simulations were responsible for the convolution approach’s high
probability masses at early repairs. Despite these discrepancies, the two-sample
K-S test indicated a reasonable likelihood of distribution equivalency (p = 0.39).

5.1.4. Impact analysis results

Decision information results, shown in Fig. 8, were comprised of contribu-
tions from the eight active repair combinations. The central portion of the dis-
tributions differ between the two approaches, especially for cost (p={0.56,0.76}
for {DI1, DI2}). The better agreement for downtime, which had only initial
impact, suggested that the differences in repair timing probabilities for combi-
nations 1-3 might have contributed to the different decision results. To deter-
mine whether the discrepancy was caused by the differences in repair timing
combination probabilities or insufficient sampling of the decision variables, the
Monte Carlo repair timing distribution was convolved with the convolution ap-
proach’s conditional decision information distributions, yielding more robust
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Figure 7: Probability mass function for combinations of repair action timing. Combination
number is shown at the top of the figure.

Table 3: Decision information results for original convolution, original Monte Carlo, and
convolution with updated exposure scenario.

Decision Information Original, Con-
volution

Original, Monte
Carlo

Updated Expo-
sure, Convolu-
tion

Cost [USD] µdi1 ± σdi1 350± 217 354± 250 351± 195
10% exceedence 682 656 682

Downtime
[months]

µdi2 ± σdi2 17.9± 9.8 18.5± 12.9 18.0± 9.6

10% exceedence 33.2 33.1 33.2

final distributions. These distribution had better agreement with the convo-
lution distribution (p=0.91 for both DI), which suggested that increasing the
total number of Monte Carlo simulations would reduce the discrepancy. The re-
maining difference between the convolution and robust Monte Carlo approaches
confirmed the role of the discrepant repair timing probabilities. Distribution
moments and selected exceedence values are contained in Table 3. A statistical
test of the distribution moments (Cohen’s d) supported the finding of distribu-
tion equivalency (effect size 0.017).

5.2. Intermediate results

5.2.1. Conditional deterioration and repair analysis results

Conditional distributions for repair action timing combinations computed for
the convolution approach are shown in Figure 9. Conditional damage measure
results were similar to the fully convolved damage measure results for each
discretized value of the characteristic exposure condition. The ten conditional
repair timing PMFs were similar, with a slight trend towards late or no repair
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Figure 8: Exceedence distributions for lifetime decision information variables (a) cost and (b)
downtime, for original and updated emissions scenarios. Means of the distribution are plotted
as a square for the convolution approach, a circle for the Monte Carlo approach, and a triangle
for updated convolution.

in the distributions with smallest increase in mean annual temperature. This
behavior was consistent with the apparent diffusion model’s prediction of faster
chloride ingress at higher temperatures (see Appendix A).

5.2.2. Conditional impact analysis results

Impact analysis computed conditional distributions for cost and downtime
for all possible combinations of repair action timing. Exceedence distributions
for five of the eight active combinations are shown in Fig. 10. Besides the zero-
impact “no repair” distributions, the lowest costs were incurred by combination
7, patch repair in 2080. The downtime distributions for combinations including
only cathodic protection, as represented by combinations 3 and 4, were identical,
as downtime was modeled as an initial, time-of-repair, impact. As expected,
costs and downtimes were higher when multiple repairs took place, as occurred
in combinations 6 and 7.

5.3. Deaggregation, backwards conditioning and updating of decision informa-
tion

Whether convolution or Monte Carlo simulation is used to compute decision
information distributions, the modularity of the PBDE framework facilitates
studies to deaggregate uncertainty, trace uncertainty through backwards con-
ditioning, and update results to reflect new data or models. Deaggregation is
commonly used in probabilistic seismic hazard analysis to identify the contri-
butions of various faults and events to the site seismic hazard. Deaggregation
in PBDE can be used to assess how uncertainty in each of the three analysis
stages contributes to the uncertainty in the final decision information results.
Figure 11 presents deaggregation results in two ways. On the left, costs accrued
over time are shown as 5%-95% probability envelopes for several combinations
of deaggregated uncertainty. Starting from a deterministic result that assumes
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Figure 9: Conditional probability mass function for combinations of repair action timing,
given a value of the exposure condition (ec) mean annual temperature rise at year 2090.
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Figure 10: Conditional exceedence distributions for decision information variables (a) cost,
and (b) downtime, for selected combinations (denoted in the legend with a superscript) of
repair action timing.
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Figure 11: (a) Envelope for costs over time differentiated by types of uncertainty included.
The dot-dashed line was obtained using expected values for exposure (results were identical for
high and low warming scenarios), deterioration and repair parameters, and repair costs. The
shaded area demarcated by the solid line includes uncertainty in damage and repair param-
eters (DM/tRA). The hatched area demarcated by the long-dashed line includes additional
uncertainty in repair costs (DI), for the expected exposure in the high warming scenario.
The dotted area demarcated by the dotted line additionally considers the full distribution
of exposure (i.e., the full PBDE assessment). (b) Complementary cumulative distribution
functions for lifetime cost. Colors, markers and line styles are consistent with the legend in
(a). Expected values for lifetime costs are plotted with a filled circle, square, and circle for
no, DM/tRA, and full uncertainty, respectively. Distributions obtained using the expected
value for low as well as high warming are included. (c) Timeline for repair actions, including
combination numbers. Upward-facing triangles denote cathodic protection; downward-facing
triangles denote cathodic prevention; the diamond represents patch repair.

expected values for all parameters, the relative influence of analysis stage uncer-
tainty can be determined by re-computing decision results while progressively
including the uncertainty in each analysis stage. In the illustration, a large
amount of cost uncertainty resulted from the inclusion of uncertainty in dam-
age and repair analysis, and relatively less when uncertainty in impact analysis
was additionally considered. Virtually no additional uncertainty resulted from
including uncertainty in exposure analysis. On the right, the complementary
cumulative distribution function also characterizes the relative importance of
uncertainty in the three analysis stages. This plot identifies how the dispersion
and expected value of cost changed as additional types of uncertainty were in-
cluded. The PBDE framework’s support for deaggregation through its modular
structure is a major benefit of the approach.

For the example illustration, backwards conditioning was undertaken in or-
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Figure 12: Conditional probability density function for decision information variable cost given
an exposure condition value. The probability density function for the characteristic exposure
conditions, original and updated, is shown at 1/1000 scale.

der to obtain a more detailed characterization of the influence of the exposure
condition, 80-year rise in mean annual temperature, on decision information.
The results of backwards conditioning may be used to assess the effect of chang-
ing the characteristic exposure distribution to favor higher degrees of warming.
As shown in Fig. 12, the decision information distributions were similar when
conditioned on the range of exposure values. The irregularities in the surface re-
flect the variations in repair timing probabilities shown in Fig. 9. The similarity
of the backwards-conditioned decision information distributions suggested that,
for this illustration, a change in the exposure distribution would not greatly
affect the decision information distributions, as was suggested by Fig. 11.

PBDE with convolution allows updating of one pinch-point distribution
without requiring new analyses in other stages. An updated exposure distri-
bution shown in Fig. 5 represented the hypothetical development of better
climate models or evidence of high emissions. Updated decision information
distributions were calculated by re-convolving conditional distributions with
the updated exposure distribution, and are shown in Fig. 8. As expected,
the updated scenario resulted in negligible changes to the cost and downtime
distributions and decision metrics contained in Table 3.

6. Discussion

6.1. Illustration results and decision support

Results of the format shown in the example illustration could be used to
better understand the likely deterioration of the structure and to improve the
owner’s inspection and repair scheme. The convolution approach predicted a
75% probability of corrosion initiation during the lifetime, which suggests that
the concrete quality and cover depth were insufficient for the exposure. However,
the inspection strategy led to repair before significant bar loss or delamination.
Assessment of the repair results revealed that the most frequent contributors to
the lifetime cost and downtime were repairs occurring during the first 30 years
of service. The frequent multiple-repair scenarios were responsible for most of
the probability of high costs and downtime. An owner wishing to reduce lifetime
impacts might consider altering the repair strategy to delay repair, or use of a
cathodic protection system that does not require removal of the concrete cover.
Variation in the functional lifetime of the cathodic protection system was not
considered, and would increase the uncertainty in cost and downtime associated
with use of cathodic protection for periods greater than 20 years [47].

More generally, the decision information metrics computed by PBDE as-
sessment allow improved selection of new designs or maintenance and repair
schemes. In the illustration, while the expected value result accurately reflected
the central tendency of the decision information distributions, it yields only one
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decision metric. The computed decision information distributions allow use of
numerous metrics, ranging from means or medians to critical exceedence val-
ues. A decision-maker might select an alternate design based on a lower cost
value at 10% exceedence or a lower probability of exceeding some predetermined
cost limit. These probabilistic decision metrics are expected to be more useful
than a deterministic result, as they support risk-averse or risk-seeking strate-
gies [31; 47]. While the computation of decision information distributions is
not exclusive to PBDE, expected values for costs are more frequently used, e.g.,
in [13; 27; 28; 30; 47]. Additional decision support can be achieved through
sensitivity assessment, for example by studying the impact of the damage mea-
sure thresholds on decision information. Multi-attribute decision optimization
approaches, such as those discussed in Sec. 2.1.2 could be combined with sen-
sitivity assessment to provide further decision support.

6.2. Comparison of convolution and Monte Carlo approaches

The main study indicated that the convolution and Monte Carlo approaches
yielded statistically equivalent results at the same number of damage/repair
simulations. Certain techniques, e.g., fitting parametric distributions for re-
pair and deterioration conditional distributions, could potentially reduce the
required number of convolution simulations. Combination of Monte Carlo ex-
posure/deterioration/repair simulation with analytical computation of decision
information distributions may have allowed reduction of the number of Monte
Carlo simulations.

While both the convolution and Monte Carlo approaches are modular, the
convolution approach offers some advantages. Assessment of the role of expo-
sure on deterioration, repair, and impact was made through easily accessible
intermediate convolution results, but would require additional analysis for the
Monte Carlo approach. Similarly, deaggregation and backwards conditioning
results were obtained by manipulating the convolution integral but are difficult
to obtain with high robustness using Monte Carlo. Updating of results based
on changes to exposure was simply computed using convolution, but would re-
quire bootstrapping or additional simulation for the Monte Carlo approach. The
deaggregation illustration indicated negligible influence of the exposure condi-
tion on decision information, which made updating and re-convolution super-
fluous. However, the lack of sensitivity to mean annual temperature increase
suggests the possibility of secondary conditioning on the mean annual temper-
ature noise term to determine if that term had a larger effect on the decision
information results. Such secondary conditioning can be easily incorporated into
the convolution integral in Eq. 1 through the addition of a secondary exposure
conditional distribution.

6.3. Sensitivity of damage and decision information to climate change

While sensitivity of chloride ingress and corrosion to climate change in this
illustration was similar to that seen in other studies, e.g., [3; 6], decision out-
comes may differ. These studies found up to a 15% earlier onset of damage or
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reduced service life when climate change from approximately 2000 to 2100 is
considered. Bastidas-Arteaga et. al [6] finds larger variance in sensitivity, from
1.7 to 31% reduction in mean time to failure determined through structural reli-
ability analysis, depending on the severity of climate change, the exposure, and
the corrosiveness of the local environment. Results from this study agree that
corrosion initiation and cracking times may be reduced when climate change is
considered. However, the extension to repair and impact analysis herein sug-
gests that a reduction in apparent service life does not necessarily result in an
increase in impacts due to the mitigating effect of current and presumed future
repair strategies. Stewart and Peng [5] performed life cycle costing of vari-
ous adaptation measures and found that while increasing concrete cover depth
slows the onset of deterioration, it is not a rational strategy from a life-cycle
costing perspective. All studies advise that their results do not provide con-
clusive prediction of the impact of climate change on corrosion in reinforced
concrete. More work is needed to assess how accelerated deterioration, repair,
and impacts interact before general conclusions can be drawn on appropriate
climate adaptation strategies.

In this example, uncertainty in repair timing and the variances of conditional
decision information distributions had a more significant influence than climate
change severity on the final impact distributions. For the illustration exam-
ple, more research and modeling effort should be directed towards decreasing
epistemic uncertainty in conditional decision information models, as the un-
certainty in repair timing is thought to reflect natural variability in structural
deterioration. Inclusion of spatial variation of deterioration parameters, rather
than consideration of deterioration parameter uncertainty over multiple simu-
lations, might allow for a reduction of the number of required simulations. Use
of more sophisticated deterioration models would be expected to increase the
uncertainty in damage and repair if the sophistication of exposure models was
also suitably increased, as suggested in [6].

6.4. Modeling extensions for the illustration example

In each analysis stage the models selected aimed for a reasonable degree of
accuracy and low computational expense; use of different models or assumptions
may have significantly changed the results. Certain assumptions facilitated ac-
curacy in the analysis, including the vertical orientation of the sheltered surface,
location of the site in a tropical region, and selection of a single deterioration
mechanism. Other assumptions, such as the use of ambient meteorological data
as exposure conditions, and the use of generic decision information, may have
decreased the potential for accuracy. Important areas for future sensitivity anal-
ysis achievable within the convolution approach follow.

The exposure analysis approach ignored many nonlinearities, including pos-
sible increases in local weather variability caused by global climate change. How-
ever, the deterioration models used were insensitive to fluctuations in temper-
ature and relative humidity at short time scales, which decreased the effect of
omitting the complex nonlinearities. The assumption of constant relative hu-
midity and chloride exposure with increasing mean annual temperature has been
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widely used, but is controversial, especially considering regional scale climate
changes [49]. Use of a more sophisticated heat, moisture, and ion transport
model would enable the assessment of the impact of the assumptions of station-
ary variability, relative humidity, and chloride exposure on decision information.

Multi-physics models for corrosion in reinforced concrete have been devel-
oped, e.g., [35; 50–52], which should be capable of assessing sensitivity to climate
parameters. These models also close the deterioration analysis loop by linking
cracking to boundary conditions and transport, which render them more ef-
fective for lengthy inspection intervals. On the other hand, empirical models,
such as the dose-response models and factor methods [53] used for assessment
of building envelopes, are computationally efficient, which allows for greater
consideration of uncertainty, e.g., in material properties. Both multi-physics
and empirical approaches can be improved by consideration of spatial variation
of damage. Accounting for partial spatial correlation would require the use of
two- or three-dimensional models, additional damage/repair simulations, boot-
strapping, or correlation functions to simulate the states of multiple structural
areas. Techniques for reducing computational expense, such as those discussed
in Section 3.6, are likely necessary for implementation of advanced models and
partial spatial correlation in PBDE assessment.

Assumptions made in repair analysis complemented the level of sophistica-
tion of deterioration modeling, but could be made more realistic. Repairs were
assumed to occur immediately following inspection. Use of stochastic delay of
a repair following an investigation, or stochastic damage measure thresholds to
mimic imperfect inspection techniques, would be straightforward to implement
and would increase realism. More significantly, the necessity of maintaining
safety and the prevalence of life-cycle costing suggest considering predictions of
future deterioration and cost when selecting an appropriate repair. Safety risks
were unlikely in this example, but a more sophisticated analysis would need to
include a structural analysis and reliability model.

Finally, impact analysis could be improved through the use of more sophisti-
cated cost, downtime, and environmental impact modeling, e.g., process-based
approaches [37; 38]. These approaches would mitigate the error associated with
indirect applicability of repairs made to different structures, inflation, and lo-
cal variations in prices and practices, but take substantial effort to implement.
More readily made improvements would include consideration of cost and down-
time for the inspections themselves, study of the impact of correlated decision
information variables, and use of net-present-value calculations.

6.5. Future work

In addition to the modeling extensions discussed in Section 6.4, research
is required to further develop the PBDE framework in several areas. Notably,
work is needed to demonstrate the incorporation of multiple deterioration mech-
anisms, and to implement techniques to increase computational efficiency. These
efforts would prove useful in an attempt to validate the framework on a case
study structure. Successful validation on a case study structure would demon-
strate the viability of the models used in the analysis stages and the framework
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more generally. Sensitivity assessment or updating using the case study results
could demonstrate the value of the convolution approach.

The convolution approach’s advantages of deaggregation, backwards con-
ditioning and updating would likely hold for other analyses with no coupling
between analysis stages (i.e., valid conditional independence) and assessments
where the assumption of de-coupling is reasonable. For example, assessments
of bridge scour, building façade damage, or deterioration of steel infrastructure
allow the same general assumptions of conditional independence. While the
assessment of an infrastructure network where repair decisions are made based
on the status of a number of structures would be computationally challenging,
such an assessment would meet the requirements of the convolution approach.

Some assessments may violate the assumption of conditional independence
between analysis stages. If, for example, a study assumes that the cost of future
energy depends on the severity of climate change, exposure and impact analysis
would no longer be independent. In such a case, it may be acceptable to assume
conditional independence and make consistent assumptions in computing expo-
sure condition and conditional decision-information distributions. Alternately,
Monte Carlo simulation may be used to ensure accuracy. If the Monte Carlo ap-
proach is used, it is still possible to perform updating or sensitivity assessment,
although these tasks become more difficult. Strict requirement of conditional in-
dependence hinders the implementation of PBDE in “integrated assessments,”
which are becoming more common in climate change impact studies. While
integrated assessments allow study of the interaction of policy, climate, and in-
frastructure performance, they require feedback loops between analysis stages,
thereby reducing the conceptual clarity offered by the PBDE framework.

Suggested applications of the PBDE framework include studies of archetype
structures for use in design code calibration, climate change adaptation pol-
icy studies, and sensitivity studies to direct future research. Previous efforts
have utilized performance-based approaches to “rationalize” seismic rehabil-
itation provisions [20]; similar efforts could be undertaken using the PBDE
framework. Planning for climate change adaptation requires a multi-attribute
decision framework, and must contend with the high level of uncertainty as-
sociated with future emissions, climate response, and climate change impacts.
The PBDE framework can accommodate these desirable features, and PBDE’s
computational expense may be acceptable for major regional studies. Finally,
the modularity of the PBDE framework supports testbed comparison of mod-
els used in the analysis stages, e.g., deterioration analysis, for which there are
many available models and limited data on the decision implications of model
selection. Due to the high computational expense of PBDE, other methods,
such as Markov chains or artificial intelligence techniques, may be preferred
for network-level optimization. Similarly, routine decision-making for multi-
mechanism deterioration of common structure types may be better supported
by service-life prediction methods.
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7. Conclusions

A modular framework for performance-based durability engineering (PBDE)
assessment has been proposed. The methodology is similar to those of frame-
works developed for a variety of engineering risk assessments, and uses models
developed for service life and durability assessment. By linking uncertainty in
analysis of exposure, deterioration and repair, and impacts, this methodology
can assess the economic, environmental, and social sustainability of structures
in a fully probabilistic manner. Additionally, by comprehensively modeling from
exposure to impacts, the framework is sufficiently general to assess new structure
types and materials, and is accommodating of shifts in weather patterns caused
by climate change. When applicable, the proposed convolution-based method-
ology for PBDE offers improvement over traditional Monte Carlo simulation in
implementing deaggregation and backwards conditioning, which allow identifi-
cation of important sources of uncertainty. Additionally, PBDE’s modularity
facilitates updating of results to reflect new data or models.

Future work to address the interaction of deterioration mechanisms and the
computational expense associated with the methodology is needed to support
the application of PBDE in three targeted domains. PBDE’s consideration of
uncertainty from exposure to impacts may aid design code calibration, espe-
cially when considering the potential effects of climate change on structural
durability. The PBDE framework’s prediction of probabilistic distributions for
economic, social, and environmental sustainability metrics is thought advan-
tageous in guiding policy, e.g., climate change adaptation planning. Finally,
flexibility in choice of models allows researchers to assess the effects of model
and parameter selection to direct future work. The proposed PBDE framework
has a clear, modular structure, efficiently combines multiple sources of uncer-
tainty, and supports analysis of the influence of various uncertainty sources on
decision results.
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Appendix A. Deterioration models

The chloride ingress model used is a nonlinear apparent diffusion model sim-
ilar to the apparent diffusion model in [24], and to the ion diffusion equation in
[6]. The nonlinear influence of chloride binding on diffusion was modeled as in
[36], requiring use of numerical methods to solve the partial differential equa-
tion [45]. Whereas [36] solves coupled partial differential equations for heat and
mass transport, this study neglected ion transport caused by migration and con-
vection and assumed instantaneous heat and moisture equilibrium with surface
conditions. This results in a partial differential equation governing apparent
chloride diffusion, Eq. A.1, where CCl is the chloride concentration and DCl

the apparent diffusion coefficient. As reported in [36] the assumption of instan-
taneous heat and moisture equilibrium is not generally valid and may lead to
errors in prediction of chloride ingress. However, chloride ingress models that
accept non-stationary boundary conditions are scarce, and fully-coupled heat
and mass transport models were prohibitively computationally expensive for a
dual convolution/Monte Carlo assessment. Thus the dependence of the chloride
diffusion coefficient on concrete absolute temperature T , relative humidity h,
chloride content, and aging was maintained as shown in Eq. A.2. The reference
apparent diffusion coefficient, D0

Cl, was taken from [24] for ordinary portland
cement concrete with water to cement ratio of 0.5. The temperature dependence
took the form of an Arrhenius rate law, Eq. A.3, where the activation energy,
U , was taken from [24]. Moisture-dependency was modeled according to Eq.
A.4, also used in [6]. The effect of chloride binding on the diffusion coefficient
was modeled using a Langmuir binding isotherm, Eq. A.5 [36], where CCl is
expressed in moles per cubic meter, assuming 350 kg cement content. Aging
was accounted for using Eq. A.6 from [24]. Parameters for chloride ingress and
all other required material parameters are given in Table A.4.

∂CCl
∂t

= ∇ (DCl∇CCl) (A.1)

DCl(T, h, CCl) = D0
ClfT (T )fh(h)fbind(CCl, θl)fage(t) (A.2)

fT (T ) = exp

(
U

R

(
1

Tref
− 1

T

))
(A.3)

fh(h) =

(
1 +

(1− h)4

(1− hc)4

)−1
(A.4)

fbind(CCl, θl) =
1

1 + αbind/ (θl(1 + βbindCCl)2)
(A.5)

fage = max
((
t0/t

)m
, 0.1

)
(A.6)

Some of these equations require translating concrete relative humidity first to
capillary pressure, pc, according to Eq. A.7, where ρl is the mass density of liquid
water, R the gas constant, and Ml the molar mass of water. Capillary pressure
was converted to moisture content by volume, θl, according to a moisture storage
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function of the van Genuchten type, Eq. A.8. θcap is the maximum capillary
moisture content, ai, ni and mi are shape parameters and li a weighting factor.
The moisture content can be expressed relative to concrete mass, w, through
Eq. A.9.

pc =
−ρlRT
Ml

lnh (A.7)

θl = θcap

k∑
i=1

li
(1 + (aipc)ni)

mi
(A.8)

w = θl
1/ρl

1/ρconc
(A.9)

The partial differential equation (Eq. A.1) was solved in one dimension us-
ing a 1 mm uniform mesh from 0-65mm, 5mm mesh from 70-80 mm, and 10mm
mesh from 90-250mm depth. The initial condition was no chloride content,
the external boundary condition was a Dirichlet boundary of the surface chlo-
ride concentration function, and the inner boundary condition was a Neumann
“no flux” condition. The transport output time step was 0.04 years. Internal
transport time steps were chosen by the solver.

Corrosion modeling took place at each transport output time step. Rein-
forcement corrosion initiation was tested against a stochastic value of the critical
chloride content, CcrCl, which was modeled as lognormally distributed with mean
and standard deviation in the range used in [3; 6; 24]. Assumption of a constant
critical chloride content for each simulation is a simplification of a complex phe-
nomena, but matched the level of sophistication of the other deterioration mod-
els [54]. Reinforcement corrosion current density, icorr [µA/cm2], was calculated
using a commonly-used empirical model from Liu and Weyers [55] which consid-
ers the effect of chloride concentration at rebar depth [kg/m3], temperature [K],
concrete resistance, Rc [Ω], and time since corrosion initiation, tc [yr]. It also
includes an aleatoric component, leading to a lognormally distributed random
variable for icorr. The corrosion rate model assumes sufficient oxygen availability
for the anodic reaction, which is reasonable given the assumed concrete relative
humidity and moisture content [42; 56; 57]. Concrete resistance was assumed
constant at 25 kΩ, which reflected a moderate degree of capillary saturation [57].
Concrete resistivity changes by orders of magnitude depending on the moisture
content, which would suggest the use of a moisture-dependent resistance value,
but Eq. A.10 likely considers moisture content indirectly through the chloride
and temperature dependence, and this effect was omitted.

ln 1.08icorr = 7.89 + 0.7771 ln (1.69CCl)− 3006/T − 0.000116Rc +

2.24t−0.215c +N (0, 0.3312) (A.10)

Reinforcement cross section reduction was calculated from Faraday’s law, Eq.
A.11. Here MFe is the molar mass of iron, zFe is the charge number for iron in
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the corrosion reaction, F is Faraday’s constant, and ρsteel is the density of steel.
zFe of 2 was assumed based on the thermodynamic considerations presented
in [56] and reflecting the formation of Fe2O3 at the anodic site. Numerical
integration assumed constant icorr over the time intervals.

∆r =

∫
icorrMFe

zFeFρsteel
dt (A.11)

Due to the computational expense associated with sophisticated methods of
predicting delamination or cracking, a simplified approach was used. Coastal
exposure can lead to the formation of aqueous rust products that may diffuse
away from the reinforcement without causing a buildup of pressure, further
complicating the prediction of cracking. In this analysis it was assumed that
the rust product formed was Fe2O3, hematite, which is not aqueous, and has a
volume ratio to iron of approximately 2.1 [56]. Based on empirical results for
ordinary Portland cement concretes of similar assumed w/c ratio, bar radius
loss to produce delamination or cover cracking was modeled as lognormally
distributed with mean of 40 µm and standard deviation of 10 µm [58]. As
with assumptions regarding corrosion initiation and rate, the use of a stochastic
delamination prediction greatly simplifies the complex kinetics and mechanics
of crack formation, but was selected as a reasonable assumption for illustration
of the PBDE methodology.
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