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Abstract

After a strong earthquake, criteria are needed to determine whether buildings are safe
to reoccupy based on observable damage. This paper presents a simulation-based
methodology to identify relevant damage indicators and safety thresholds for build-
ing structures. Prior knowledge of the most relevant damage indicators and their
thresholds can increase the accuracy and confidence of post-earthquake evaluations.
Current practice to translate observable damage into a tagging decision relies on
qualitative guidelines based on past earthquake experience and judgment, which may
be susceptible to speculation and interpretation. In addition, past experience may
not be relevant to newer structural systems and to large or complex (e.g., high-rise)
buildings. To augment past observations and data from structural component tests,
nonlinear dynamic analyses can be used to estimate the collapse safety of structures
with simulated damage. Technologies to execute these simulations have matured over
the years, although to date they have not been systematically applied to evaluate the
destabilizing effects of simulated damage on collapse safety. In this paper, a method-
ology is presented to use numerical simulations of damage to identify and evaluate
relevant damage indicators that can be quantitatively related to safety thresholds.
Damage indicators are selected based on their reliability in estimating the structural
safety and their sensitivity to modeling uncertainty, i.e., where the preferred indica-
tors are insensitive to variability in the structural materials and model parameters.
The safety threshold for each damage indicator is selected to maximize accuracy in
post-earthquake building assessments. The methodology is demonstrated through an
application study of ductile reinforced concrete frame buildings. Results show that
aggregated indices of structural component damage (e.g., aggregated over the floor
of a building) outperform other damage indicators based on peak or residual drifts
or simpler percentages of damaged components. Subject to agreement of a num-
ber underlying assumptions, this methodology can be applied to a wider variety of
structures to improve post-earthquake evaluation guidelines.

KEYWORDS:
post-earthquake safety, damage indicators, tagging, reinforced concrete frames

Galvis, F. A., Hulsey, A. M., Baker, J. W., and Deierlein, G. G. (2023). “Simulation-Based Methodology to Identify Damage 
Indicators and Safety Thresholds for Post-Earthquake Evaluation of Structures.” Earthquake Engineering & Structural 
Dynamics, (in press).



2 GALVIS ET AL.

1 INTRODUCTION

One of the first priorities following an earthquake is to ascertain whether structures are safe to reoccupy. The most widely used
references to support such decisions are post-earthquake inspection and evaluation guidelines largely based on lessons learned
from past earthquakes.1,2,3 These guidelines provide qualitative criteria for classifying damaged structures as unsafe (red tag),
safe (green tag), or restricted use (yellow tag) until a more detailed evaluation is performed. The guiding criterion in tagging a
structure is an “unsafe structure”, which in this context is often defined as one that poses “imminent risk of further damage or
collapse from creep or aftershocks.”1 Under that definition, qualitative guidelines are effective for classifying structures that lack
redundancy and have obvious flaws (e.g. soft-story buildings), because damage in a few components can significantly heighten
the risk of further damage or collapse. However, structures with limited permanent displacement and moderate damage to many
elements are difficult to evaluate using qualitative guidelines, which can result in erroneous tags or indecisive yellow tags.

Detailed evaluations following FEMA-3064 for concrete and masonry wall buildings or FEMA-3525 for welded steel moment
frame buildings support more definitive decisions by specifying quantitative safety thresholds. However, the recommended
thresholds in these guidelines are not tied to an explicit quantification of the collapse safety of damaged buildings, making
it unclear how well the thresholds correlate to an increased risk of collapse. Furthermore, FEMA-3064, and FEMA-3525 are
largely based on empirical evidence from past earthquakes, which suggests that they may overlook structural failure mechanisms
that have either not been observed in past earthquakes or ignore new structural systems that have not experienced damaging
earthquakes.

Recognizing the limitations of data from past earthquakes, a number of previous research studies have utilized nonlinear
analysis models to quantify the collapse safety of structures with simulated earthquake damage. To facilitate the calculations,
many of these studies relied on simplified single-degree-of-freedom (SDOF) models that do not explicitly capture the localized
damage and details of the structural response. In one of the earliest of these studies, Bazzurro et al.6 performed nonlinear response
history analyses (NLRHA) of SDOF models subjected to sequences of two ground motions, where the first motion generated
structural damage, and the second motion was scaled to an intensity that would collapse the damaged structure. In parallel, Luco
et al.7 used a similar approach to explore the effects of a damaging mainshock ground motion to evaluate the structural collapse
safety to a subsequent aftershock. Maffei et al.8 extended the use of SDOF models to quantify post-earthquake safety to various
structural systems, and Iervolino et al.9 developed a method to account for multiple aftershocks. While the SDOF model studies
provide valuable understanding of the general response of structures under sequential ground motions, they do not provide the
level of detail necessary to translate simulation results into practical recommendations that could be used in post-earthquake
inspection and evaluation guidelines.

Advances in computational resources have allowed the use of more detailed models for damage and post-earthquake simula-
tion of real structures.10,11,12,13,14 Detailed models enable a better understanding of the damage patterns that can reduce collapse
safety. For instance, Raghunandan et al.11 used detailed models of RC frames to evaluate the effectiveness of alternative damage
indicators for predicting the reduction in collapse capacity of damaged buildings. They found that the maximum story drift is the
best damage indicator, closely followed by residual story drift and roof drifts. Their work was the first to systematically evaluate
and rank a set of observable damage indicators that could inform safety decisions based on their correlation with the reduced
collapse safety caused by structural damage. However, their study does not provide a way to select quantitative thresholds for
the top-ranked damage indicators, nor does it consider the sensitivity of the damage indicators to modeling uncertainty.

Burton and Deierlein15 proposed a methodology that builds upon the Raghunandan et al. approach to simulate building
damage and quantify post-earthquake collapse safety. Two significant contributions of their study are (1) to establish the safety
threshold of a damaged building with respect to its intact safety index, and (2) to establish a corresponding threshold value of an
observable damage indicator to assess the acceptable safety limit. Zhang and Burton16 and Zhang et al.17 further explored this
idea and developed machine learning algorithms to estimate the safety of damaged buildings based on several damage indicators.

In addition to the challenge of establishing an acceptable level of reduced safety for an earthquake-damaged building, the
sensitivity of the proposed damage index to variations in the structural component properties and materials is an important
consideration. The sensitivity of the damage indices to structural modeling uncertainty may limit the acceptance of the research
results. From a practical standpoint, evaluations of existing buildings are faced with inherent limits on characterizing the quality
of the structural components. Previous research has shown that variability in modeling parameters leads to bias and increases
dispersion in collapse safety evaluations of intact structures.18 This susceptibility to modeling uncertainty has likewise been
shown to impact collapse evaluations of damaged structures.19 Hence, it is crucial to explicitly consider modeling uncertainty
when evaluating damage indicators and defining quantitative safety thresholds.
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This paper presents a simulation-based methodology to identify relevant damage indicators and safety thresholds for building
structures to facilitate post-earthquake occupancy decisions using detailed building inspections. The methodology advances
concepts from previous studies11,15 that use data from numerical simulations to select the most relevant damage indicators and
identify safety thresholds for damaged structures. By focusing on the state of the building following the damaging earthquake,
this study informs decisions by estimating the level of safety of a damaged structure compared to an intact building, rather than
attempting to quantify the explicit collapse risk to mainshock-aftershock sequences. The proposed methodology considers a set
of candidate damage indicators for a structure of interest, evaluating them in light of their ability to estimate the collapse safety
once the structure is damaged, and the stability (or insensitivity) of the thresholds to modeling uncertainty. The safety threshold
for the selected indicators is selected considering tipping points, where there is a rapid reduction in collapse safety with a small
increment of damage. By searching for the point where there is a noticeable change in structural response, the approach sidesteps
the otherwise tricky question of establishing an absolute acceptable safety limit. The proposed methodology is envisioned to
enhance the reliability of detailed building evaluations, especially those assigned yellow tags after rapid building evaluations.

2 STRUCTURAL DAMAGE AND POST-EARTHQUAKE DATA GENERATION

Referring to Figure 1, the process for generating simulation data to assess the safety of earthquake-damaged structures begins
with the definition of structural models and a suite of ground motions. The structural models should be detailed enough to
capture all possible failure modes of the structure of interest. The outputs of this process are a series of scalar damage indicators
that measure the amount of structural damage (discussed in more detail in Section 2.1), and a scalar collapse risk metric, 𝜅, that
quantifies the collapse safety of a damaged structure with respect to its intact state (discussed in more detail in Section 2.2).
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FIGURE 1 Flowchart of safety evaluation of intact and earthquake-damaged structural system.

Given the structural model and input ground motions, the assessment is organized into four main steps. The first step is to
perform a collapse analysis of the intact structure to compute its collapse fragility curve (𝑃 [𝐶𝑖𝑚]), which relates the probability
of collapse to the ground motion intensity. This is accomplished using an incremental dynamic analysis (IDA)20 to compute the
ground motion intensity that causes collapse (𝐼𝑀𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒) of the intact structure for each of the input ground motions. In IDA,
a model of the structure is subjected to successive NLRHAs by scaling each ground motion to the lowest intensity that causes
collapse. The resulting data is fit to a cumulative log-normal distribution that describes the structural collapse fragility. This
follows the concept of FEMA P69521 to evaluate collapse safety, although, as described later, the procedure is slightly modified.
Figure 2(b) presents example IDA results that are used to compute the intact collapse fragility curve shown in grey in Figure 2(e).
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The second step determines the scale factors to obtain “damaging ground motions”, which are strong enough to produce
damage but not collapse the structure. Figure 2(b) shows the IDA curve of an example ground motion (GM15, in black) and
marks four intensities that were used to generate damage. The selected intensities correspond to fractions of the collapse intensity
of each separate ground motion. As illustrated in 2(c), these motions produce damage that spans from light to severe.

The third step entails performing the NLRHA of the model using the damaging ground motions to obtain several “damage
instances”. In this context, a damage instance refers to a unique realization of damage distributed throughout the structure, which
can be characterized by scalar damage indicators. As illustrated in 2(c), these motions produce damage that spans from light to
severe.

The final step of the process is to perform collapse analyses of each damage instance of the structure to compute the reduced
collapse fragility curve. To do this, each of the original ground motions (from Step 1) is concatenated to the damaging ground
motion as depicted above Figure 2(d). The analysis is repeated several times, with the second ground motion incrementally
amplified until the damaged structure collapses. Conceptually, this analysis sequentially inflicts structural damage with the first
ground motion and then assesses the post-earthquake collapse safety by performing a full IDA with the second ground motion.
Figure 2(d) shows the IDA curves for each of the damage instances associated with GM15 in Figure 2(c). Note that the IDA
curves for each damage instance start from the maximum residual drift caused by the damaging ground motion. The collapse
intensities for each ground motion are used to estimate collapse fragility curves for each damage instance (Figure 2(e)). The
collapse fragilities shown in Figure 2(e) are further synthesized into a single metric, called the collapse safety ratio, 𝜅, that
relates the relative median collapse safety index of a damaged structure to its value when the structure was intact (see Section
2.2 for more detail).

2.1 Damage indicators
A damage indicator is a scalar measure that represents the post-earthquake damage of a structure.11 Candidate damage indicators
should be selected based on the expected behavior of the structure of interest and could be any scalar quantity that correlates with
damage. In general, damage indicators belong to three classes: (1) intensity measures (IM), (2) engineering demand parameters
(EDP), and (3) fractions of damaged components. The most common IM-based damage indicator is peak ground acceleration,
which is used in the ATC-20 methodology to decide whether inspectors should be deployed after an earthquake. The residual
story drift ratio (𝑆𝐷𝑅𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙)19 and the peak transient story drift ratio (𝑆𝐷𝑅𝑝𝑒𝑎𝑘)22 are typical EDP-based damage indicators.
𝑆𝐷𝑅𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 can be directly measured after an earthquake, while the 𝑆𝐷𝑅𝑝𝑒𝑎𝑘 either requires structural instrumentation for a
direct measure or an analytical approximation.

The third class of damage indicators, fractions of damaged components (e.g. fraction of beams with cover spalling damage),
require an estimate of each component’s damage state (DS) for a given damage instance. In a field application, the component
damage states can be observed by an inspector. In our simulations, we use the virtual inspector concept23,24 to estimate the
damage state of each component. The virtual inspector employs the Performance-Based Earthquake Engineering framework25

with analytical component fragility curves to relate EDPs with observable damage states. Component fragility curves give the
probability of each damage state, given an EDP. Depending the on the structure, these fragility curves may be readily available,
such as the FEMA P5826 fragility database for most components associated with buildings. For a given component 𝑖, the virtual
inspector uses the corresponding EDP, estimated from NLRHA of the structure, to compute the probability that the component
reaches each possible damage state. The expected damage state of component 𝑖 (𝑑𝑖) can be computed as the weighted sum of
the discrete damage states using the probabilities of each damage state as the weights.27 Note that the estimated damage state is
a real number between 0 and 𝑚 (where 𝑚 = the number of discrete damage states) instead of an integer. The process is repeated
for every component in the structure to calculate its expected damage state.

2.2 Collapse safety of a damaged structure: 𝜅
Collapse safety is tracked using a scalar metric, called 𝜅, which is a ratio between the median values of the collapse fragility
curves of the damaged and intact structure. To help account for the influence of spectral shape on collapse behavior28, the
collapse fragility is calculated using average spectral acceleration 𝑆𝑎𝑎𝑣𝑔(𝑇 )29 as the 𝐼𝑀 , as calculated following Equation 1:

ln𝑆𝑎𝑎𝑣𝑔(𝑇 ) =
1
𝑞

𝑞
𝑖=1

ln𝑆𝑎(𝑇𝑖); where 0.2𝑇 ≤ 𝑇𝑖 ≤ 3.0𝑇 (1)
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FIGURE 2 Illustrative results of the structural damage and post-earthquake data generation process for a 20-story RC frame
building: (a) Schematic view of the idealized frame; (b) IDA curves for the intact building highlighting four intensities for
one ground motion (GM15), prior to collapse; (c) Example damage instances of the frame when subjected to the highlighted
intensities of ground motion 15 (GM15); (d) IDA curves for the frame after reaching each of the damage instances shown in
(c); and (e) Collapse fragility curve of the intact frame and four damage instances.

The term “average” refers to the geometric mean, or the log-average, taken over 𝑞 periods within the range between 0.2𝑇
and 3.0𝑇 , where 𝑇 is the fundamental (first mode) vibration period of the structure. The periods are linearly spaced at every
0.01 seconds, and the spectral accelerations are 5% damped. By implicitly capturing the spectral shape in the ground motion
selection, the target 𝐼𝑀 of 𝑆𝑎𝑎𝑣𝑔(𝑇 ) avoids the need to apply a spectral shape adjustment to the resulting fragility curves for
the unique site hazard, provided that the hazard is characterized by 𝑆𝑎𝑎𝑣𝑔(𝑇 ). In this study, we inferred 𝑆𝑎𝑎𝑣𝑔(𝑇 ) by considering
site-specific correlations in the standard 𝑆𝑎(𝑇 ) intensity measure, similar to approaches used by other research groups.30,31,32

The collapse index 𝜅 is calculated as the ratio of the median value of the collapse intensity of the damaged, 𝑆𝑎
𝐷𝑎𝑚𝑎𝑔𝑒𝑑
𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 , and

intact structure, 𝑆𝑎
𝐼𝑛𝑡𝑎𝑐𝑡
𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒, computed per Equation 2 following Ryu et al.33 and shown in Figure 2(e). As illustrated in the figure,
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𝜅 reflects the leftward shift in the collapse fragility caused by damage, implying that the damage does not significantly affect
the dispersion in the fragility curves.

𝜅 =
𝑆𝑎𝑎𝑣𝑔(𝑇 )

𝐷𝑎𝑚𝑎𝑔𝑒𝑑
𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒

𝑆𝑎𝑎𝑣𝑔(𝑇 )𝐼𝑛𝑡𝑎𝑐𝑡𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒

(2)

Worth highlighting is that 𝜅 is a relative measure of collapse risk, where the question of post-earthquake reoccupancy of a
building presumes that the stakeholders (i.e., building occupants or code officials) consciously or unconsciously accept the risk of
using a building in its pre-earthquake condition regardless of what that risk may be compared to some standard or building code.
Alternatively, the analyst could redefine 𝜅 using a baseline that reflects a code-confirming design by changing the denominator
in Equation 2. The data generation process in Figure 1 produces a collection of damage instances of the structure of interest that
can be characterized by a set of candidate damage indicators, which are related to the post-earthquake collapse safety index 𝜅.

3 METHODOLOGY FOR SELECTING DAMAGE INDICATORS AND SAFETY
THRESHOLDS

The next step in the safety assessment process is identifying damage indicators that correlate well with 𝜅 and quantitative
thresholds to inform post-earthquake inspections. The methodology has five steps, plus an optional sixth, as illustrated in Figure
3. The methodology starts from the two main outputs of the data generation process described in Section 2: damage indicators
for each damage instance and corresponding values of the collapse safety ratio, 𝜅. The first step, described in Section 3.1,
relates the calculated collapse safety ratio 𝜅 to each damage indicator by fitting a trilinear model to the data. The fitted trilinear
models suggest tagging thresholds for each damage indicator and a limiting value of the collapse safety ratio, 𝜅𝑙𝑖𝑚𝑖𝑡, at which the
safety of the damaged structure starts to degrade rapidly. In the second step, the mean absolute error of the trilinear models is
used to evaluate the efficiency of the damage indicators to estimate 𝜅 and discard the least efficient damage indicators (Section
3.2). The third step selects optimal tagging threshold values for the remaining candidate damage indicators, where the optimal
threshold is chosen to maximize the correctness of tagging decisions (i.e., by minimizing false green and red tags), measured by
a metric called “tagging accuracy” that is based on concepts of statistical classification algorithms. In step 4, the robustness of
each threshold and damage indicator is assessed with respect to modeling uncertainty using the sensitivity analysis described in
Section 3.4. Finally, in Step 5, the most promising damage indicators and thresholds are evaluated to determine thresholds that
can be applied in post-earthquake field evaluations (Section 3.5). As an optional sixth step, the trilinear model of the selected
damage indicators can be used to compute collapse fragility curves conditioned on the value of the damage indicator, as explained
in Section 3.6.

3.1 Step 1: Conditioning collapse safety on a damage indicator
Referring to Figure 4(a), a trilinear model is proposed to identify the damage indicators that are good predictors of 𝜅 and reveal
thresholds that help inform safety decisions. The model is a descending function, fitted to 𝜅 with respect to the logarithm of the
damage indicators, following Eq.3). The trilinear shape is informed by the data, as will become apparent in subsequent figures
for the case study.

�̃� =
⎧
⎪
⎨
⎪⎩

𝜅0 if 𝐷𝐼 < 𝑎1
𝜅0 + 𝑏1(ln(𝐷𝐼) − ln(𝑎1)) if 𝑎1 ≤ 𝐷𝐼 < 𝑎2
𝜅0 + 𝑏1(ln(𝑎2) − ln(𝑎1)) + 𝑏2(ln(𝐷𝐼) − ln(𝑎2)) otherwise

(3)

A descending function was selected because an increase in damage (i.e., a larger value of damage indicator) reduces 𝜅, and
the trilinear function has the potential to uncover two kink values that may be useful thresholds for safety decisions. The models
start with 𝜅 = 𝜅0 at a predefined minimum value of the damage indicator, 𝐷𝐼𝑚𝑖𝑛, which was chosen to avoid singularities
when working in log space. The model has five parameters: the initial 𝜅0, first kink value (𝑎1), initial slope (𝑏1), second kink
value (𝑎2), and secondary slope (𝑏2). 𝑎1 indicates the maximum amount of damage for which the performance reduction is
negligible. 𝑎2, labeled “cliff threshold” in Figure 4(a), reveals the amount of damage at which the collapse safety of the damaged
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FIGURE 3 Summary of the process to compare and select appropriate damage indicators and tagging thresholds for post-
earthquake safety evaluations. The process can be extended with a sixth step to obtain collapse fragilities conditioned on damage
indicator values.

structure starts degrading at a dangerous rate. The function fitting process minimizes the sum of the squared error using practical
recommendations by Magnani and Boyd34 to find the best local minimum for Equation 4 with the following constraints.

min
∑𝑛

𝑖=1(𝜅𝑖 − �̂�)2 (4)
𝑎1 ≤ 𝑎2 (5)

0.9 ≤ 𝜅0 ≤ 1.1 (6)

where 𝑛 is the total number of [𝜅, damage indicator] pairs in the data. The ratio 𝜅 is allowed to take values up to 1.10 to
account for the few damage instances where the median collapse capacity is slightly larger than for the intact structure (reasons
for values above 1.0 are explored later in the case study). This trilinear model can be used to directly estimate the collapse
fragility of a damaged structure by conditioning the median collapse intensity on a damage indicator value as shown for the dots
in Figure 4(a) and the corresponding fragilities in Figure 4(b).

ln(𝑎1)ln(𝐷𝐼𝑚𝑖𝑛) ln(𝑎2)

𝑏1

𝑏2

𝜅0

Ln(Damage Indicator)

𝜅
Cliff thresholdIntact

(a) (b)
Intensity Measure

4
3

2
1

1234

FIGURE 4 Relationship between damage indicator and collapse safety (a) Tri-linear model to estimate the 𝜅 as a function of a
damage indicator; and (b) Collapse fragilities conditioned on the damage indicator value.
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While more elaborate models have been proposed in other studies to estimate 𝜅 as a function of several damage indicators
for specific structures13, they are difficult to extend to various structural systems. We have opted for a simpler model to identify
key trends more suitable for practical implementation in the field.

3.2 Step 2: Evaluate damage indicators based on efficiency
The ability of each damage indicator to estimate 𝜅 is quantified in terms of “efficiency”, defined in this context as the capacity
of a damage indicator to explain most of the variability in 𝜅, similar to how efficiency has been defined in the evaluation of
intensity measures.35 Efficiency can be measured by estimating the mean absolute error (MAE) of each damage indicator based
on the corresponding trilinear model as shown in Equation 7, where 𝑛 is the total number of [𝜅, damage indicator] pairs in the
data. MAE is preferred over other alternatives (e.g. mean squared error) because the error measure is in the same units of 𝜅.
More efficient damage indicators have lower MAE; thus, this metric allows us to rank the damage indicators and eliminate from
consideration the least efficient ones.

𝑀𝐴𝐸 =
∑𝑛

𝑖=1 𝜅𝑖 − �̂�
𝑛

(7)

3.3 Step 3: Quantify Tagging Accuracy
Any safety recommendation will have an imperfect accuracy, resulting in false red tags (safe structures deemed unsafe) and false
green tags (unsafe structures deemed safe). This step of the methodology presents a metric to quantify the accuracy of safety
criteria and, thereby, determine a threshold value that maximizes tagging accuracy for each damage indicator.

A useful damage indicator allows the identification of those damaged structures that are unsafe (i.e., have a low value of 𝜅). The
question is, what is the 𝜅𝑙𝑖𝑚𝑖𝑡 value to differentiate between safe and unsafe damaged structures? Previous researchers typically
chose 𝜅𝑙𝑖𝑚𝑖𝑡=0.9 without much explanation and highlighted that this limit should be ultimately chosen by the stakeholders since
it reflects their risk perception.33,12,13

To inform the selection of the threshold, we employ the concept of balanced accuracy, which is common for comparing binary
classifiers in statistical modeling.36 The balanced accuracy, renamed tagging accuracy in this context, is the average fraction of
correct green tags and the fraction of correct red tags as shown in Equation 8.

Tagging accuracy = 1
2

𝐶𝐺
𝑇𝐺

+ 𝐶𝑅
𝑇𝑅


(8)

where: 𝐶𝐺 = Correct green tags (Damage instances with Damage Indicator ≤ Threshold)
𝑇𝐺 = True green tags (Damage instances with 𝜅 > 𝜅𝑙𝑖𝑚𝑖𝑡)
𝐶𝑅 = Correct red tags (Damage instances with Damage Indicator > Threshold)
𝑇𝑅 = True red tags (Damage instances with 𝜅 ≤ 𝜅𝑙𝑖𝑚𝑖𝑡)

The computation of tagging accuracy requires prior knowledge of an accurate safety measure of each damage instance. We
assume a safety measure defined by a 𝜅𝑙𝑖𝑚𝑖𝑡, such that any damage instance with 𝜅 ≤ 𝜅𝑙𝑖𝑚𝑖𝑡 is a reliable red tag. The 𝜅𝑙𝑖𝑚𝑖𝑡 is not an
arbitrary choice; rather, it is informed by the cliff thresholds from multiple damage indicators, where the tagging accuracy puts
equal weights on false red and green tags. This definition could be modified to give more weight to false green tags, but we chose
to use a balanced metric so that the cliff thresholds provide an unbiased measure. In this approach, the risk perception of the
stakeholders can be incorporated into the safety assessment by changing the 𝜅𝑙𝑖𝑚𝑖𝑡 from that suggested by calculated thresholds.
Note that the lowest possible tagging accuracy is 0.50, which occurs for two trivial thresholds: (1) zero threshold, so all damage
instances are red-tagged, or (2) a very large threshold, so all damage instances are green-tagged.

In actual post-earthquake inspections, safety tags are determined only by the observed damage indicator values, i.e., without
the knowledge of detailed structural analyses. Thus, the optimal safety threshold for any damage indicator should maximize the
tagging accuracy. We use a grid search algorithm to find the threshold value of each damage indicator that maximizes tagging
accuracy. The grid search for each damage indicator can be implemented in the following sequence of steps: (1) identify the
lowest and highest values of the damage indicator; (2) set the lowest value as the safety threshold; (3) assign red tags to all
damage instances with damage indicators larger than the threshold and green tags otherwise; (4) compute the tagging accuracy
using the true tags based on the selected 𝜅𝑙𝑖𝑚𝑖𝑡 of the structure; and (5) increase the threshold value and repeat steps 3 and 4 until
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reaching the highest value of the damage indicator. The threshold value with the maximum tagging accuracy is optimal. The
next step in the methodology is to evaluate the damage indicators based on their robustness to modeling uncertainty.

3.4 Step 4: Assess the safety threshold robustness to modeling uncertainty
In most post-earthquake inspections, the quality of construction and the properties of the structural materials are not precisely
known, which leads to uncertainties in modeling the structural response. The modeling uncertainty affects the threshold values
discussed in the previous step of the methodology. Ideally, an appropriate damage indicator would provide a safety threshold
value relatively insensitive to the structural modeling uncertainty.

To compare the robustness of various damage indicators to modeling uncertainty, we use a sensitivity study to identify model
parameters that have the largest influence on the structural response. We then set realistic upper and lower bounds for each
parameter (typically one standard deviation above and below their mean values). Using these bounds, we generate a low- and
high-quality version of the structural model.

The data generation process described in Section 2 is repeated for the low- and high-quality versions of the structural model.
The trilinear model is fitted to the resulting data to observe the effect of model uncertainty on the critical threshold. While
further investigation could include randomization of the parameters, the simpler sensitivity approach quickly identifies whether
the damage indicator is affected by the uncertainty. A damage indicator is considered robust to modeling uncertainty if the
resulting trilinear models for each model realization (low- mean- and high-quality) are similar. As with efficiency, the robustness
evaluation allows comparisons of damage indicators, and the indicators overly sensitive to changes in the model parameters are
dropped from further consideration.

3.5 Step 5: Recommend safety criteria for the structure
Recommendations for post-earthquake evaluations for a particular structure can be based on the thresholds of efficient and robust
damage indicators identified from steps 1 to 4 of this methodology. This process may be especially useful to develop tailor-made
inspection criteria for special and complex structures, such as tall buildings and public buildings with large occupancy, but it
is also useful to develop recommendations for broader structure types (e.g. regular ductile RC buildings, wood frame houses).
In the latter context, the final recommendation requires a general threshold that balances results from a group of representative
archetypes for the structural type.

3.6 Step 6 (Optional): Collapse fragilities for damaged structures
The post-earthquake assessment presented here focuses on a relative measure of the increase in vulnerability of a structure due to
earthquake damage. As such, this assessment does not consider the absolute value of risk or the influence of elevated earthquake
aftershock hazard on the risk. For decision-making regarding reoccupancy of buildings following a major earthquake, one may
want to consider the increased collapse risk due to structural damage and aftershock hazard. Such an analysis would require
the collapse fragility curve of the structure for its condition following a mainshock earthquake. The trilinear model presented
in Figure 4(a) provides a straightforward method to determine the collapse fragility of the structure Figure 4(b) under various
amounts of damage, based on the damage indicator. The inputs for this process are the fitted trilinear model for 𝜅 as a function of
a selected damage indicator, the intact collapse fragility curve, and the damage indicator value determined by post-earthquake
inspection. In addition, one would need information to characterize the site-specific hazard considering both the steady-state
earthquake hazard and the elevated earthquake hazard. Details of such an approach are described in a related paper by the
authors37.

4 APPLICATION OF THE METHODOLOGY TO DUCTILE RC FRAME BUILDINGS

This section illustrates the proposed methodology with a case study of ductile RC frame buildings. We start by describing the
ground motion suite and the detailed models used for generating structural damage and post-earthquake data, as well as the
candidate damage indicators relevant to ductile RC frames. Then, we proceed through each step of the proposed methodology.
Ultimately, we find that the best-performing damage indicator is one that combines beam and column hinge damage indices
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on a floor-by-floor basis and combines them to produce a building index. Key attributes of this indicator are that it: (1) is least
sensitive to modeling uncertainty; (2) is the most efficient in predicting collapse safety; and (3) has safety thresholds that are
consistent across building models with varying numbers of stories.

4.1 Inputs for structural damage and post-earthquake data generation
Following the procedures outlined in Section 2, the data generation process requires input ground motions and models that
represent the structures of interest. This section describes our choices for the case study.

4.1.1 Ground Motions
Similar to Burton and Deierlein,15, this case study uses the FEMA P695 far-field ground motion suite (Figure 5a) for both the
damaging and collapsing earthquakes. The two horizontal components of the 22 ground motion pairs of the suite were considered
independently, for a total of 44 records.
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FIGURE 5 Input ground motions and structural model for the case studies (a) Ground motion spectra for FEMA-P695 far field
set. (b) Idealized analysis model of the ductile RC frame buildings.

4.1.2 Building Models
The ductile RC frame buildings are described by four archetypes per the ASCE-738 and the ACI-31839 specifications for a
high seismic hazard location in Los Angeles on soil class D. The archetype designs and numerical models were developed
previously by Haselton et al.40. Table 1 shows the number of stories, the fundamental period of vibration, the design-based
earthquake (DBE) 𝑆𝑎(𝑇 ), and the archetype identifier for each model. The archetypes were idealized as two-dimensional frames
and modeled using OpenSees.41 Figure 5b illustrates the main features of the analytical models for each frame, where beam and
column hinges are lumped plasticity elements using the IMK model42, specifically calibrated for RC elements.43 The flexibility
of beam-column joints is represented by an elastic spring implemented by the Joint2D44 element in OpenSees. The column bases
have elastic rotational springs to represent foundation flexibility. The destabilizing effects of the gravity framing are included
by means of a leaning column. We used the hinge model parameters, developed by Haselton et al.43 and enhanced by Gokkaya
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et al.18, to determine the low-and high-quality version of each archetype building model. The concentrated plastic hinges that
simulate the non-linear responses of the concrete members are uniaxial springs, which do not explicitly model axial-flexure
interaction. The hinge parameters are set based on the column gravity forces, assuming that the variation in axial loads under
earthquakes has a negligible effect on the collapse of the ductile RC frames (supported by Harrington and Liel45).

TABLE 1 Attributes of the RC-frame structures considered.

Number of stories Fundamental period* [s] 𝑆𝑎(𝑇 )𝐷𝐵𝐸 [g] Archetype identifier
4 0.95 0.63 1008
8 1.80 0.33 1012

12 2.14 0.27 1014
20 2.35 0.25 1021

*The initial stiffness uses cracked section properties calibrated by Haselton et al.43

The data-generation process for each RC frame uses 44 records at seven intensities for the damaging earthquakes, for a total
of 308 damage instances described by the candidate indicators introduced in Section 4.1.3. For each damage instance, collapse
assessments were subsequently carried out with full IDA, using each of the 44 ground motions as a collapsing earthquake. In total,
approximately 250,000 NLRHA were performed for each archetype and each model quality version. This large computational
task was completed by running the OpenSees parallel computing interpreter (OpenSeesMP) with high-performance computing
resources. The entire data set generated is available for download (see Section 6) to enable further studies without the need to
spend large computational resources again.

4.1.3 Candidate damage indicators
The candidate damage indicators for ductile RC-frame buildings are summarized in Table 2. The 𝑆𝐷𝑅𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 and 𝑆𝐷𝑅𝑝𝑒𝑎𝑘
indicators are depicted in Figure 6 for an example response of the 8-story archetype. Note that calculations of the transient
𝑆𝐷𝑅𝑝𝑒𝑎𝑘 and 𝑆𝑎(𝑇 ) in an actual post-earthquake scenario would require instrumentation that is not generally available. How-
ever, information on nearby stations can be used to obtain acceptable estimates of the 𝑆𝑎(𝑇1) using spatial correlation models,
while 𝑆𝐷𝑅𝑝𝑒𝑎𝑘 can be estimated using simplified building models.

TABLE 2 Description of candidate damage indicators.

Damage Indicator ID Damage indicator description
𝑆𝐷𝑅𝑝𝑒𝑎𝑘 Maximum story drift ratio
𝑆𝐷𝑅𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 Maximum residual drift ratio
𝐹𝐷𝐼𝑚𝑎𝑥 Maximum floor damage index
𝐹𝐷𝐼𝑏𝑜𝑡𝑡𝑜𝑚

𝑚𝑎𝑥 Maximum floor damage index of the bottom 𝑁𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 floors;
𝑁𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 is 1, 2, 3 and 5 for a 4-, 8-, 12- and 20-story building, respectively
(counting floors above the ground level)

Beams DS≥1 Fraction of beams at any damage state

The floor damage indices, 𝐹𝐷𝐼𝑚𝑎𝑥 and 𝐹𝐷𝐼𝑏𝑜𝑡𝑡𝑜𝑚
𝑚𝑎𝑥 , are inspired by FEMA-352’s5 damage index for pre-Northridge steel

moment frames. According to FEMA-352, a damage state from 0 to 4 is assigned to each beam-column connection on each
floor, based on the observed damage. The damage state of each component (𝑑𝑖 for the 𝑖-th component) is used to compute a floor
damage index (𝐹𝐷𝐼) from 0 to 1, where 1 means that all beam-column connections are fractured. Applying this idea to ductile
RC-frames, the beam and column hinge damage indices on each floor are combined to compute 𝐹𝐷𝐼 using Equation 9.

𝐹𝐷𝐼𝑖 =
0.5
𝑛𝑏

𝑛𝑏
𝑗=1

𝑑𝑏𝑗
3

+ 0.5
𝑛𝑐

𝑛𝑐
𝑗=1

𝑑𝑐𝑗
3

(9)
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where: 𝑛𝑏 = Number of beam moment connections in floor 𝑖,
𝑛𝑐 = Number of column moment connections adjoined to floor 𝑖,
𝑑𝑏𝑗 = Damage state of beam 𝑗 (3 damage states per component), and
𝑑𝑐𝑗 = Damage state of column 𝑗 (3 damage states per component).

Note that the damage state of each component in Equation 9 is divided by 3, the total number of damage states in this case.
Figure 6 shows an example of the damage state of each beam and column hinge and the corresponding computation of 𝐹𝐷𝐼
in the fourth floor and the 8-story frame archetype. Candidate damage indicators can be crafted by combining the 𝐹𝐷𝐼’s over
the height of the building. Based on a review of potential 𝐹𝐷𝐼 combinations, we propose 𝐹𝐷𝐼𝑚𝑎𝑥 and 𝐹𝐷𝐼𝑏𝑜𝑡𝑡𝑜𝑚

𝑚𝑎𝑥 . The latter is
more practical than the former because it only requires information about the bottom quarter of the building (see 𝑁𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 in
Table 2) to take advantage of the fact that the most common collapse mechanisms of RC frames engage stories in that part of
the structure.46 Table 3 summarizes the component fragilities used in the virtual inspector to estimate the damage state of each
component (𝑑𝑖).

𝑆𝐷𝑅𝑝𝑒𝑎𝑘
𝑆𝐷𝑅𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

Beam hinge in damage 
state 2 (𝑑𝑏1 = 2)

Beam hinge in damage 
state 1 (𝑑𝑏3 = 1)

Intact column 
hinge (𝑑𝑐3 = 0)

Deformed shape at 
peak story drift
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deformed 
shape

𝐹𝐷𝐼𝑠𝑡𝑜𝑟𝑦 4 =
0.5
6
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FIGURE 6 Identification of various damage indicators used to characterize the post-earthquake performance of RC-frames. (a)
Elevation of the 8-story archetype after a damaging earthquake showing the residual deformed shape in black, the deformed
shape at the transient peak story drift in grey, and the hinges that have formed in colors. (b) Closer look at the fourth floor of
the building and example computation of the corresponding 𝐹𝐷𝐼

4.2 Condition collapse safety on a damage indicator
Data is assembled for each damage indicator and plotted versus 𝜅, and the trilinear model was fit to the data for each of the four
RC frame archetypes. Figure 7 shows the models (the black lines) as a function of selected damage indicators for the 8-story
archetype (Figure 7(a)-(c)), 20-story archetype (Figure 7(d)-(f)), and all archetypes combined (Figure 7(g)-(i)). The underlying
data is presented as a scatter plot color coded per building. Visual scrutiny of the plots in Figure 7 suggests that the trilinear model
is a reasonable representation of the relationship between 𝜅 and the candidate damage indicators. Nevertheless, the dispersion
of the points around the black line varies for each damage indicator, suggesting that their ability to estimate 𝜅 is different. The
first kink, 𝑎1, is the value up to which the collapse safety of the building is not expected to vary from the intact, as stated in
Section 3.1. This kink may provide useful information as is the case of 𝑆𝐷𝑅𝑝𝑒𝑎𝑘, where 𝑎1 suggests that peak drifts lower than
1.0% and 0.7% do not affect the collapse safety of the 8-story and 20-story archetype, respectively.

The second kink, 𝑎2, is the cliff threshold. In all plots of Figure 7, this value marks a sudden change in the rate a which 𝜅
decreases, suggesting that it is a reasonable threshold for differentiating between collapse performance. The cliff threshold for
𝑆𝐷𝑅𝑝𝑒𝑎𝑘 is around 2.3-2.5% for all buildings, which is in accordance with the drift limits in modern design codes. Similarly, the
cliff threshold for 𝐹𝐷𝐼𝑚𝑎𝑥 is 0.15-0.17. This value corresponds to the 𝐹𝐷𝐼 for a floor with all beam hinges at DS1., as defined
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TABLE 3 Component fragility for observable damage of beam and column hinges (adapted from Burton et al.12

based on FEMA P-5826).

Component Damage
State

Damage description Median
EDP

Dispersion

Beam hinge DS1 Numerous residual cracks (width > 0.06in)
extended one section depth from element end

0.30𝜃𝑐 0.40

DS2 Concrete spalling 0.70𝜃𝑐 0.40
DS3 Concrete core crushing, longitudinal rebar buck-

ling or fracture
1.00𝜃𝑐 0.40

Column
hinge

DS1 Numerous residual cracks (width > 0.06in)
extended one section depth from element end

0.25𝜃𝑐 0.40

DS2 Concrete spalling 0.55𝜃𝑐 0.40
DS3 Concrete core crushing, longitudinal rebar buck-

ling or fracture
0.80𝜃𝑐 0.40

𝜃𝑐 : Capping rotation of the IMK hinge model

in Table 3. The cliff threshold for Beams DS ≥ 1 is noticeably less stable across archetypes compared to the other two damage
indicators. This concern is discussed in the next step.

4.3 Evaluate damage indicators based on efficiency
Figure 8 shows the MAE for all the damage indicators (left to right) and each building archetype (colored lines). The black
line in Figure 8 presents the MAE computed for the data of all the archetypes combined (see scatter plots from Figure 7(g)-
(i)). This combined MAE is a good metric to evaluate the efficiency of each damage indicator for a broad range of RC frames,
rather than the individual archetypes. From Figure 8 it is evident that 𝐹𝐷𝐼𝑚𝑎𝑥 and 𝐹𝐷𝐼𝑏𝑜𝑡𝑡𝑜𝑚

𝑚𝑎𝑥 are consistently the most efficient,
followed by the drift indicators (𝑆𝐷𝑅𝑝𝑒𝑎𝑘 and 𝑆𝐷𝑅𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙). The Beams DS ≥ 1 and 𝑆𝑎(𝑇 )∕𝑆𝑎(𝑇 )𝐷𝐵𝐸 damage indicators are
the least efficient options. Figure 8 reveals that the MAE for the combined data does not always lay in the center of the lines for
individual archetypes. This is particularly evident for the Beams DS ≥ 1 indicator. This occurs because the fraction of damaged
beams necessary to reach a given 𝜅 changes with the number of stories, which is reflected by the clustering of data points of the
same color in Figure 7(i). This means that for taller archetypes, lower damage fractions cause the same reduction in collapse
safety compared to shorter archetypes. Combining these disparate responses in a single trilinear model across all the archetypes
decreases the efficiency as compared to any one archetype’s model.

The lower efficiency of Beams DS ≥ 1 and 𝑆𝑎(𝑇 )∕𝑆𝑎(𝑇 )𝐷𝐵𝐸 implies that post-earthquake evaluations based on thresholds
in ground motion intensity or fractions of damaged components can be significantly improved if attention is shifted to more
relevant damage indicators. Therefore, the Beams DS≥ 1 and𝑆𝑎(𝑇 )∕𝑆𝑎(𝑇 )𝐷𝐵𝐸 are not discussed further in subsequent sections
of this paper.

4.4 Threshold selection
To select a damage indicator threshold, we need to select a 𝜅𝑙𝑖𝑚𝑖𝑡 value that accurately estimates the simulated red and green tags
(Section 3.3), and then measure accuracy in predicting the simulated tags. To inform the selection of 𝜅𝑙𝑖𝑚𝑖𝑡, Figure 9 shows the
value of 𝜅 at the cliff threshold for the remaining damage indicators and all archetypes. In most cases, 𝜅 at the cliff threshold falls
between 0.8 and 0.95 regardless of damage indicator and archetype. The only exception is the 4-story building for 𝑆𝐷𝑅𝑝𝑒𝑎𝑘 and
𝑆𝐷𝑅𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙, where the cliff-based 𝜅 is heavily affected by the noise in the data. The cliff thresholds for 𝐹𝐷𝐼𝑚𝑎𝑥 and 𝐹𝐷𝐼𝑏𝑜𝑡𝑡𝑜𝑚

𝑚𝑎𝑥
are all approximately 𝜅 = 0.85.

Setting 𝜅𝑙𝑖𝑚𝑖𝑡 to 0.85, we can apply a grid search algorithm and compute the tagging accuracy for varying values of each
damage indicator, as illustrated in Figure 10(a)-(b) for 𝑆𝐷𝑅𝑝𝑒𝑎𝑘 and Figure 10(c)-(d) for 𝐹𝐷𝐼𝑚𝑎𝑥. Results are presented for the
20-story archetype only due to space limitations. The scatter plots in Figure 10(a) and (c) have the color of the true tag according
to the 𝜅𝑙𝑖𝑚𝑖𝑡 selected; thus, all damage instances above 0.85 should be tagged green, or red otherwise. For a given damage
indicator threshold, the points in the lower left or upper right quadrant correspond to damage instances that are assigned an
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FIGURE 7 Collapse safety ratio 𝜅 as a function of selected candidate damage indicators (𝑆𝐷𝑅𝑝𝑒𝑎𝑘, 𝐹𝐷𝐼𝑚𝑎𝑥, and Beams DS ≥
1) for the 8- and 20-story archetypes, as well as all archetypes combined.

incorrect tag. The plots in Figure 10(b) show the resulting tagging accuracy for a 𝑆𝐷𝑅𝑝𝑒𝑎𝑘 threshold ranging from 0.1% to 10%
story drift and the plots in Figure 10(d) for a 𝐹𝐷𝐼𝑚𝑎𝑥 between 0.01 to 1. The threshold value that maximizes tagging accuracy
can be read directly from the plots in 10(b) and (d). 𝑆𝐷𝑅𝑝𝑒𝑎𝑘 achieves a maximum accuracy of 87% at a 2.0% threshold, again,
in accordance with modern design codes. 𝐹𝐷𝐼𝑚𝑎𝑥 has a similar value for maximum accuracy of 0.16. This value agrees with
the cliff threshold discussed in Section 4.2.

To inform the choice of a damage indicator-based safety recommendation, Figure 11 shows various options for the safety
thresholds for the four candidate damage indicators. The solid grey line marks the cliff threshold for each archetype, while the
dot-dashed grey line shows the constant cliff threshold obtained by combining the data for all archetypes together (as depicted
in Figure 7(g)-(i)). The purple lines show the optimal threshold for three alternative 𝜅𝑙𝑖𝑚𝑖𝑡: 0.80, 0.85, and 0.90.

In most cases, the cliff thresholds and the maximum accuracy thresholds tend to decrease with the number of stories. However,
Figure 11 helps to identify safety thresholds that are general for all archetypes as intended by the combined threshold that



GALVIS ET AL. 15

FIGURE 8 Efficiency of candidate damage indicators for the 4-, 8-, 12-, and 20-story RC-frame archetypes. The Beams DS ≥
1 and 𝑆𝑎(𝑇 )∕𝑆𝑎(𝑇 )𝐷𝐵𝐸 damage indicators have the largest mean absolute error, and, thus, are the least efficient to predict 𝜅.
Thus, they will be discarded.

FIGURE 9 Collapse safety ratio 𝜅 at the cliff threshold for drift-based damaged indicators, 𝐹𝐷𝐼𝑚𝑎𝑥 and 𝐹𝐷𝐼𝑏𝑜𝑡𝑡𝑜𝑚
𝑚𝑎𝑥 for all RC

frame archetypes.

consider the data of all archetypes together. Broadly speaking, for a 𝜅𝑙𝑖𝑚𝑖𝑡 of 0.85, the optimal threshold of 𝑆𝐷𝑅𝑝𝑒𝑎𝑘 lies between
2.0% and 3.0%. For 𝑆𝐷𝑅𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 it is between 0.5% and 1.5% and for 𝐹𝐷𝐼𝑚𝑎𝑥 and 𝐹𝐷𝐼𝑏𝑜𝑡𝑡𝑜𝑚

𝑚𝑎𝑥 between 0.14 and 0.20.
Each of the proposed damage indicators can be evaluated based on their maximum accuracy threshold to determine which

constitutes the best safety threshold for each building archetype. Figure 12(a) presents the maximum tagging accuracy for each
archetype and damage indicator computed using 𝜅𝑙𝑖𝑚𝑖𝑡 = 0.85. These values are the largest possible tagging accuracy that
each damage indicator can offer. Note that the drift damage indicators have slightly lower tagging accuracy as compared to the
𝐹𝐷𝐼𝑚𝑎𝑥 and 𝐹𝐷𝐼𝑏𝑜𝑡𝑡𝑜𝑚

𝑚𝑎𝑥 for the shorter archetypes. A similar behavior is observed for a fraction of correctly classified red tags in
Figure 12(b). Before deciding on the damage thresholds that are best to represent a broader set of RC buildings, their sensitivity
to model uncertainty should be considered.

4.5 Assess the safety threshold robustness to modeling uncertainty
To evaluate sensitivity to the modeling parameters, we recomputed the backbone of each plastic hinge with parameters set to one
standard deviation above and below the median parameters of strength and ductility.40 The stronger and more ductile backbones
are intended to represent a structure with high-quality components, while the weaker and less ductile backbones belong to a
structure with low-quality components. Figure 13 presents the pushover curves for uniform lateral loading of the three model
versions for the 8-story archetype. Varying the modeling parameters in this way changes the building’s lateral strength (maximum
base shear on the y-axis) by about 30%. The displacement capacity (roof drift on the x-axis) in the low-quality version is reduced
by 30% while the high-quality version’s displacement capacity almost doubles with respect to the median model.
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FIGURE 10 Scatter plot of 𝜅 as a function of (a) 𝑆𝐷𝑅𝑝𝑒𝑎𝑘 and (b) 𝐹𝐷𝐼𝑚𝑎𝑥 including a vertical line at the threshold that
maximizes accuracy. The colors show the “true” tags defined by a prescribed 𝜅𝑙𝑖𝑚𝑖𝑡 = 0.85. Cross markers depict miss-tagged
damage instances, either false green tags (lower-left quadrant) or false red tags (upper-right quadrant). The tagging accuracy as
a function of the damage indicator threshold is shown for (c) 𝑆𝐷𝑅𝑝𝑒𝑎𝑘 and (d) 𝐹𝐷𝐼𝑚𝑎𝑥.

The post-earthquake safety assessment was also carried out for the low and high-quality versions of the 8-story building to
observe the effect of the building quality on the threshold values. The resultant trilinear models are presented in Figure 14 for
𝑆𝐷𝑅𝑝𝑒𝑎𝑘, 𝑆𝐷𝑅𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙, 𝐹𝐷𝐼𝑚𝑎𝑥, and 𝐹𝐷𝐼𝑏𝑜𝑡𝑡𝑜𝑚

𝑚𝑎𝑥 .
The sensitivity analysis demonstrates that drift-based damage indicators are not robust to modeling uncertainty. The trilinear

models for 𝑆𝐷𝑅𝑝𝑒𝑎𝑘 and 𝑆𝐷𝑅𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 change significantly with the building quality. The better the quality, the larger the required
drift for the same 𝜅 value. This is consistent with our intuition for what causes observable damage. A low-quality building has
larger displacement demands than the median due to its reduced lateral strength, which promotes premature non-linear excur-
sions. These higher displacement demands affect components that have a low rotational capacity, causing them to deteriorate
faster than components in the median model. On the other end, a high-quality building drifts less than the median and suffers
less component deterioration, not only due to the limited demand but also to its larger rotation capacity. In addition to the lack
of robustness to modeling uncertainty, the safety thresholds for 𝑆𝐷𝑅𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 are further affected by the lack of accuracy of the
concentrated plastic hinge models in terms of estimating residual displacements, which places an additional disadvantage to
this candidate damage indicator. In contrast, the trilinear models for 𝐹𝐷𝐼𝑚𝑎𝑥 and 𝐹𝐷𝐼𝑏𝑜𝑡𝑡𝑜𝑚

𝑚𝑎𝑥 are less affected by building quality
and are reasonably well predicted by the simulation models. These results reveal that drift-based damage indicators, which are
the focus of numerous studies11,10,47, are in fact more sensitive to modeling uncertainty compared to other damage indicators,
which may cause inaccurate safety decisions.

Conversely, 𝐹𝐷𝐼𝑚𝑎𝑥 and 𝐹𝐷𝐼𝑏𝑜𝑡𝑡𝑜𝑚
𝑚𝑎𝑥 implicitly capture modeling uncertainty because they measure damage directly; therefore,

a high-quality building that has fewer displacement demands and large component capacities would naturally have less damage,
which would be reflected in low 𝐹𝐷𝐼 values.
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FIGURE 11 Alternative safety thresholds for (a) 𝑆𝐷𝑅𝑝𝑒𝑎𝑘, (b) 𝑆𝐷𝑅𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙, (c) 𝐷𝐼ℎ𝑖𝑛𝑔𝑒𝑠, (d) 𝐹𝐷𝐼𝑚𝑎𝑥 and (e) 𝐷𝐼𝑠𝑑𝑟 for the four
ductilre RC frame archetypes.

FIGURE 12 Summary of statistics on tagging accuracy (a) Optimal tagging accuracy; and (b) Fraction of correctly classified
red tags for the candidate damage indicators and each building archetype considering 𝜅𝑙𝑖𝑚𝑖𝑡=0.85 for accuracy calculations.
Continuous lines show the maximum accuracy thresholds, while dashed lines represent the recommended damage indicators
and threshold criteria presented in Section 4.6

4.6 Recommend safety criteria for the structure
The previous subsections demonstrate that 𝐹𝐷𝐼𝑚𝑎𝑥 and 𝐹𝐷𝐼𝑏𝑜𝑡𝑡𝑜𝑚

𝑚𝑎𝑥 are the most efficient and robust of the considered damage
indicators for RC buildings. Based on observations from Figure 11, we propose a constant safety threshold for both 𝐹𝐷𝐼𝑚𝑎𝑥
and 𝐹𝐷𝐼𝑏𝑜𝑡𝑡𝑜𝑚

𝑚𝑎𝑥 = 0.17. These values imply that all beam hinges of the critical floor have DS1 (numerous residual cracks,
width≥0.06in, extending one section depth from the element end).
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FIGURE 13 Pushover curve for the 8-story archetype with low, median, and high-quality material properties using a uniform
lateral load pattern.

FIGURE 14 Comparison of tri-linear parametric model for the 8-story archetype with low, median, and high structural
component model parameters for 𝑆𝐷𝑅𝑝𝑒𝑎𝑘, 𝑆𝐷𝑅𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙, 𝐹𝐷𝐼𝑚𝑎𝑥, and 𝐹𝐷𝐼𝑏𝑜𝑡𝑡𝑜𝑚

𝑚𝑎𝑥 .

The generalized safety criterion does not significantly reduce the optimal tagging accuracy as depicted by the dashed lines in
Figure 12. As expected, 𝐹𝐷𝐼𝑚𝑎𝑥 performs better than 𝐹𝐷𝐼𝑏𝑜𝑡𝑡𝑜𝑚

𝑚𝑎𝑥 because it captures the rare cases where the worst floors are in
the upper three-quarters of the building. However, 𝐹𝐷𝐼𝑚𝑎𝑥 requires careful inspection of all the floors of the building in order
to identify the worst. 𝐹𝐷𝐼𝑏𝑜𝑡𝑡𝑜𝑚

𝑚𝑎𝑥 offers a more practical alternative that performs almost as well but reduces the number of floors
that need to be inspected to only the bottom quarter of the building. We can further reduce the amount of inspection required
by defining a minimum amount of beams to inspect per floor to have a reliable estimation of the 𝐹𝐷𝐼 . But such refinement is
outside the scope of this paper. The recommended safety criteria are not limited to field applications, but can also be used to
expedite post-earthquake risk modeling of existing structures without computationally expensive sequential IDAs. The analyst
would only need to estimate the value of the damage indicator of the structure for a representative suite of damaging ground
motion and compute the damage indicator for each record. The likelihood that the structure is unsafe can be estimated as the
fraction of damaging earthquakes that produce a damage indicator larger than the threshold of the recommended safety criteria.
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5 SUMMARY AND CONCLUSIONS

In this paper, we propose a methodology that uses simulation results to identify relevant damage indicators and associated safety
thresholds for determining whether a damaged structure is safe to occupy. This methodology enables the development of more
accurate safety guidelines that augment current post-earthquake evaluation criteria and help identify structures that need to be
evacuated. The simulation-based methodology provides a path to develop safety guidelines for any structural system, even for
those that have not yet been observed in strong earthquakes.

The proposed methodology has five steps. The first step fits a trilinear model to predict median collapse capacity as a function
of each candidate damage indicator. The second step uses the fitting error of the trilinear models to measure the prediction
efficiency of each damage indicator. The damage indicators with the highest fitting errors should be discarded. The third step
identifies the optimal threshold for each damage indicator, based on a metric of accuracy in categorizing whether the structure’s
performance has reduced beyond a given limit for median collapse capacity. The fourth step assesses the robustness of the safety
thresholds to model uncertainty using a sensitivity approach. The damage indicators with thresholds that change significantly due
to modeling uncertainty should be discarded. The fifth step uses the remaining damage indicators and their optimal thresholds
to recommend quantitative safety criteria for a particular structural type. The collapse fragilities for damaged structures can be
computed as an optional sixth step.

The capabilities of this methodology are demonstrated with a case study of ductile RC frame buildings. The case study con-
siders damage indicators based on drift, ground motion intensity, fractions of damaged components, and floor damage indices.
The latter takes beam and column hinge damage on a floor-by-floor basis and combines them to produce floor damage indexes.
For the case study, floor damage indexes are the only type of damage indicators that have all of the following characteristics:
(1) are the most efficient in predicting the collapse safety of damaged buildings; (2) their safety thresholds tend to be constant
regardless of the number of stories which facilitates the selection of general recommendations for tagging RC buildings; and
(3) are robust to modeling uncertainty. The recommended safety criterion labels a ductile RC frame building as unsafe when all
beam hinges of the critical floor have numerous residual cracks extending at least one section depth from the face of the col-
umn. This safety criterion has a level of accuracy of approximately 80% when compared to directly tagging damaged buildings
based on their reduction in collapse capacity. The recommended safety criteria are not limited to field applications, but can also
be used to expedite post-earthquake risk modeling of existing structures without computationally expensive sequential IDAs.

Although the case study in this paper considered RC buildings, the simulation-based methodology proposed can be applied to
any structure type to identify specific damage indicators and their corresponding thresholds. For instance, the number of fractured
beam-to-column connections or the damage to column splices may be good candidate damage indicators for steel moment frame
buildings. Similarly, the damage state of structural walls and spandrel beams could be good candidates for RC wall buildings.
The computational effort to develop thresholds for new systems is significant yet commensurate with the resources typically
available at research institutions. The application of these thresholds in a post-earthquake setting would not require additional
sequential IDAs by the analyst. Taking a broader perspective, the application of this methodology to other types of structures
can inform the future post-earthquake evaluation guidelines that focus on quantitative safety thresholds to reduce subjective
judgment and increase confidence in safety decisions, even for difficult cases.

6 SUPPORTING MATERIAL

The code that creates all the figures in this paper can be found in the following repository48 with DOI: 10.5281/zenodo.7503565.
The module with the supporting functions that implement all the calculations of damage indicators and post-processing is in the
following repository: https://github.com/annehulsey/aftershock_analysis All the NLRHA results are available in DesignSafe49

Data Depot50 with DOI: 10.17603/ds2-3d7j-7w80.
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