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ABSTRACT: In this study, we present a Bayesian method for efficient collapse response assessment
of structures. The method facilitates integration of prior information on collapse response with data
from nonlinear structural analyses in a Bayesian setting to provide a more informed estimate of the
collapse risk. The prior information on collapse can be obtained from a variety of sources, including
information on the building design criteria and simplified linear dynamic analysis or nonlinear static
(pushover) analysis. The proposed method is illustrated on a four-story reinforced concrete moment
frame building to assess its seismic collapse risk. The method is observed to significantly improve the
statistical and computational efficiency of collapse risk predictions compared to alternative methods.

1. INTRODUCTION
Building codes achieve seismic performance goals
related to life safety of building occupants by con-
trolling collapse risk of structures to acceptable lev-
els. Modeling of structural collapse is challeng-
ing due to highly nonlinear structural response un-
der extreme ground shaking, and its simulation re-
quires nonlinear structural analysis tools and mod-
els that can capture various sources of cyclic and in-
cycle degradation in structural components. More-
over, robust estimation of collapse risk should con-
sider uncertainties in the earthquake ground mo-
tions and structural modeling, and propagate these
effects from component through to system level re-
sponse. These uncertainties affect the statistical ef-
ficiency of the estimated collapse risk parameters
and add to the computational demand associated
with collapse risk assessment of structures.

Bayesian statistics facilitate the incorporation of
any prior knowledge to inform statistical inference.

Singhal and Kiremidjian (1998) proposed using
Bayesian statistics to update fragility functions with
observational building damage data. Jaiswal et al.
(2011) also used a Bayesian approach for comput-
ing empirical collapse fragility functions combin-
ing expert opinion and field data for global building
types. Jalayer et al. (2010) used a Bayesian frame-
work for assessing the effects of structural model-
ing uncertainty. They incorporated test and inspec-
tion results of structures in order to update the prior
information on the modeling uncertainties.

In this study, we present a Bayesian method
for efficient collapse response assessment of struc-
tures combining analysis data and judgment. The
method facilitates integration of prior information
to estimate collapse fragility parameters with data
from nonlinear structural analyses. The combina-
tion of nonlinear analysis simulations with prior
collapse fragility information aims to improve com-
putational and statistical efficiency.
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2. BAYESIAN APPROACH
In this section, we present a Bayesian method to
collapse risk assessment. We discuss background
to development of the method, and present the
methodology along with the analysis rule.

2.1. Collapse Risk Metrics
Collapse fragility functions define probability of
collapse as a function of ground motion intensity
(IM). It is common to use lognormal distribution
to represent collapse fragility curves (Bradley and
Dhakal, 2008). Using a lognormal distribution, the
probability of collapse given a ground motion in-
tensity, P(C|IM = im), is defined as

P(C|IM = im) = Φ

(
ln(im)− ln(θ̂)

β̂

)
(1)

where Φ() is the standard normal cumulative distri-
bution function, and θ̂ and β̂ represent median col-
lapse capacity and logarithmic standard deviation
(dispersion), respectively.

Collapse risk is often quantified using mean an-
nual frequency of collapse (λc), which is defined as

λc =
∫

∞

0
P(C|IM = im) |dλIM(im)| (2)

where λIM is the mean annual frequency of ex-
ceedance of IM. This metric, by augmenting struc-
tural collapse response with site seismic hazard
characteristics, provides a site-specific measure of
collapse risk. In this study, our goal is to reliably
estimate λc for collapse risk assessment.

2.2. Proposed Method
In this section, we provide a step-by-step procedure
for conducting collapse risk assessment using
the Bayesian approach. Figure 1 illustrates the
steps. The essence of this approach is to transform
an initial estimate of the collapse response to
an informed estimate using nonlinear structural
analyses data with the goal of efficiently estimating
λc. The steps are listed as follows:

a) Define an initial estimate of the collapse
fragility curve and estimate the uncertainty in
the median collapse capacity (Figure 1a).

b) Select two or more IM levels at which to scale
and conduct nonlinear dynamic analyses. Quan-
tify the prior distributions at these IM levels
(Figure 1b).

c) Select ground motion suites consistent with con-
ditional spectra at the chosen IM levels (Figure
1c).

d) Conduct nonlinear time history analyses using
the selected ground motions scaled to the IM
levels of interest. Incorporate modeling uncer-
tainty by sampling model realizations (Figure
1d).

e) Obtain posterior distributions at the IM levels by
updating the prior distributions with data from
structural analyses (Figure 1e).

f) Obtain a final estimate of the collapse fragility
function using the maximum likelihood method.
For this method, likelihood is obtained using the
posterior distributions at the IM levels (Figure
1f).

2.3. Details of the Proposed Method
Users of this method are expected to provide prior
information on the collapse response of the struc-
ture. The prior information on collapse response
can be informed by a variety of sources, including
information on the building design criteria and sim-
plified linear dynamic analysis or nonlinear static
(pushover) analysis. Using a lognormal assump-
tion, we expect the users to provide an estimate
of median collapse capacity (θ ) and dispersion (β )
defining the initial collapse fragility function. To
treat epistemic and aleatory uncertainties in col-
lapse fragility functions, median collapse capacity
(Θ) is defined to be a Bayesian random variable. Θ

is modeled using a lognormal distribution with me-
dian θ and dispersion βθ . In addition to θ and β ,
users are also expected to provide βθ . Figure 1a
illustrates an initial fragility curve and uncertainty
in median collapse capacity using by a probability
density function. In cases where information on βθ

is not available, users can make judgment-based as-
sumptions for estimating βθ considering the lim-
itations in structural idealizations, calibration of
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(a) Initial collapse fragility curve
and uncertainty in median capacity
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(b) Selected IM levels and prior dis-
tributions at these levels
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(c) Ground motions selected to
match conditional spectra
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(d) Data from nonlinear time history
analyses at selected IM levels
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(e) Posterior distributions at selected
IM levels
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Figure 1: Steps of the proposed method

model parameters, number of analyses, and soft-
ware used for structural analyses such as: “Median
collapse capacity is estimated as θ within±∆% cer-
tainty with (1−α)% confidence." This leads to the
median collapse capacity being defined using a log-
normal distribution having median at θ and disper-
sion βθ as given in the equation below (Ellingwood
and Kinali, 2009).

βθ =

√√√√ln

([
∆

Φ−1(1−α/2)

]2

+1

)
(3)

An example of such an assumption is as fol-
lows: “Median collapse capacity is estimated as 1 g
within± 50% certainty with 90% confidence." This
statement is translated into a lognormal distribution
having a median of 1 g (θ = 1) and dispersion of ap-
proximately 0.3 (βθ = 0.3) . The 90% confidence
interval for this distribution is 0.61 g to 1.64 g.

Two or more IM levels should be used to se-
lect ground motions and conduct structural analy-

ses. A simulation-based grid search is conducted
to identify the combinations of IM levels that lead
to minimum error of λc estimates. Due to space
constraints, we do not present the results of the
simulation-based grid search. Based on search re-
sults, we recommend that IM1 is selected corre-
sponding to probability of collapse of 10% or lower
on the initial collapse fragility curve. Select IM2
such that it corresponds to probability of collapse
between 30% and 80% on the initial fragility curve
as an increasing function of ∆.

The prior distribution at the ith IM level (IMi) de-
fines the probability of collapse at IMi (P(τi)). It
is characterized using a beta distribution P(τi) ∼
Beta(αi,βi). In this method, the parameters of the
beta distribution, namely αi, βi, are calibrated as
follows:

We define two curves, namely Bound5% and
Bound95%, which are lognormal cumulative distri-
butions. They have dispersions of β . The medians
of Bound5% and Bound95% correspond to 5% and
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95% quantiles of Θ, respectively. Figure 1a illus-
trates Bound5% and Bound95%.

For any IMi, the 5% quantile of P(τi) is obtained
as the point corresponding to IMi on Bound5%.
Similarly, the 95% quantile of P(τi) is obtained as
the point corresponding to IMi on Bound95%. The
point on the initial fragility function corresponding
to IMi denotes the mode of P(τi). Using these con-
straints, one can obtain the parameters, αi and βi,
defining P(τi) ∼ Beta(αi,βi). Figure 1b illustrates
selected IM levels along with the prior distributions
at these levels.

Using Bayes theorem, the posterior distribution,
P(τi|Xi) is defined as follows:

P(τi|Xi) ∝ P(τi)P(Xi|τi) (4)

where P(Xi|τi) defines the likelihood function. In
this method, we use data from structural analy-
ses to define the likelihood function. Nonlinear
time history analyses should be conducted for this
purpose, preferably incorporating modeling uncer-
tainty and record-to-record variability. To account
for record-to-record variability, hazard consistent
ground motion suites are selected at each IM level.
An example ground motion suite is selected match-
ing the conditional spectra, and is shown in Fig-
ure 1c. For ground motion selection, readers are
referred to Jayaram et al. (2011). Previous re-
search has shown that neglecting modeling uncer-
tainty results in inconservative estimates of collapse
capacity (Liel et al., 2009; Dolsek, 2009; Ugurhan
et al., 2014). For robust estimates of collapse
risk, we recommend characterizing the uncertainty
in modeling parameters, and obtaining samples of
model realizations from the characterized proba-
bility distributions. Nonlinear time history analy-
ses should be conducted using the ground motion
suites scaled to IM levels of interest matched with
the sampled model realizations. Analyses results
are collected as binomial data (Xi) in the form of
number of collapses and no-collapses, P(Xi|τi) ∼
Binomial(τi,Xi). Figure 1d illustrates the results
from structural analyses in terms of proportions of
collapses at the two selected IM levels.

In this method, prior distributions are defined us-
ing beta distributions, and likelihood data is col-

lected using a binomial distribution. Since beta and
binomial distributions form a conjugate pair, poste-
rior distributions are also defined to have beta dis-
tributions P(τi|Xi) ∼ Beta(α̂i, β̂i). Posterior distri-
butions are illustrated for the selected IM levels in
Figure 1e.

Using the two posterior distributions at different
IM levels as the probability distributions defining a
likelihood function, we use a maximum likelihood
estimator to find the final parameters of a collapse
fragility function, namely θ̂ , β̂ (Figure 1f).

2.4. Validation of the Method

Our current work explores to validate the proposed
method. In the interest of computational efficiency,
instead of analyzing real structural models we use
simulated structural analyses data, which is bino-
mial data drawn from an assumed target fragility
function. We apply the Bayesian method to ob-
tain estimates the collapse fragility function and λc.
This procedure is repeated in a Monte-Carlo simu-
lation framework, which allows us to study the sta-
tistical efficiency of the Bayesian approach in terms
of the variance and bias of the estimators.

In the interest of space, we will not be presenting
the results from the validation analyses. Key ob-
servations from the validation analyses are as fol-
lows: The variability in collapse risk metrics is
significantly reduced using the Bayesian approach
compared to an alternative method of maximum
likelihood estimate. If used with an initial un-
biased estimate of the collapse fragility function,
Bayesian method provides an unbiased estimate of
λc. However, a biased initial guess produces bias
in Bayesian estimates. The amount of bias intro-
duced in the prior information heavily affects the
amount of bias that will be observed in the Bayesian
estimates. Posterior predictive checking (Gelman
et al., 2013) is a model checking method to assess
the plausibility of the posterior distributions. This
method is well suited to provide a check for the es-
timates obtained using the Bayesian approach.
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3. APPLICATION OF BAYESIAN AP-
PROACH

3.1. Structural Modeling and Analysis
Collapse risk assessment of a 4-story reinforced
concrete special moment frame is conducted to il-
lustrate the application of the Bayesian approach.
The structure was designed by Haselton and Deier-
lein (2007) in accordance with 2003 International
Building Code and ASCE7-02 provisions. It is lo-
cated at a seismically active site in downtown Los
Angeles, CA with Vs,30 = 285 m/s.

We use concentrated plasticity modeling to
idealize the structural system. Frame members
are modeled as elastic elements with zero-length
rotational springs at both ends. The hysteretic
behavior and in-cycle and cyclic deterioration
rules are governed by Ibarra et al. (2005). The
fundamental period of the structure is T1 = 0.94
s and a Rayleigh damping of 3% is applied to
it. The structure is modeled and analyzed using
Open System for Earthquake Engineering Platform
(McKenna et al., 2014).

3.2. Prior Information on Collapse Response
Nonlinear static analysis is a common structural
analysis strategy, and is generally conducted to
check the nonlinear structural analysis model.
Vamvatsikos and Cornell (2005) provide a fast
method, SPO2IDA, which uses pushover analy-
sis results to infer nonlinear dynamic response by
establishing connections between pushover curves
and incremental dynamic analyses (IDA) curves. In
this study, we use this method to obtain an initial
estimate of the collapse response of the structure.
Since nonlinear static analysis is not computation-
ally demanding and is generally conducted before
any dynamic analyses, we assume that it does not
add to the computational demand of the Bayesian
method.

The 4-story frame structure is analyzed using
nonlinear static analysis. Using the software for
SPO2IDA, we obtain estimates of 16, 50 and 84%
fractal IDA curves as shown in Figure 2. Dynamic
instability, which is characterized by the zero slope
of an IDA curve, is observed at ductility values
around 10. These estimated fractals of IDA curves
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Figure 2: Pushover and 16, 50 and 84% fractal IDA
curves obtained using the method by Vamvatsikos and
Cornell (2005)

lead to a lognormal collapse fragility function hav-
ing a median collapse capacity of 2.19 g and dis-
persion of 0.43. We use ∆ = 0.4 to characterize the
uncertainty in median collapse capacity estimate.

3.3. Ground Motion and Modeling Uncertainty
To represent record-to-record variability, ground
motion suites are selected consistent with condi-
tional spectra at two different ground motion inten-
sity levels. IM is used as 5% damped spectral ac-
celeration at T1 = 0.94 s, Sa(T1,5%). IM1 is recom-
mended to be selected corresponding to or below
10% probability of collapse on the initial fragility
curve. Probability of collapse of 4% on the ini-
tial fragility function corresponds to Sa(T1,5%) of
1.05 g. This is the ground motion intensity having a
probability of exceedance of 2% in 50 years for the
site where the structure is located. Similarly, IM2
is recommended to be selected such that it corre-
sponds to probability of collapse between 30% and
80% on the initial fragility curve as an increasing
function of ∆. Probability of collapse of 40% on the
initial fragility function corresponds to Sa(T1,5%)
of 1.96 g. This is the ground motion intensity hav-
ing probability of exceedance of 1% in 200 years
for this site. We selected 30 ground motions at each
IM level matching the conditional spectra.

Modeling uncertainty is propagated using Latin
Hypercube sampling. The parameters that are iden-
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tified as random variables are six parameters defin-
ing the monotonic backbone and hysteretic rules
of a structural component. These parameters are
flexural strength (My), ratio of maximum moment
and yield moment capacity (Mc/My), effective ini-
tial stiffness which is defined by the secant stiff-
ness to 40% of yield force (EIst f ,40/EIg), plas-
tic rotation capacity (θcap,pl), post-capping rotation
capacity (θpc) and energy dissipation capacity for
cyclic stiffness and strength deterioration (γ). The
monotonic backbone curve as a function of these
parameters is shown in Figure 3. The variabil-
ity in the modeling parameters is represented us-
ing logarithmic standard deviations of 0.73, 0.59,
0.5, 0.31, 0.27 and 0.1 for θpc, θcap,pl , γ , My,
EIst f ,40/EIg and Mc/My, respectively. These values
are computed using the beam-column element cal-
ibration database and the predictive equations de-
veloped by Haselton et al. (2008). In total, two
different components are assumed to exist in the
structural model, namely, beam and column com-
ponents. Equivalent viscous damping ratio, column
footing rotational stiffness and joint shear strength
are also treated as random with logarithmic stan-
dard deviations of 0.6, 0.3 and 0.1 (Haselton and
Deierlein, 2007), respectively.

Correlation structure among the random vari-
ables are adopted from Ugurhan et al. (2014). In
this correlation model, beam-to-beam and column-
to-column correlations are idealized as perfect cor-
relation, whereas beam-to-column and within com-
ponent correlations are idealized by correlation co-
efficients that are derived using random effects re-

gression. In total 15 random variables are used in
this study and 30 realizations of these variables are
obtained using Latin Hypercube sampling.

3.4. Results
Ground motions in each suite are scaled to the cor-
responding IM level and are matched with model
realizations in order to conduct nonlinear time his-
tory analyses. The number of collapses observed
are 6 and 13 out of 30 analyses at IM1 = 1.05 g and
IM2 = 1.96 g, respectively.

The initial collapse fragility function is defined
to have a median collapse capacity of 2.19 g and
dispersion of 0.43. Median collapse capacity is es-
timated within ±40% with 90% confidence.

At IM1, prior information leads to a distribu-
tion of Beta(α1 = 1.75,β1 = 17.42). Using the
Bayesian approach along with the observed data of
6 collapses out of 30 analyses, this distribution is
updated to Beta(α̂1 = 7.75, β̂1 = 41.42).

Similarly, at IM2, prior information leads to a
distribution of Beta(α2 = 2.55,β2 = 3.34). Using
Bayesian approach along with the observed data of
13 collapses out of 30 analyses, this distribution is
updated to Beta(α̂2 = 15.55, β̂2 = 20.34).

Using the maximum likelihood estimation
method, where the posterior distributions at the
two IM levels are used as probability distributions
defining the likelihood function, the final collapse
fragility curve is obtained to have a median collapse
capacity of 2.22 g and dispersion of 0.7.

We see that Bayesian method increases the dis-
persion of the initial fragility function by 64%. It
also increases the median collapse capacity of the
initial fragility function by 1.5%.

3.5. Discussions
To benchmark the collapse response of the case
study structure, we conduct an extensive collapse
response analysis of the structure incorporating
ground motion and modeling uncertainties. We
select 200 ground motions consistent with condi-
tional spectra at each IM level. We use five IM
levels correspond to probabilities of exceedance
of 5% in 50 years, 2% in 50 years, 1% in 50
years, 1% in 100 years and 1% in 200 years. 200
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Figure 4: Collapse fragility functions obtained using
different methods

model realization are obtained using Latin Hyper-
cube sampling. Each ground motion is matched
with a model realization, and in total 1000 nonlin-
ear time history analyses are conducted. Using a
maximum likelihood estimator, we obtain the col-
lapse fragility curve of the structure having a me-
dian of 2.09 g and a dispersion of 0.61. Figure 4
shows the collapse fragility functions obtained us-
ing different approaches. The red line shows the
result from 1000 analyses, and is indicated as the
target fragility function. The fragility curve ob-
tained using the Bayesian approach is shown in
blue, whereas the estimate obtained by applying
maximum likelihood estimation on observed struc-
tural analyses data only (MLE) is in green. Table
1 summarizes the results obtained using the afore-
mentioned approaches in terms of different collapse
metrics. Listed in Table 1 are the collapse fragility
parameters θ and β along with λc, which is ob-
tained using the site hazard curve, and the probabil-
ity of collapse in 50 years, which is obtained using
a Poisson assumption. Collapse risk estimates ob-
tained using the median model parameters for the
case study structure are also given in Table 1.

Table 1 shows that the Bayesian method shifts
the median collapse capacity away from the target
value. Although the initial estimate overestimates
the median collapse capacity by 5%, updating the
initial curve increases this difference to 6.6%. We

Table 1: Collapse risk estimates

Estimator θ (g) β λc(10−5) Pcol50years

Initial 2.19 0.43 10.61 0.0053
Bayesian 2.22 0.7 31.76 0.0158
MLE 2.29 0.93 71.99 0.0354
Target 2.09 0.61 25.37 0.0126
Median 2.17 0.49 13.9 0.0069

also see that dispersion of the target fragility func-
tion is overestimated by 15.6% by the Bayesian ap-
proach.

Although median collapse capacities and disper-
sions of the target and the Bayesian estimate differ,
Figure 4 shows that the lower portion of the fragility
function, up until 25%, is well-constrained by the
Bayesian method. Table 1 shows that the Bayesian
method provides a good estimate of λc. This is be-
cause of the good match in the lower portion of the
fragility function, since the lower tail of the fragility
function is an important contributor to λc.

The Bayesian method starts with an initial esti-
mate of λc which underestimates the target λc by
58%. After applying by the method, the final esti-
mate of λc differs from the target response by 25%.
This difference is 184% using an MLE approach.
It is also observed that by neglecting model uncer-
tainty and using median model parameters, λc is un-
derestimated by 45%.

4. CONCLUSIONS
This study presents a Bayesian method for collapse
risk assessment of structures. The method uses
prior information on collapse response of struc-
tures and augments this information with data from
a small number of structural analyses. The ap-
proach enables propagating ground motion vari-
ability and model uncertainty through efficient sam-
pling of model realizations. An illustration of the
method is provided through a collapse risk assess-
ment of a 4-story frame structure. The Bayesian
method is observed to significantly improve statisti-
cal efficiency of collapse risk predictions compared
to alternative methods, and provide considerable re-
duction in computational demand for probabilistic
collapse risk assessment of structures.
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