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Consideration of uncertainties, including stochastic dependence among uncertain parameters, is known
to be important for estimating seismic risk of structures. In this study, we characterize the dependence of
modeling parameters that define a structure’s nonlinear response at a component level, and the interac-
tions of multiple components associated with a structure’s response. We use random effects regression
models to estimate correlations among parameters. The models are applied to a component test database
with multiple tests conducted by differing research groups. Multiple tests that are conducted by a
research group are subject to similar conditions and are conducted to investigate the impacts of partic-
ular properties of components. The set of tests can effectively represent components at different locations
in a structure, and so are suitable for estimating stochastic dependence in model parameters. Regression
models can be applied to the database to compute correlation coefficients that reflect statistical depen-
dency among properties of components tested by individual research groups. It is assumed here that
these correlation coefficients also reflect correlations associated with multiple components in a structure.
To illustrate, correlations for reinforced concrete element parameters are estimated from a database of
reinforced concrete beam-column tests, and then used to assess the effects of correlations on dynamic
response of a frame structure. Increased correlations are seen to increase dispersion in dynamic response
and produce higher estimated probabilities of collapse. This work provides guidance for characterization
of parameter correlations when propagating uncertainty in seismic response assessment of structures.
© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Performance-based earthquake engineering enables quantifica-
tion and propagation of uncertainties in a probabilistic framework
to make robust estimations of seismic risk and loss of structures.
Quantification and propagation of ground motion uncertainties
have received significant attention in the research community,
but an important and somewhat less-explored topic is uncertainty
in structural modeling (e.g., [12]). The uncertainties related to use
of idealized models and analysis methods, as well as uncertainties
in a model’s parameters, influence assessments of the seismic reli-
ability of a structure. Explicit quantification of uncertainties and
characterization of dependence among the random model param-
eters are essential for propagating these uncertainties when
assessing seismic performance.

While quantification of model parameter uncertainties is rela-
tively well studied, stochastic dependence among model parame-
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ters has received very little attention, in large part due to
scarcity of appropriate calibration data. When it has been assessed
or considered in assessments, it is typically in the form of correla-
tion coefficients. Where the random variables have a multivariate
normal distribution, correlations provide a complete description
of their dependence. They are also useful in first-order and other
approximate reliability assessments.

The current state-of-the-art in seismic reliability analysis is to
use judgment in quantifying the correlation structure of analysis
model parameters. Haselton [25] used judgment-based correlation
coefficients when considering model parameter uncertainty in
assessing collapse risk of reinforced concrete structures, and
showed that variability in collapse capacity was strongly influ-
enced by the correlation assumptions. Liel et al. [38], Celarec and
Dolsek [13], Celik and Ellingwood [14] and Pinto and Franchin
[54]all used assumed correlations among modeling parameters
when propagating modeling uncertainty for seismic performance
assessment of reinforced concrete structures.

Although the effects of correlations among random variables on
general system reliability problems are well known, few research-
ers have used observational data to quantify dependence. Idota
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et al. [31] assessed the correlation of strength parameters for steel
moment resisting frames using steel coupon tests from production
lots. Vamvatsikos [69] used those results to study the effects of
correlation of components at different locations in a building on
its dynamic response. We are aware of no other studies that
directly estimate correlations in component-level or phenomeno-
logical modeling parameters in order to study seismic collapse risk.

In this study, we estimate the correlation structure of modeling
parameters that define a component’s nonlinear cyclic response,
and study the interaction of different components on system-
level dynamic response. Random effects regression is used with a
database of reinforced concrete column tests to infer correlation
structure of parameters defining a concentrated plasticity model.
The database is composed of reinforced concrete column tests per-
formed by multiple research groups. Correlation coefficients are
obtained that represent statistical dependency among parameters
within a set of tests conducted by a research group. Multiple tests
conducted by a research group are subject to similar conditions
and are conducted to investigate the impacts of particular proper-
ties of components. Therefore, the set of tests can effectively repre-
sent conditions different locations in a structure. And the
correlation coefficients can be assumed to reflect dependency
among parameters corresponding to components throughout a
structural system. The assessment of correlation coefficients is dis-
cussed in the subsequent sections. We then use the estimated cor-
relations to assess the effects of correlations on dynamic response
of a four-story reinforced concrete frame building, and to explore
potential simplified approaches for representing parameter corre-
lations. Although the reported correlation results are for reinforced
concrete model parameters, the presented framework can be
applied for other types of materials or models.

2. Probabilistic seismic performance assessment

We use the probabilistic performance-based earthquake engi-
neering methodology to assess structural performance (e.g.,
[35,15]). Nonlinear structural analyses are run using a suite of
ground motions to propagate uncertainties related to ground
motion variability and seismic hazard. The results from structural
analyses are then related to the risk of collapse and other damage
states of interest.

Evaluation of structural collapse is particularly important since
seismic design provisions in building codes aim to provide ade-
quate collapse safety of structures even in extreme events. Collapse
response of structures is associated with highly nonlinear compo-
nent behavior, and modeling collapse requires structural analysis
models that can capture large inelastic deformations with signifi-
cant cyclic strength and stiffness degradation in the elements
due to repeated cycles of loading. Here we use concentrated plas-
ticity elements to capture such effects, and perform nonlinear
dynamic analysis to assess structural collapse risk.

The concentrated plasticity model proposed by Ibarra et al. [29],
which has been frequently used to simulate sidesway collapse in
frame structures (e.g., [78,17]), is used in this study to model com-
ponent response. Specific attention is given to the correlation of
model parameters used to define plastic hinges in seismic resisting
moment frames. Phenomenological concentrated plasticity models
are well-suited for modeling collapse of structures [16]. Model
parameters that define concentrated plasticity models are gener-
ally related to physical engineering parameters by empirical rela-
tionships. These relationships link component design parameters
(e.g. axial load ratio, spacing of transverse reinforcement) to model
parameters via equations calibrated using regression analysis.
Modeling uncertainty is more pronounced for collapse response
simulations than for elastic or mildly nonlinear simulations, due

to both the relatively limited knowledge of parameter values
(due to more limited test data) and the highly nonlinear behavior
associated with collapse.

The concentrated plasticity model has a trilinear “backbone
curve”, shown in Fig. 1, defined by five parameters: capping plastic
rotation (0 1), effective stiffness (secant stiffness up to 40% of the
component yield moment, Ely), yield moment (M,), capping
moment (M), and post-capping rotation (6,.). A sixth parameter,
7, controls the rate of deterioration (under cyclic loading) of basic
strength, post-capping strength, unloading stiffness, and acceler-
ated reloading stiffness.

The uncertainty in these modeling parameters is large, as esti-
mated by a predictive model for these parameter values that will
be discussed further below. These predictive model is a function
of design parameters such as the axial load ratio, shear span ratio,
lateral confinement ratio, concrete strength, rebar buckling coeffi-
cient, longitudinal reinforcement ratio, ratio of transverse tie spac-
ing to column depth, and ratio of shear at flexural yielding to shear
strength [27]. Axial load ratio is a particularly important variable in
predicting component model parameters such as capping and
post-capping rotation capacity and cyclic energy dissipation
capacity.

For a given structural design, the parameters associated with
elastic and peak strengths are moderately uncertain: the
Elys/El;,M, and M./M, parameters have logarithmic standard
deviations of 0.28, 0.3 and 0.1, respectively. The parameters associ-
ated with more nonlinear displacement capacities and cyclic dete-
rioration, however, are highly uncertain: the 0y, Ocqpp and y
parameters have logarithmic standard deviations of 0.73, 0.59
and 0.51, respectively. We note that the variability on these param-
eters are significantly larger than the variability associated with
other physical model parameters due to the underlying behavioral
effects (reinforcing bar buckling, local flange buckling, fracture)
that control the degrading response. These large variations in
degrading behavior at large inelastic deformations have also been
reported by Fell et al. [19] for prediction of buckling and fracture
in steel braces, and Kunnath et al. [36] for simulating reinforcing
bar buckling and fracture.

In this study, we aim to characterize correlation of these model
parameters in a structure. Parameter correlations are grouped into
within-component and between-component correlations. The for-
mer refers to correlations among modeling parameters that define
response of a single component, whereas the latter refers to corre-
lations among parameters from differing components, as illus-
trated Fig. 2. This distinction is useful because within-component
correlations can be estimated from tests of individual components,
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Fig. 1. Ibarra et al. [29] model for moment versus rotation of a plastic hinge in a
structure. The model parameters of interest are labeled.
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Fig. 2. Illustration of correlation within a component and correlation between
components in a structure.

while between-component correlations require more effort to esti-
mate. Between-component correlations are caused by similarities
throughout a structure in the properties of structural materials,
and member geometries and details. If these similarities are not
captured in estimating mean values for model parameters, they
will result in stochastic dependence of the resulting component
model parameters.

Incremental dynamic analyses (IDA) involves performing non-
linear dynamic analysis using multiple ground motions scaled to
particular ground motion intensity measure (IM) levels [70]. Seis-
mic capacity is the IM value causing dynamic instability in the
structure. This capacity is random due to the uncertain nature of
a ground motion with a given IM level and uncertainties associated
with structural performance. Its distribution is quantified by a col-
lapse fragility function defining the probability of collapse (C) at a
given IM level, im (P(C|IM = im)). Below, the fragility function will
be estimated either by an empirical distribution or by fitting a log-
normal cumulative distribution function:

P(C|IM = im) = cb(m("#) (1)

where @() is a standard normal cumulative distribution function, 6
is the median and p is the logarithmic standard deviation (or “dis-
persion”) of the distribution. Values for 0 and g will be estimated
and reported below.

The mean annual frequency of collapse (/) is obtained by inte-
grating a collapse fragility function with a ground motion hazard
curve [28], as given in Eq. (2).
d/lu\/l(lm)

7‘d(im) 2)

/IC:/O P(ClM = im) g

where J;(im) is the mean annual rate of exceeding the ground

motion im and démT) defines the slope of the hazard curve at im.

Fragility functions corresponding to alternative limit states,
such as exceeding a particular story drift ratio, sdr, can be also
obtained from incremental dynamic analysis results. Using IDA,
ground motions are scaled until the structure displays a story drift
ratio of sdr and the fragility function is obtained. This function can
be integrated with the seismic hazard curve in a similar fashion to
Eq. (2) to estimate the mean annual frequency (ZAspr=sdr) Of exceed-
ing a given limit state.

3. Assessing correlations of model parameters

The correlation assessment procedure described in this section
requires two inputs: (1) a set of observed parameter values from
test data where there are groups of components analogous to a
set of components in a building, and (2) predictive equations that
estimate means and standard deviations of those parameters val-
ues based on component properties such as dimensions and mate-
rial strengths. With those two inputs, a mixed effects analysis can
be performed to estimate correlations as described here. It would
also be natural to start with only the observed parameter values,
and fit the predictive equations at the same time as the correla-
tions are estimated. To illustrate, we consider the case of concrete
beam-columns with the lumped-plasticity component model
described above; in this case predictive equations for means and
standard deviations are already available, so we adopt those equa-
tions and focus only on the estimation of correlations.

3.1. Observed parameter values

The six parameters illustrated in Fig. 1 are treated here as ran-
dom variables. Haselton et al. [27] estimated values for these
parameters for 255 column tests from the Pacific Earthquake Engi-
neering Research Center Structural Performance Database [11].
This database provides force-displacement histories from cyclic
and lateral-load tests, along with information related to reinforce-
ment, column geometry, test configuration, axial load, and failure
type for each column.

Haselton et al. [27] considered rectangular column tests whose
failure modes were either flexure or combined flexure and shear.
The model parameters were calibrated so that a cantilever column,
with an elastic element and a concentrated plastic hinge at the
base, has behavior that matches the corresponding experimental
force-displacement data. The study authors filtered the data to
remove outliers and parameters whose values could not be esti-
mated for a given test (typically these were parameters character-
izing post-peak cyclic deterioration response, in cases where a test
did not induce this behavior). The total number of estimated
parameter values are 232, 197, 255, 233, 65 and 223 for
Ocappi, Elsis /Elg, My, Mc /My, 6, and 7, respectively.

The 255 column tests used for the calibration were conducted
by 42 different research laboratories, referred to here as “test
groups”. The test groups are listed in Table 6, along with informa-
tion for each regarding the variation among tests in member
dimensions, concrete strength (f.), longitudinal yield strength
(fy). axial load ratio, and area of longitudinal and transverse
reinforcement.

3.2. Evidence of parameter correlations

Using the observed parameter values described above, we com-
pute prediction residuals by comparing the observations to model
predictions:

In (yfj) =In (yfj) +& 3)

where subscripts i and j represent the test group and test number,
respectively, and the superscript k indicates the random variable
of interest. Random variable k from the test specified by i and j is
associated with observed value yﬁj predicted value y{; and residual

Predicted values are obtained in this study from the empirical
equations of Haselton et al. [27] and Panagiotakos and Fardis
[50]. These equations relate column design details to the six model
parameters using equations that are based on regression analysis
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of observed data and judgment on expected behavior. Haselton
et al. [27] provide a full and a simplified equation for some of
the model parameters; we use the full equations if both are pro-
vided. The predictive model studies found that parameter values
are generally lognormal, so a logarithmic transformation is used
in Eq. (3) (and in the original predictive models) to obtain normally
distributed residuals.

For the model parameters 0, and My, the residuals from each
group of tests are plotted against each other, and a subset of the
data are shown for illustration in Fig. 3. Each test group is denoted
by a specific symbol and color. Grouping of these residuals by the
test group implies the presence of correlated residuals; this is evi-
dent for M, in Fig. 3b. Here it is observed that tests from group 1
(TG1) have negative residuals, implying that the M, values of the
tests conducted in that test group are consistently overestimated
by the predictive equation. Conversely, tests from group 3 (TG3)
have positive residuals indicating an underestimation of observa-
tions by the predictive equation.

The grouping of residuals within test groups is not surprising,
considering that the tests have common features whose effects
are not captured by the predictive equations. Reviewing Table 6
in the Appendix A, we observe that: 1) The majority of groups have
tests with similar specimen dimensions. 2) Steel yield strength and
area ratio of longitudinal reinforcing steel are constant in approx-
imately three-quarters of the test groups. 3) The major differences
among the tests within each group are the level of axial load and
transverse reinforcement. While not explicitly documented, we
also expect that tests from a single laboratory would have similar-
ities in environmental conditions, workmanship, and other factors
that might influence the component behavior. These features
within each test group are similar to features we would expect
to see among components located throughout a real-world
building.

When modeling seismic performance of a real structure, we
would use the same predictive equations discussed above to pre-
dict parameter values for a numerical model. Because those predic-
tive models rely on the limited set of column properties, we would
expect components in a real building to also behave in a correlated
(but not perfectly dependent) manner. By assuming that a group of
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components in a single laboratory’s tests corresponds to a group of
components in a building, we can utilize statistical analysis of this
test data to quantitatively estimate parameter correlations for
components within a real building. While the correspondence
between test groups and real-world structures is not strictly true,
the authors believe it is reasonable, and this assumption provides
a unique opportunity to estimate correlations that are otherwise
nearly impossible to observe. We will keep in mind the approxi-
mate nature of this correspondence when evaluating the numerical
results below.

3.3. Random effects regression

The observed clustering of residuals within a test group for M,,
in Fig. 3b motivates studying the variability among various tests in
the data. We are particularly interested in the extent to which dif-
ferent test groups affect the component model parameters. In this
study, test groups are used as “effects” in a random effects regres-
sion model. Random effects models are linear models with at least
one of the response variables having more than one categorical
level [61]. The discrete levels for the categorical variable are ter-
med the “effects” in the model, and the qualifier random implies
that the observed levels represent a random sample from a popu-
lation and do not contain all possible levels [62,53].

We first obtain the logarithmic residuals of each random vari-
able, E‘{; from Eq. (3), where subscripts i and j represent the test
group and test number, respectively, and the superscript k indi-
cates the random variable of interest. E{j is then modeled using a
one-way random effects regression. In this model, the test groups
are treated as a random effect leading to the following equation:
In <yfj) —1In (yf;) =& = uk ok 4 & (4)
where where ¥ is an intercept indicating the mean of the data for
the random variable of interest. oa¥represents the effect of test group
i on the logarithmic residual of the random variable k and &*is the
residual. o*and &*are random variables with zero means and vari-
ances g7 and 12, respectively. Observations of oand &from the test

TG1
TG2
TG3
* TG4

TGS
*© TG6E
© TG7?
£+ TGS

TG2
4 TG10
4+ TG
+ TG12

TG3

Fig. 3. Example model parameter residuals, (&), plotted against the residuals of other tests within the test group to which they belong for a) 0., 1, a parameter indicating low
correlation, and b) M,, a parameter indicating higher correlation. A subset of data is shown for illustrative purposes.
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data are assumed to be independent and identically distributed, and
the regression procedure uses these data to estimate the variances
o2 and 72. From Eq. (4) and the above definitions, a*and &*represent
between- and within-test-group variability, respectively and it fol-
lows that the variance of a model parameter, k, is 02 + 72.

After the random effects regression model given in Eq. (4) is
applied to two component model parameters k and k', we can
use the analysis results to study the correlation between the two

variables. Following Eq. (4), the covariance of In (y{j) and In (yg.')

is given by:

coz)(ln (yf;),ln (yfj)) = cov(&, &)
= cov(p + o + ek, pi¥ + o +€f) (5)
= corr(of, ol ) gy + corr(ek, e )Tty
where cov(-,-) and corr(-,-) refer to covariance and correlation. By
definition cow(of, of ) = corr(o, of )35 and cow(ef, el ) = corr(ek, )

T¢Ty. The values of oc{.‘,ocj’.",.s{.‘,gj’.‘/ and variances are estimated from
the regression procedure.

Since by definition cov(ln (yfj) ,In (y{;)) = COTT(]H (yg),
In (yg-’))al (k> 01 <k> following Eq. (5), the correlation of
n|y n (y§

In (y{j) and In (yg.') is given by:

ij> “ij

/52 2 g2 2
O+ TiA /O + Ty

Eq. (6) provides correlation of model parameters k and k' within
a test group. As discussed in the preceding section, data from a par-
ticular test group are expected to have similar features to data
from components in a building. Therefore, it is assumed that vari-
ability observed within test groups is indicative of the variability of
different components in a structure. This assumption leads to Eq.
(6) representing correlation of model parameters k and k' within
a component j.

Using the same process, the covariance of the logarithms of the
model parameters k and k' between components can be obtained by
studying the covariance of the logarithms of the model parameters
k and k' between test groups. This is given by:

corr(aff, ocﬁ") 00y + corr (8’i 8"') Ty

corr(In (yf-j-),ln (yfj)) =

cov(ln (y{;) ,In (yf;)) = cov(p* +of + &k, i + o +&b)
= corr(ok, o )o 0y (7)
ij?

tion of model parameters k and k' between components j and j can
then be shown to equal

where the cov(ek sgf,) = 0 since &f and sij are independent. Correla-

} v corr(ocﬁ.‘, oc{") OOy
corr(In (yij),ln (ylj)) = (8)
\/ Oic + Tiy/ O + T
When assessing the correlation of the same model parameter
between components, corr(ak, o) = 1 and Eq. (8) simplifies to

corr(In (y{;) .In (yfj)) = O_;_-z‘ o 9)

We use the “Ime4” package entitled (Linear Mixed-Effects Mod-
els using Eigen and S4) in the R software package [57] to perform
the mixed effects regression, and then compute correlations using
the above equations.

3.4. Regression results

Estimated between-component (g ) and within-component ()
standard deviations for the example database are shown in Table 1.
Table 2 shows the correlation coefficients obtained using Egs. (5)-
(9). Table 3 shows the same correlation coefficients obtained after
rounding to one significant figure, reflecting the approximate nat-
ure of the way in which we are using these data and the finite sized
database used here. The correlations shown in Table 3 are used in
the rest of the paper.

We note that rounding of the correlation coefficients, and esti-
mation of correlations from data with missing values, can result in
a correlation matrix without the required positive semi-
definiteness property. Although Table 3 produces positive definite
matrices, in our initial calculations some violation of positive semi-
definiteness was observed. In such cases, minor changes can be
made to transform the correlation matrix into a positive definite
one [32].

We observe that within a component (i.e., the left half of
Table 3), correlations of model parameters are rather small; the
largest coefficient being 0.3, which corresponds to the correlations
between M./M, and My, and M./M, and 0., ;. These values suggest
moderate interactions between strength parameters and harden-
ing behavior. A correlation coefficient of 0.2 is obtained for the
parameters defining post-capping cyclic behavior within a compo-
nent (e.g., Y with M./M, and 0,.). The correlation of post-capping
and capping plastic rotation is also obtained as 0.2 within a
component.

Between components, like parameters have larger correlation
coefficients (i.e., the diagonal components on the right half of
Table 3). We see that My, Ocp i, Elss /EI; and Mc/M, have correla-
tions of 0.7 or greater. In the setting of a structure, this implies that
values of these parameters across components will tend to take
similar values; note that Haselton and Deier [26] and Liel et al.
[38]assumed perfect correlation between like parameters across
components.

We also observe that correlations of different model parameters
between components are small (i.e., the off-diagonal terms in the
right half of the table). This is expected, given that the correlations
of these parameters within a component are also small. The largest
correlation among different model parameters between compo-
nents is obtained as 0.2 between M, and M./M,. There is even a
small negative correlation between Els/El; and M./M,. This is a
numerical artifact from estimation using finite samples of data,
as there is no clear physical reason why such a correlation would
be negative.

The correlation of M./M, and 6,. both within a component and
between components is small and these values can be approxi-
mated as 0. Specifically, the correlation between M./M, and 0,
within a component is observed to be 0.0077 whereas among com-
ponents it is 0.0415. These values are also numerical artifacts due
to the uncertainty in statistical estimates using small sample sizes.

These artifacts motivate the decision to retain only one signifi-
cant figure in the correlation estimates.

Table 1
Between and within test group standard deviations obtained from random effects
regression.

Ok Tk o2+ 12

Ocapy 0.41 0.4 059
EEITSU 0.20 0.20 0.28

::3
M, 0.26 0.10 0.30
% 0.07 0.08 0.10

Y
Opc 0.24 0.69 0.73
Y 0.20 0.46 0.51
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Table 2
Initial correlation coefficients obtained from random effects regression.

73

Component i Component j
Bl ) EI, ) ,
ecap.pl, (Tgf) i A'[y7 ( R,;y )7 epz:, Vi ﬁcap,l)l] (T:/ ) j ]uy] (% ) j el)cj 77
Ocap.pl; 1.0000  -0.0183  0.0578 0.2538 0.2083 -0.0260 | 0.6839 0.0106 0.0277  0.0975  0.0533 -0.0202
= (%) ) 1.0000  0.1354 -0.1018 0.0375 0.0799 0.6853 0.0612 -0.0950 -0.0305 0.0379
% M,, 1.0000 0.2838 0.1067 0.0722 0.9263 0.2482  0.0951  0.0549
= (3) 10000 0.0077  0.1681 0.6728  0.0415  0.0192
3 v/
“ Ope, (sym.) 1.0000  0.2195 (sym.) 0.3466  0.0357
Y 1.000 0.4102
Table 3
Final correlation coefficients are obtained after rounding to one significant figure.
Component 1 Component j
Elgy y M, Elgy y M,
er:apﬁpll ( El, ) . A[yl (E) . epci Vi er:a,pﬁplj ( EI, ) . A[y] (]\,[y > . 61,{:]. Vi
1 2 yi yi
Ocap.p; 1.0 0.0 0.1 0.3 0.2 0.0 0.7 0.0 0.0 0.1 0.1 0.0
Elg
B ot 1.0 0.1 -0.1 0.0 0.1 0.7 0.1 -0.1 0.0 0.0
- El, ),
% M,, 1.0 0.3 0.1 0.1 0.9 0.2 0.1 0.1
(o} y
=1 (3) 10 00 02 0.7 0.0 00
S v/)j
@)
Ope, (sym.) 1.0 0.2 (sym.) 0.3 0.0
v 1.0 0.4

4. Impacts of parameter correlations on probabilistic
estimation of dynamic response of structures

4.1. Case study structure

A reinforced concrete special moment frame structure is con-
sidered here, to demonstrate the impact of parameter correlations
and evaluate potential model simplifications for structures with
many uncertain parameters. The building was designed by Hasel-
ton [25] for a high seismicity site in California in accordance with
2003 IBC and ASCE 7-02 provisions [30,1]. The structural system of
the ductile reinforced concrete frame building is modeled using the
concentrated plasticity approach described above, in which ele-
ments of the frame are modeled using elastic elements with rota-
tional springs at the ends. Gokkaya et al. [23] uses the correlation
structure derived for lumped-plasticity models to study incorpo-
rating the uncertainty in structural model parameters in nonlinear
dynamic analyses to probabilistically assess story drifts and col-
lapse risk of buildings. An extensive set of ductile and non-
ductile reinforced concrete building archetypes are used to quan-
tify the influence of modeling uncertainties and how it is affected
by the ductility and collapse modes of the structures.

Here we assume the building to be located at the same Los
Angeles site as considered in its original design. One three-bay
four-story frame of the building is modeled, with a total of 12 beam
and 16 column elements. A Rayleigh damping of 3% is defined at
the first and third mode periods of the structure, and P-A effects
are modeled using a leaning column. The fundamental period of
the structure is 0.94 s. The Open System for Earthquake Engineer-
ing Simulation platform is used to analyze the structure [49]. The
FEMA-P695 far-field set of 44 ground motion components is used
for structural response simulations [20].

Monte Carlo simulation is used for propagating uncertainties
related to modeling and ground motion variability [33]. The six
parameters mentioned previously are treated as random, with
marginal means and standard deviations as predicted by Haselton
et al. [27], and correlations as defined below. Further, equivalent
viscous damping and column footing rotational stiffness are
assumed to be random, with logarithmic standard deviation values
of 0.6 and 0.3, respectively [25,24,55], and to be independent of the
other parameters. A multivariate normal distribution is assumed
for the logarithms of all parameters except M./M,,. Since, by defini-
tion M./M,, is always greater than 1, we use a one-sided truncated
normal distribution for this parameter. Because only one frame of
the structure is modeled, it is implicitly assumed that the parame-
ters for frames in a given direction are fully correlated.

Table 4 lists four correlation models considered in the following
analyses. As the name implies, the No Correlation model assumes
all parameters in the building to be uncorrelated. This model has
170 random variables (six parameters for each of 28 elements, plus
damping and foundation stiffness parameters). The Partial Correla-
tion A model uses correlation coefficients from Table 3 for all
within- and between-component correlations, and also has 170 ran-
dom variables. In Partial Correlation B, Table 3 is used to define corre-
lations within a component and correlations of beam-to-column
components. Column-to-column and beam-to-beam parameters
are assumed to be fully correlated (e.g., all column components for
a given model realization have the same parameters). These
assumed full correlations reduce the effective number of random
variables for this model to 14 (six beam parameters, six column
parameters, damping and foundation stiffness). In the Full Correla-
tion model all of the element parameters are assumed to have perfect
correlation, such that there are effectively three random variables
(one component parameter, damping and foundation stiffness).
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Table 4

Correlation models used with Monte Carlo simulations. “0”, “P” and “1” refer to the cases of No Correlation, Partial Correlation and Perfect Correlation, respectively.

Model Name Within component Between-component

Effective of # R.V.s

Column-to-Column

Beam-to-Beam Beam-to-Column

No Correlation 0 0
Partial Correlation A P P
Partial Correlation B P 1
Full Correlation 1 1

0 0 170
P P 170
1 P 16
1 1 3

For each correlation model, we simulate 4400 realizations of
model parameters from their joint distribution, each of which are
randomly matched with one ground motion. Incremental dynamic
analysis is then conducted to scale each ground motion up until
structural collapse is observed for the given model realization. A
maximum story drift ratio (SDR) > 0.1 is assumed to indicate
structural collapse. Ground motion IM values are defined as 5%-
damped first-mode spectral acceleration, Sa(0.94s).

4.2. Results

Fig. 4a and b show the median IDA curves from the four corre-
lation models, along with results for a structure with median
model parameters (i.e., no parameter uncertainty). There are
remarkably small differences among the median IDA curves. A
small difference between the No Correlation and Full Correlation
cases is observed for SDR > 0.03, with a difference of 7% at
SDR = 0.1. The parameters characterizing the capping and post
capping behavior of components have higher uncertainty and as
SDR gets higher, these parameters become more effective in char-
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acterizing the structural response. Therefore the impacts of uncer-
tainties become more prominent as structural response becomes
nonlinear and is dominated by the parameters having higher
uncertainty.

Fig. 4c and d show the dispersions in the IDA curves. As can be
observed from these figures, the dispersion in IDA curves increases
as the level of correlation increases in the structure. The Partial Cor-
relation A and No Correlation models yield similar variability for
SDR < 0.03, and at SDR = 0.1, the difference in dispersion values
for these two cases is 12%. At SDR = 0.1, the difference in disper-
sion between No Correlation and Full Correlation models is 47%.
The Median model consistently underestimates dispersion, where
for SDR = 0.1, a difference of 17% is observed between dispersion
values of Median and Partial Correlation models. The Partial Correla-
tion A and B models have very similar medians and dispersions.

Using a First-Order Second-Moment (FOSM) approach [42,7]
one can show that the correlation in model parameters increases
the dispersion in the estimated structural capacity. Therefore, the
trends observed in Fig. 4c and d can also be explained using a first
order approximation to the Taylor series expansion of structural

2
(b)
=
~ 1.5¢
(/)]
<
[e))
S
s
n
c
©
é 0.5
—— Partial Correlation A
— Partial Correlation B
O s L L L
0 0.02 0.04 0.06 0.08 0.1
SDR
(d)
0.6t
0.5¢
5
‘» 0.4r
2
@ 0.3¢f
=)
0.2t
0.1} —— Partial Correlation A |
— Partial Correlation B
O s L L L
0 0.02 0.04 0.06 0.08 0.1
SDR

Fig. 4. IDA results obtained using different correlation models a) median IDA response for varying correlation levels, b) median IDA response for Partial Correlation models, c)
dispersion in IDA curves for varying correlation levels, and d) dispersion in IDA curves for Partial Correlation models.
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response. However, seismic response and its associated limit state
function is mildly to strongly non-linear [71]. This makes the first-
order approximation to the limit state function defining collapse
response less accurate. Also, as the number of random variables
grows, the computational demand of FOSM grows linearly. There-
fore, in this study we use Monte Carlo simulations for the following
reasons: 1) they can adapt well to the nonlinearity in limit state
functions; and 2) the number of simulations are not affected by
the number of random variables and thus they scale well for
high-dimensional problems.

The mean annual frequency of collapse, /., is obtained by inte-
grating the empirical collapse fragility curves with the seismic haz-
ard curve of the Los Angeles site using Eq. (2). Fragility functions
and corresponding and Aspg-sqr Values are also obtained for alterna-
tive values of sdr. Fig. 5 shows /spr=sqr With respect to sdr using the
assumed correlation models, where the Aspgsqr differ for SDR val-
ues greater than approximately 0.03. As mentioned previously, this
was expected since the structural response becomes nonlinear as
SDR grows and it is more strongly influenced by uncertainties in
model parameters.

The plots show, for example, that the No Correlation and Partial
Correlation cases produce nearly identical /spgsssr. On the other
hand, the Aspg~ 4 for the Full Correlation case is 30% to 110% higher
than the No Correlation model for drift values of 0.05 and 0.1,
respectively. This highlights the need for reliable characterization

of correlation structure in predicting structural response at near-
collapse and collapse states.

Fig. 6 shows empirical collapse cumulative distribution func-
tions for the structure obtained using the considered correlation
models. At smaller Sa(0.94 s)) levels, as the correlations among
parameters increase, the structure has a higher probability of col-
lapse. As expected, the median model provides smaller probabili-
ties of collapse, especially for smaller ground motion intensities,
leading to unconservative estimates of collapse risk. Note that
since median collapse capacity is higher for the median model, it
would result in slightly larger collapse margin ratio (i.e., the ratio
of the median collapse capacity to Maximum Considered Event
(MCE) intensity) [20], which can be misleading from a collapse
safety point of view. The No Correlation and Partial Correlation
models have similar lower tail behavior and only differ at higher
IM levels.

Table 5 summarizes the counted median and logarithmic stan-
dard deviation (B) of collapse capacities obtained using alternative
correlation models, along with the associated collapse rates. Any
differences observed at the lower tail of the fragility curve due to
increasing levels of correlation translate into pronounced differ-
ences in . estimates. For example, there is a factor of 2.4 difference
between /. estimates obtained using the No Correlation and Full
Correlation models. The similarity in lower tail collapse fragilities
for No Correlation and Partial Correlation models leads to similar
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Fig. 5. Mean annual frequency of exceedance of maximum story drift ratio using the considered correlation models.
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Table 5
Counted median and logarithmic standard deviation (o},) of collapse capacity, and
mean annual frequency of collapse (/.), obtained using alternative models.

Model Name Median B Je(x107%)
Median Model 1.69 0.39 1.81
No Correlation 1.57 0.42 2.65
Partial Correlation A 1.67 0.48 2.75
Partial Correlation B 1.64 0.49 3.06
Full Correlation 1.69 0.67 6.39

Jc estimates using these models, since the lower tail of the collapse
fragility function contributes the most to A, [17].

Given the above results, we can make a few observations about
the impact of these models, taking the Partial Correlation A case as a
benchmark because it fully utilizes the previously estimated
parameter correlations. The Partial Correlation B model is appeal-
ing, as it produces comparable results to the Partial Correlation A
case, but reduces the number of modeled random variables; this
is helpful when using reliability assessment procedures that scale
in effort with the number of random variables. The Full Correlation
case further reduces the number of random variables, but with an
apparent loss in accuracy for this case. The Median Model and No
Correlations cases are also simplified representations of the model,
but they produce unconservative estimates of seismic collapse risk
and so should be used with caution.

The structure considered here was designed to have a regular
strength and stiffness distribution over its height, and so the typi-
cal collapse mechanisms were not notably altered when consider-
ing No Correlation and Partial Correlation models. Although we did
not investigate the influence of ductility and strength irregularities
in detail, we expect that different results are likely to be obtained
for buildings with strength irregularities, since presence of even
partial correlations may enable the triggering of alternate modes
of failure (e.g., creation of a story mechanism by simulation of
weak column-strength parameters).

5. Conclusions

We have considered model parameter uncertainty in seismic
performance assessment of structures, both in estimating parame-
ter correlations and in quantifying the impacts of these correla-
tions on building performance. We have characterized the
dependence of modeling parameters that define cyclic inelastic
response at a component level and the interactions of multiple
components associated with a system’s response. Parameter corre-
lations were estimated from component tests using random effects
regression on grouped tests of structural components. Variation in
parameter values within and between test groups were incorpo-
rated as random effects in the regression model, and statistical
dependency between the estimated parameters were assessed.

Dependence in the parameters defining a lumped-plasticity
model for concrete columns were estimated using a database of
reinforced concrete beam-column tests. Correlation coefficients
from these regression models, reflecting statistical dependency
among properties of components tested by individual research
groups, are assumed to reflect correlations among components
within a given structure. The random treatment of research groups,
combined with the aforementioned observations in the data set
(i.e., similarity of column dimensions and differences in axial load
and transverse reinforcement in the tests), justified this assump-
tion. We found that correlations between differing parameters
(both within and between components) have low correlation (cor-
relation coefficients from —0.1 to 0.3), while like parameters across
components have higher correlations of as large as 0.9.

The impact of these estimated parameter correlations on
dynamic response of a four story reinforced concrete frame struc-

ture was then assessed, by performing Incremental Dynamic Anal-
ysis of the structure using Monte Carlo realizations of uncertain
model parameters. Variations in correlation assumptions did not
strongly influence median response, even for large drifts. Variabil-
ity in correlation assumptions did, however significantly influence
dispersion in response estimates, especially at large drift levels
associated with severe nonlinearity and collapse. Models consider-
ing uncorrelated and partially correlated parameters had similar
collapse fragility functions at the critical lower tail, resulting in
similar mean annual frequencies of collapse. Models assuming per-
fectly correlated parameters, however, had higher probabilities of
collapse for low-intensity shaking; the perfectly correlated model
had a mean annual frequency of collapse that was 2.4 times the
frequency of collapse of the fully uncorrelated model (even though
the parameters had the same marginal distributions in both cases).
A slightly simplified model representation, with full correlation
among beam-to-beam and column-to-column parameters (and
partially correlated beam-to-column parameters), produced nearly
identical results to the benchmark model with partial correlations
in all parameters. This simplified model has significantly fewer
unique random variables, and so is a promising approach for con-
sidering parameter correlations while also managing computa-
tional expense. In aggregate, these results provide further
evidence that parameter correlations are an important considera-
tion in seismic collapse safety assessments.

The results presented here were for reinforced concrete compo-
nents, but the framework allows these evaluations to be performed
on any model with uncertain parameters that are estimated from
experimental data. The correlation estimation approach requires
a set of component tests with multiple tests that can be grouped
and considered as having commonalities consistent with those
among components in a given structure. Tests that are conducted
in similar conditions, and are investigating the impacts of particu-
lar properties of components, are most suitable for this approach.
While the appropriateness of considering groups of tests to repre-
sent components throughout a structure will need to be evaluated
on a case-by-case basis, this proposed approach offers a unique
solution to the otherwise vexing problem of estimating parameter
correlations for studying the seismic reliability of buildings.

6. Data and resources

The data for the reinforced concrete column tests are obtained
from the PEER Structural Performance Database ( http://nisee.
berkeley.edu/spd/) and Professor Curt Haselton’s Reinforced Con-
crete Element Calibration Database ( http://www.csuchico.edu/
structural/researchdatabases/reinforced_concrete_element_cali-
bration_database.shtml).
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Appendix A. Information on test groups conducting reinforced
concrete column tests

This appendix provides summary data of the test groups of con-
crete component tests considered here. The variables in the table
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Table 6
Test groups conducting reinforced concrete column tests. “Y” and
when the group has only one test.

“w »

indicate when the tests within the test group have similar or different properties, respectively. “N/A” is used

Are the properties similar
among tests?

Test Group Reference # Tests Dim. fe fy ALR LRS TRS
1 Galeota et al. [21] 24 Y Y Y - - -

2 Bayrak and Sheikh [9] 16 - - - - - -

3 Pujol [56] 14 Y - Y - Y -

4 Wight and Sozen [74] 13 Y - Y - Y -

5 Matamoros [41] 12 Y - - - - -

6 Thomson and Wallace [68] 11 Y - - - Y -

7 Atalay and Penzien [5] 10 Y - - - Y -

8 Saatcioglu and Grira [58] 10 Y - - - -

9 Mo and Wang [43] 9 Y - Y - Y -
10 Bayrak and Sheikh [8] 8 Y - Y - Y -
11 Muguruma et al. [44] 8 Y - Y - Y

12 Tanaka [67] 8 - - - - - -
13 Sakai [60] 7 Y Y - Y - -
14 Kanda et al. [34] 6 Y - Y - Y Y
15 Legeron and Paultre [37] 6 Y - - - Y -
16 Paultre et al. [52] 6 Y - Y - Y -
17 Saatcioglu and Ozcebe [59] 6 Y - - - Y -
18 Takemura and Kawashima [66] 6 Y - Y Y

19 Xiao and Yun [76] 6 Y - Y - Y -
20 Xiao and Martirossyan [75] 6 Y - Y - - -
21 Zhou et al. [80] 6 Y - Y - Y -
22 Bechtoula [10] 5 - - - - - -
23 Sugano [65] 5 Y Y Y - Y -
24 Watson [72] 5 Y - Y - Y -
25 Esaki [18] 4 Y - Y - Y -
26 Gill [22] 4 Y - Y - Y -
27 Soesianawati [64] 4 Y - Y - Y -
28 Wehbe et al. [73] 4 Y - Y - Y -
29 Ohno and Nishioka [46] 3 Y Y Y Y
30 Sezen and Moehle [63] 3 Y - Y - Y Y
31 Ang [3] 2 Y - Y - Y -
32 Azizinamini et al. [6] 2 Y - Y - Y -
33 Lynn et al. [40] 2 Y - Y - - -
34 Lynn [39] 2 Y - Y - Y Y
35 Ohue et al. [47] 2 Y - - - - Y
36 Ono et al. [48] 2 Y Y - Y Y
37 Zahn [77] 2 Y - Y - Y -
38 Zhou et al. [79] 2 Y - Y - Y Y
39 Amitsu et al. [2] 1 N/A N/A N/A N/A N/A N/A
40 Arakawa et al. [4] 1 N/A N/A N/A N/A N/A N/A
41 Nagasaka [45] 1 N/A N/A N/A N/A N/A N/A
42 Park and Paulay [51] 1 N/A N/A N/A N/A N/A N/A

are defined as follows: “Dim.” is member dimensions, f. is concrete
compressive strength, f, is reinforcing steel yield strength, ALR is
Axial Load Ratio, LRS is the ratio of Longitudinal Reinforcing Steel
to section area, TRS is the ratio of Transverse Reinforcing Steel to
section area.
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