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A B S T R A C T

In the context of infrastructure resilience and risk management, key decisions occur in the aftermath of adverse
events (e.g., immediate response and later repair of damage), but preemptive decisions must be made under
uncertainty about the specific disaster realization to face in the future (e.g., strengthening components, or al-
locating resources for post-event activities). This paper proposes an optimization framework to address problems
in which preemptive decisions are coupled with those eventually required to respond to an uncertain adverse
event. Specifically, strategic decisions are pursued regarding whether to proactively retrofit or reactively repair
bridges in a transportation network under seismic hazards, with the objective of minimizing the cost of main-
taining a target network performance metric throughout a set of possible adverse scenarios. A two-stage sto-
chastic programming approach is presented, which relates pre- and post-event decisions, accounting for the
uncertainty throughout scenarios. The proposed approach implies a decomposition of the optimization problem
that enables the analysis of large sets of scenarios, which is advantageous when dealing with complex networks
as the ones addressed in infrastructure engineering practice. The methodological framework is presented along
with an analysis of the San Francisco Bay Area transportation network, as an instance of a realistic, complex
infrastructure network. Results evidence the potential of the approach to provide risk-informed decision support,
while being able to deal with large sets of components and scenarios under an exact optimization approach, and
solving problems with large number of variables and constraints.

1. Introduction

This paper proposes a decision support framework that integrates
probabilistic risk assessment of complex infrastructure networks and
stochastic programming to determine cost-optimal actions for pre- and
post-disaster stages, while guaranteeing acceptable performance
throughout a set of scenarios describing hazards. Instances of risk
management problems that motivate a framework for coupled decisions
in two stages include: first, how to allocate relief resources before a
disastrous event in order to maximize the efficiency for their distribu-
tion when a disaster occurs, thus, contributing to prompt recovery [1];
and second, how to determine which network components require
preemptive investments (e.g., enhancing arcs’ fragility, or flow capa-
city), and which ones may be intervened only when disastrous events
occur, without compromising pre-specified performance targets.

The proposed framework provides computational support for these
problems when dealing with large infrastructure networks, for which
weighing costs of individual investments versus acceptable system

performance throughout many scenarios becomes highly expensive. To
illustrate the proposed framework, this paper focuses on whether to
preemptively retrofit bridges or repair damage a posteriori (which im-
plies actions of higher cost than retrofitting, but which occur with lower
probability). An optimization problem is formulated with the objective
of minimizing the cost of retrofit actions, and the expected cost of repair
actions (and other expected consequences), while constraining a set of
performance metrics within a pre-specified acceptable range.

Three complexity drivers make the proposed problem challenging:
first, the size of the network and the intricacy of its connections, which
makes performance assessments computationally expensive; second,
the many possible combinations of decision options that are being
evaluated, since their effect on performance must be assessed; and
third, the number of scenarios describing the hazard(s) of interest, all of
which require performance evaluations involving the previous two
items as well. Since our focus is on integrating optimization and com-
prehensive risk assessment, it will be critical to address the complexity
related to the number of scenarios. A stochastic programming
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framework is proposed in order to deal with the relationship of actions
in the present and the consequences observed in possible future sce-
narios. An exact optimization approach is adopted because, unlike
heuristics alone, it provides a guarantee of optimality (or information
about optimality gaps).

The key contribution of this research is in providing decision sup-
port strategies for risk management of complex, real-world networks,
which are integrated with sophisticated probabilistic descriptions of
potential disaster scenarios derived from seismic hazards. The core of
the proposed approach is in the development of stochastic program-
ming procedures [2–4] in which exact optimization can be performed
throughout a set of potential disaster scenarios, described by magni-
tudes and rates of occurrence identified through seismic risk assessment
procedures [5]. These capabilities are tested on complex, realistic net-
works, for which seismic risk assessments are available.

The remainder of this paper is organized as follows: Section 2 dis-
cusses literature on optimization techniques and other decision support
tools for infrastructure resilience and risk management. Section 3 pre-
sents the decision problem for risk management of transportation net-
works and discusses its integration with the risk assessment metho-
dology in [5], with a focus on decisions about retrofit and repair
actions. Section 4 introduces key concepts of stochastic programming
and proposes a formulation to decompose an optimization problem into
separate yet coupled Mixed Integer Programs (MIP), thus, enabling the
analysis and optimization of larger networks and sets of scenarios.
Section 5 provides an example regarding the San Francisco Bay Area
transportation network to illustrate the proposed methodology. Finally,
Section 6 provides conclusions for the paper and ideas for future work.

2. Related work

Resilience has become a widespread topic in the literature on in-
frastructure operation [6–9] and in practice [10,11] under the chal-
lenges imposed by increasing urban concentration, sustainable devel-
opment, lifeline interdependencies, and multiple evolving hazards.
Although definitions vary throughout disciplines, Bruneau et al. [12]
consider the following components in the measurement of resilience in
technical, organizational, social, and economic dimensions: (i) reduced
failure probabilities, (ii) reduced consequences, and (iii) reduced time to
recovery. The proposed framework contributes to resilience by enabling
optimal retrofit policies throughout a hazard consistent set of scenarios,
aiming to guarantee acceptable performance levels for infrastructure
systems in the aftermath of disasters.

Related efforts in addressing decision problems within risk assess-
ment and management of complex infrastructure networks include re-
search by: Ouyang et al. [7] regarding a framework to analyze infra-
structure resilience, which includes comprehensive literature revision;
Lim et al. [13] regarding efficient reliability assessment for complex
infrastructure networks; Xu et al. [6] regarding the scheduling of re-
sponse actions for power infrastructure under seismic hazards by means
of genetic algorithms; Baroud et al. [9] regarding stochastic measures of
network resilience; Hu et al. [14] regarding optimal management of
large-scale transportation networks; and Nogal et al. [15] regarding the
study of transportation network resilience under extreme events.

From an optimization perspective, Frangopol and Bocchini [17]
propose the use of resilience as an optimization criterion for bridge
rehabilitation, considering the maximization of the transportation
network resilience as well as the minimization of the total rehabilitation
cost, relying on bi-objective genetic algorithms for the construction of
an efficient frontier (i.e., a set of solutions not outperformed by others).
Pereira et al. [18] use multi-objective evolutionary algorithms for re-
silient routing configurations that are robust to changes in the traffic
demands and able to maintain performance in the presence of arc
failure events. While heuristic approaches are compelling because of
their speed, it is important to push the boundaries of exact methods,
which can be enhanced by means of decomposition techniques.

Furthermore, their guarantee of optimality is valuable for risk man-
agement problems that already deal with high uncertainty in the as-
sessment process. In addition to responding to the needs in risk man-
agement for complex infrastructure networks, the proposed stochastic
programming framework is in line with existing challenges for opera-
tional research in disaster management, as highlighted in [16].

The work in [19] illustrates a novel mathematical optimization
approach for the case of intentional attacks; in contrast, the metho-
dology in this paper addresses risk related to natural hazards for large
scale networks under extensive scenarios. The work in [20] studies
resilience for the San Francisco Bay Area transportation network based
on a sequential game strategy from the perspective of users; while such
approach is complementary to the one provided in this paper, our focus
is on integrated seismic risk assessment and performance optimization.
The work in [21] proposes a stochastic programming approach for pre-
disaster investments to improve performance in a transportation net-
work based on fixed failure probabilities. Fan et al. [22] propose a
stochastic programming model to prioritize retrofit actions on highway
network bridges; their approach relies on a flow-based mathematical
formulation, and deals with instances with limited network size and
scenarios. A distinctive feature of this paper is how the optimization
relies on extensive correlated ground motions and fragility curves to
assess risk in a region of interest, along with traffic simulation through
extensive damage scenarios, to inform retrofit strategies.

Regarding the use of decomposition techniques for exact optimiza-
tion methods, Starita and Scaparra [23] minimize the impact of worst
case disruptions, using a bi-level mixed-integer model along with a
Benders decomposition approach. Viswanath and Peeta [24] minimize
total travel time over selected routes for earthquake response while
maximizing the total population covered, using a geographical simpli-
fication and a branch-and-cut strategy for an integer programming
model. While these decomposition approaches are similar to the one in
this paper, they rely on worst case scenario analysis and geographical
simplification approaches, which are limited compared to the full
probabilistic risk assessment considered here.

Miller-Hooks et al. [8] deal with resilience in freight transportation
networks, accounting for the impact of pre-disaster decisions on re-
covery related decisions with the objective of maximizing the flow
throughout the network; their approach relies on stochastic program-
ming but is not integrated with probabilistic risk assessment for realistic
complex networks. Mete and Zabinsky [25] also use a two-stage sto-
chastic program for a problem of warehouse location and transporta-
tion of aid materials, in which the random variable is the demand, ra-
ther than the condition of bridges as is the case of this paper.
Furthermore, approaches to infrastructure management often seek to
determine which network components should be activated to achieve a
certain performance goal, whereas the proposed approach seeks to in-
vest in modifying components’ attributes (e.g., the fragility of a
highway bridge) to improve performance, which is only possible due to
the integration with sophisticated risk assessment methodologies.

In this paper, the decision support strategy is based on exact opti-
mization, and stochastic behavior is accounted for through probabilistic
seismic risk assessment, rather than median or worst case scenario
analysis. It is worth noting that the use of stochastic programming to
address preemptive and post-disaster decisions is complementary to
existing approaches such as Bayesian pre-posterior analysis [26,27], or
Markov Decision Processes [28], which in turn may rely on dynamic
programming [29], or stochastic dynamic programming [30].

This paper builds upon previous research by Miller and Baker [31,5]
regarding probabilistic risk assessment for complex infrastructure net-
works, including statistical models for seismic activity which allows the
simulation of correlated ground motions in a region of interest [32], the
structural response of infrastructure network components via fragility
curves, a model for traffic simulation that captures users’ demand and
preferences, and the use of network analysis tools to integrate the
previous phases into a system level socio-economic metric [33]. The
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major novelty in this paper is in aggregating all these analysis layers
within an exact optimization framework for large scale networks.

3. Decision making framework for disaster preparedness and
response

Improving infrastructure resilience implies making decisions at
several stages (i.e., disaster preparedness, early response, restoration,
long-term recovery), in which actions at a certain stage often depend on
preceding actions, which may limit or potentiate future decisions. In
infrastructure engineering, a typical decision is whether to invest in
strengthening system components in order to avoid negative con-
sequences in case of disaster (e.g., repair costs, socio-economic impact
of system unavailability). We consider a decision problem that seeks to
minimize the investments on preparedness actions along with the ex-
pected future consequences associated to such investment choices:

+investments E consequencemin( [ ]) (1)

In this paper, investments and consequences are related to retrofit
and repair actions, respectively, aimed at maintaining network perfor-
mance, although they may also include business interruption, or human
and economic loss, depending on specific problem requirements. The
problem formulation incorporates constraints in which performance
metrics of interest are computed as a function of the investments to be
made, and are then compared to pre-specified target values to be sa-
tisfied.

metric investments target( )p t p t( , ) ( , ) (2)

where p is an index for different performance metrics of interest, and t is
an index for different stages in time. The performance index may denote
metrics that are different in nature, and/or a single metric evaluated for
different sub-systems of interest. The time index is valuable for resi-
lience oriented decision support, for instance: in an immediate post-
earthquake stage (e.g., within one day), a high-performance target
could be imposed on system components granting access to hospitals,
whereas for less critical components, targets may be lower for a few
more stages. The latter constitutes a powerful decision support feature,
since investments can be determined aiming to pursue a certain re-
covery curve. The inequality in Eq. (2) stands for generic performance
metrics for which higher values are preferable; in this paper, we will
consider travel time between origins and destinations as a performance
metric, thus, using the opposite sense for the inequality (since smaller
values are preferable).

The proposed problem structure is general and suits a variety of
applications. Specifically, we will consider the decision whether to
retrofit, repair, or do nothing for a specific component in a transpor-
tation network, depending on how performance metrics (travel time)
respond to the applied sequence of actions for that and other compo-
nents for a set of scenarios describing the hazard(s) of interest.

3.1. Risk assessment methodology

The proposed framework adopts work by Miller and Baker [31,5]
for probabilistic risk assessment of complex infrastructure networks
exposed to seismic hazards. The work in [5] includes the simulation of
correlated ground motion intensities for the San Francisco Bay Area,
and the creation of hazard-consistent scenarios, capturing the magni-
tudes and occurrence rates that can be expected for the network of
interest. Let r represent the occurrence rate of scenario , which con-
stitutes a primary input for the decision support model. Each scenario
from [5] is comprised of an occurrence rate (in terms of annual ex-
ceedance), associated to a specific earthquake magnitude, and a set of
comprehensive ground motions (expressed in terms of spectral accel-
eration) throughout the geographical area of interest. The size of the set
can be adjusted using the methodology in [34] (refined in [31]), in

which a large, risk-consistent set of scenarios (calibrated to historic
data) can be reduced to a smaller set through a supplemental optimi-
zation problem that re-calculates the occurrence rates for a subset of the
scenarios in order to represent risk accurately with significantly less
scenarios.

The subsequent step in [5] is to compute the damage state of net-
work bridges as a function of their fragility and the ground motion
intensities observed for each scenario . Fragility curves are evaluated
to determine whether each bridge is functional under each scenario
given the ground motion intensity observed at its specific location. As a
result, one version of the network is obtained for each scenario , in
which certain network arcs connecting nodes are affected (i.e., un-
available) due to the damage on bridges. Let graph G represent the
network under seismic scenario , occurring with probability r , and
with travel time ta, for each arc a in the network. The performance of
the network is then assessed by running a traffic simulation for each
network realization, in which trips are assigned using an iterative
process following the User Equilibrium method [35], providing arc
travel times for all earthquake scenarios. We seek to find the minimum
cost retrofit strategy that would preserve travel times between selected
origin-destination (OD) pairs within pre-specified acceptable ranges for
every damage realization.

3.2. Optimization problem

Consider the following sets: N of network nodes, A of network
arcs, of damage scenarios, B of bridges, and P of paths connecting
origin-destination pairs of interest. Let pB be a subset of arcs that be-
long to path p P and are directly related to network bridge(s), while

pA is the subset of remaining arcs in path p P (i.e., those not directly
related to bridges). While , ,N A B and are given by the problem,P
may be chosen in different ways, producing different pB and pA ; we
discuss possibilities and implications of such choices later in the paper.

Let decision variable x {0, 1}a denote whether a retrofit action is
applied on bridge a B , while variable y {0, 1}a, denotes whether
bridge a B must be repaired in scenario in order to comply
with target performance metrics for the observed damage realization.
Finally, auxiliary variable 0p, captures the travel time through
bridges on path p P of the network under scenario (only for
aesthetic purposes in the manuscript; not an actual decision).

The parameters in the model are described below:

• Ib a, : whether bridge b is related to arc a A

• ta,0: travel time for arc a A under no network damage
• ta, : travel time for arc a A under damage scenario
• tp: target travel time for path p P (under no network damage)
• p, : allowed travel time increase on path p P under scenario

• ca: cost of a retrofit action on arc/bridge a B

• qa, : cost of a repair action on arc/bridge a B under scenario

• : indirect consequences under damage scenario
• m: available resources
• a: resources necessary to retrofit arc/bridge a B

Parameters t t,a a,0 , , and tp are computed directly from running the
traffic simulation without any retrofit/repair actions applied, while Ib a,
is derived from the graph construction process (see Section 5). Para-
meters c q m, , , ,a ap, , , and a are conceived as user inputs; in Sec-
tion 5 we provide the values used in our analysis. The mathematical
formulation of the proposed optimization model is presented below:

+ +c x q ymin E
a

a a
a

a a, ,
B B (3)
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s.t.:

= + +t x y t x y

p

[ ( ) (1 )],

,
a

a a a a a ap, ,0 , , ,
p

P

B

(4)

+ +t t p(1 ) , ,
a

ap p p, ,0 ,
p

P
A (5)

x m
a

a a
B (6)

x a{0, 1}a B (7)

y a{0, 1} ,a, B (8)

3.2.1. Objective function
The objective of the problem (Eq. 3) is to minimize a function of the

costs and consequences derived from the strategy to be implemented:
the first term accounts for the aggregate cost of implemented retrofit
actions at a cost ca when binary decision variable =x 1a indicates a
retrofit action on arc a; the second term accounts for the expected value
of the cost of implemented repair actions =y 1a, throughout all sce-
narios at a cost qa, ; the third term refers to a consequence that
captures any saving or expense that occurs at a scenario as a result of
having implemented actions xa. In this paper, the consequence will be
associated to repair expenses only (i.e., no ). Ongoing research ex-
plores other consequences to capture in , such as economic loss due to
system unavailability, the impact of retrofit actions on post-disaster
logistics, or imposing a penalty if the number of repair actions exceeds
available personnel or resources, which could be achieved via addi-
tional constraints that account for such quantities.

3.2.2. Performance enforcement constraint
The performance constraint is at the core of the proposed approach

since it captures the impact of decisions. In contrast to [5], in which the
aggregate travel time is used as a scalar metric, we use the travel time
between selected origin–destination (OD) pairs as a performance me-
tric. This provides flexibility in the sense that the analysis can focus on a
single OD pair, a critical subset of them, or the complete set (with
corresponding computational costs). Furthermore, different perfor-
mance targets (travel time to be met) can be imposed for different OD
pairs according to their priority, or other decision-maker criteria.

Eq. (5) implements the performance constraint for each selected OD
pair for every damage scenario, guaranteeing that the aggregate travel
time across a path connecting an OD pair does not exceed its target
value by more than a tunable percentage . Auxiliary variable p, (Eq.
4) captures the sum of travel times through arcs that belong to path p
and are associated to bridges (note that p, values are dependent on the
damage scenario). The term that is added to p, , in Eq. (5), aggregates
travel times through arcs in path p that are not related to bridges (and
do not depend on the damage scenario). The sum of arc travel times
between an OD pair is forced to be within %p, of the target value
(travel time under no damage). If no retrofit or repair actions are taken
on a bridge, the post-disaster travel time on its related arcs will be that
of the corresponding damage scenario (ta, ), whereas a pre- or post-
disaster action sets those arcs to a no damage travel time (denoted by a
dummy scenario with index 0 in ta,0). Note that the proposed model
addresses the general case in which arcs are not necessarily paired one-
to-one with bridges; the case in which bridges are paired with arcs can
be achieved by making =B A , and hence =AP .

The performance constraint operates under the assumption that
retrofit/repair actions will only affect the travel times on arcs directly
associated to bridges (i.e., it does not account for cross-effects of bridge
condition on travel times of arcs beyond their immediate neighbor-
hood). While this is often not the case in practice, accounting for the
effect of any bridge on any arc is prohibitive for mathematical modeling

since it responds to a traffic simulation with no closed-form expression
for each of the many crossed effects (likely producing a non-convex
space). This assumption, however, only holds during the optimization
phase of the methodology: once retrofit decisions are obtained, they are
simulated in the traffic model by replacing the fragility curves of ret-
rofitted bridges (by stronger ones) and re-computing travel times with
full cross-effects for all damage scenarios under the obtained retrofit
policy. In this sense, the traffic dynamics is simplified into a set of
realizations of the graph, which allow to evaluate decision alternatives
within a mathematical optimization framework. While numerical re-
sults can be subject to error due to current assumptions, the metho-
dology opens research possibilities based on mathematical optimization
(e.g., iterative simulation-optimization approaches that incorporate
relevant crossed-effects without their full enumeration).

The set of performance constraints for each scenario is comprised of
as many equations as OD pairs are being studied. Alternatively, the
analyst may use a global performance metric (e.g., aggregate travel
time, median travel time, maximum travel time), in which case there
would be less constraints but the calculation of the metric itself might
be as demanding. Furthermore, the eventual inclusion of time indices
for parameter p, (along with performance constraints replicated over
time) would allow to impose gradually tighter performance targets for
OD pairs through different stages of the recovery process, mimicking a
resilience-oriented framework. However, such feature implies a con-
siderable increase in the model complexity.

As described throughout this section, the contribution of this fra-
mework relative to previous work lies on being able to exploit the
several layers of information and processing from solid probabilistic
risk assessment methodologies [31,5], and integrate them into an exact
optimization strategy that enables decision support for risk manage-
ment of complex infrastructure networks. In this sense, contrasting the
proposed framework with often faster heuristic approaches on the sole
speed criterion is not the main purpose of this contribution.

3.2.3. Side constraints
Eq. (6) limits the number of possible retrofit actions as a function of

available resources (e.g., budget). Additionally, an intuitive condition is
to enforce that xa and ya, must not take value at the same time. This
was not explicitly stated in the implementation, and is achieved via the
objective function (i.e., avoiding to invest twice in a component to
achieve the same effect). However, we have considered including such
constraints as they may provide a tighter formulation that improves the
convergence of the integer problem.

4. Stochastic optimization strategies

In this section, relevant aspects of stochastic programming are in-
troduced, followed by a decomposition of the optimization problem
from Section 3, which allows to deal with the large number of scenarios
that typically arise in practical risk management problems.

4.1. Stochastic programming overview

A common practice in optimization under uncertainty is to solve
deterministically for a specific circumstance; for instance, the expected
value, the worst case, or a tailored set of scenarios. Alternatively, de-
terministic optimization (either exact or heuristic methods) can be in-
tegrated into a simulation loop (e.g., via Monte Carlo based ap-
proaches). The term stochastic programming refers to the inclusion of
uncertainty into the parameters that define an optimization problem.
Often, the optimization problem is solved by evaluating variables
throughout discrete potential future scenarios. The main benefit of such
an exact approach, as opposed to usually faster heuristic alternatives, is
the capability to prove optimality (or quantify optimality gaps), while
the major drawback is the limited size of the instances it can manage
(due to either large networks or extensive scenarios).
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Since the size of the problem may grow quickly with the number of
scenarios, decomposition approaches are used to separate the original
problem into a master problem and a set of independent problems per
scenario which depend only on scenario-specific variables. Specifically,
the Benders and L-shaped decompositions [3,4,2,36,37] exploit a spe-
cial problem structure that allows to treat independent scenarios as
separate (yet coupled) optimization problems. This family of techniques
remains to be used and refined in current day for stochastic program-
ming, allowing to solve problems with uncertainty described by nu-
merous scenarios.

4.2. Decomposition strategy for the proposed problem

A decomposition approach is implemented for the proposed deci-
sion support framework in order to take scenarios into account within
the exact optimization approach. The problem from Section 3 is then
divided into one master problem and a set of sub-problems, one per
scenario.

4.2.1. Sub-problems per scenario
Each term of the expected value in the objective function (Eq. 3)

becomes the single objective function for the sub-problem associated to
each scenario :

= +q ymin
a

a a,
A (9)

where captures the value of the objective function observed for
scenario after solving for a fixed value (xa ) of retrofit variables given
by the current (temporary) solution of the master problem. The ob-
jective function minimizes the cost of necessary repair actions by sol-
ving the sub-problem with xa as a constant input in the performance
constraint (Eqs. 4 and 5), specifically for scenario . Each sub-
problem is fully described by Eqs. (4), (5), (8) and (9) for the corre-
sponding scenario.

4.2.2. Master problem
The objective function for the master problem (which considers

preemptive actions) is:

+c x rmin
a

a a
A (10)

where each is an artificial variable introduced in the master problem
in order to iteratively estimate the value of objective function of the
sub-problem associated to scenario by means of constraints referred to
as optimality cuts (Eq. 11), which relate the values of master problem
variables with the outcome obtained at secondary problems (occurring
separately). These cuts have the following form:

+L x x( ) (1 ) ,
a

a
a

a
O O (11)

where L represents a lower bound for the objective function; and O is
the set of first-stage decision variables that were not active in the
iteration (i.e., those =x 0a ). These are known as combinatorial Benders
cuts [38], and are often read as: the sub-problem solution will be
unless some xa are modified. For instance, a master solution with no
retrofit actions is likely to produce large consequences (i.e., many re-
pair actions). Then, a constraint will be added to motivate some master
problem variables to be turned on (i.e., apply retrofit actions) in the
next iteration (if preferable to accepting ). Note that, for each itera-
tion, up to | | cuts (constraints) are added to the master problem (one
per scenario). An alternative approach is to average sub-problem so-
lutions into a single value, , and aggregate their value into a single
cut, using only one auxiliary variable (instead of one per scenario), as
explored in [8], where an L-Shaped approach is followed using the

following cut (instead of that in Eq. (11)):

+ +L x x L L( ) ( )(| | 1)
a

a
a

a O
O O (12)

The lower bound L is computed based on the first stage objective
(deterministic costs plus current value of variables estimating second
stage problems). An upper bound (necessary to monitor convergence) is
computed based on deterministic costs ( c xa a aB

), plus actual
weighted objectives of all sub-problems. It is important to note that cuts
are only added when estimator variables (or for the L-Shaped case)
under-estimate the objective functions for their corresponding sub-
problems. In the Benders case, second stage objectives are compared to
their corresponding estimator variables prior to introducing cuts. In the
L-Shaped method, the unique estimator variable for second stage ob-
jectives is compared to the aggregated second stage objective.

As observed, the L-Shaped approach often results in fewer cuts (at
most one per iteration) and, thus, slower growth of the master problem.
However, it does not always dominate Benders cuts, which tend to
show narrower gaps between lower and upper bounds through itera-
tions, thus, providing better confidence if accepting solutions prior to
optimality. In addition to optimality cuts, so-called feasibility cuts are
often used in stochastic programming to correct infeasibility in second
stage problems; these are not considered in this paper since the pro-
posed sub-problems are never infeasible. The master problem is fully
characterized by Eqs. (6), (8) and (10), plus the iteratively added op-
timality cuts (either Eq. (11) or (12)). These ideas can be extended to
other pre- and post-disaster decision problems, such as adding re-
dundancy, updating flow capacity, or pre-positioning resources for
disaster response.

4.3. Considerations for implementation

The size of the optimization problem might lead to high computa-
tional burdens for the case of realistic infrastructure networks. In this
sense, several strategies are incorporated in the implementation of the
optimization model in order to overcome computational challenges. The
first step in handling complexity is the decomposition of the proposed
stochastic programming approach, which allows to solve sub-problems
independently, thus, enabling a parallel treatment of disaster scenarios. In
this sense, the remaining source of complexity is the number of variables
and constraints in the master problem and each of the sub-problems, i.e.,
the number of components for which actions can be applied and the
number of performance metrics that are being accounted for (in this case,
the number of origin-destination pairs). Clustering techniques have been
proposed [39–42] which address such problems of scale.

Further strategies to deal with slow convergence often rely on
aiding the exact optimization solver by providing one or more initial
feasible solutions, as well as a lower bound L for the problem optimum,
usually obtained by means of heuristic algorithms. The most common
approaches involve greedy algorithms, genetic and other evolutionary
algorithms, as well as local search procedures (the reader is referred to
[43,44] for exhaustive discussion on heuristic algorithms). It is worth
highlighting that a strong lower bound L is critical for fast convergence
of the stochastic programming strategy, since L influences optimality
cuts (i.e., tight bounds make the most out of each iteration). Pre-pro-
cessing computations towards this end are a wise effort, since weak
bounds may even compromise the computational gains pursued
through the decomposition approach.

5. Illustrative example

This section presents an example that considers several sub-net-
works of the San Francisco Bay Area transportation network in order to
demonstrate the proposed methodology, test how it performs for pro-
blems of differing sizes, and identify possible limitations and
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improvements. Section 5.1 presents an analysis of the San Francisco/
Oakland portion of the network to demonstrate the impact of the ret-
rofit/repair policies obtained after applying the proposed framework.
Section 5.2 provides an analysis of computational complexity as a
function of problem size (using sub-networks of different sizes).

5.1. Retrofit strategy for the San Francisco/Oakland network

The San Francisco/Oakland portion of the network is a key urban
concentration, considering 65 bridges that are critical in connecting
5184 OD pairs in a network consisting of 3130 nodes and 5257 arcs.
The set of OD pairs is chosen under two criteria: first, graph theoretical
indices are used to obtain a sample of nodes that are highly central, as
well as nodes that are highly peripheral, to have a broad representation
of types of trips; and second, a sample of nodes in the vicinity of bridges
in order to induce paths that incorporate bridges so that the effect of
their failure is captured. The set of damage scenarios to analyze results
from the optimization procedure described in sub-section 3.1, produ-
cing sets of 100, 150, and 250 scenarios out of an original set of nearly
2000; the set of 100 scenarios is used for the presented results. Fig. 1
provides a representation of the network including nodes associated to
OD pairs, as well as bridges considered in the problem.

The optimization process is carried out as follows: the objective is to
minimize the cost of retrofit actions and the expected cost of the repair
actions throughout scenarios. From a decision making perspective, the
challenge is in the valuation of investments to prevent damage that may
not often occur. The proposed methodology provides a framework to
support such decision processes. Fig. 2 shows the set of retrofitted
bridges resulting from the optimization procedure.

The San Francisco network is urban and densely connected, hence,
reasonably short detours are often available. However, significant
travel time increases are observed in the traffic simulation when no
retrofit actions are implemented, whereas notably smaller increases are
observed for most arcs when using the proposed optimization strategy,
except for arcs associated to the main bridges connecting separate parts
of the network (which tend to have a bottleneck characteristic). It is
worth noting that the target travel times pursued by the optimization
problem trigger interventions in the network, but these are not always
achieved when running the traffic simulation model for the retrofitted
network, precisely because the optimization ignores cross-effects in the
network, while the simulation does not (as discussed in Section 3).

For each scenario (with occurrence rate r ), the overall travel time
can be computed as the sum of all arc travel times throughout all OD-
pairs. By sorting the obtained per-scenario travel times, it is possible to

determine the chance of exceeding specific travel times at the network
level, given the risk consistent hazard assessment from [31]. Fig. 3
shows the annual exceedance rates for aggregate travel time in the
network resulting from the described simulation procedure, showing
that, as expected, very large increases in travel time (x-axis) are only
observed for highly damaging events with low occurrence rates (y-axis).
For reference, Fig. 3 shows the results obtained for the case in which all
bridges are retrofitted (green), and the case with no retrofit actions
(red). These results provide optimistic and pessimistic bounds, respec-
tively, for what can be expected of risk management strategies.

Two policies based on the proposed optimization approach are
shown in Fig. 3: one that limits the number of retrofit actions to 30% of
the bridges in the network (blue); and a second that limits retrofit ac-
tions to 50% (purple). For comparison purposes, results are also shown
for the average performance of greedy randomized retrofit strategies for
the cases in which retrofits are limited to 30% of the bridges (cyan) and
50% of them (yellow). The optimization-based retrofit policies, in gen-
eral, show better results than their heuristic counterparts. However,
these trends seem not to hold for certain points related to large

Fig. 1. San Francisco/Oakland network: (a) nodes in origin-destination pairs (in red); and (b) bridges considered in the optimization problem (in red). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Set of retrofitted bridges (in green) for the San Francisco/Oakland sub-
network. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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aggregate commute times (right-hand side of the figure), possibly due
to the effect of extensive damage scenarios on trips assignment within
the traffic simulation.

5.2. Complexity escalation with network size

In the San Francisco/Oakland network, retrofit and repair decisions
can be made for 65 bridges, and performance constraints are enforced
for a set of 5184 OD pairs and 100 damage scenarios. For the full op-
timization problem with no decomposition, this leads to 6565 variables
(65 retrofit decisions and 6500 repair decisions) and 518400 con-
straints. The stochastic programming version, on the other hand, con-
sists of one master problem and 100 auxiliary problems (one per sce-
nario). The master problem includes 165 variables (65 related to
retrofit actions and 100 additional variables that capture the objective
function of the auxiliary problems). The number of variables for each
sub-problem matches the number of bridges (i.e., 65) that could pos-
sibly be repaired under each scenario. The number of constraints for the
master problem and all sub-problems is 5184, since the performance
constraint must be met for all OD-pairs throughout scenarios.

The computational advantage results from solving 101 small pro-
blems (whose computation time can be added linearly) rather than
solving a unique aggregated problem, for which the burden grows ra-
pidly due to the combinatorial nature of the integer optimization pro-
blem. However, it is important to highlight that the 100 problems in the
stochastic programming approach require a large number of iterations
to include constraints (optimality cuts) that allow the optimizer to
converge to a global optimum. In addition, each sub-problem implies a
new optimization model, imposing an overhead cost for the decom-
position approach (i.e., loading many models into memory, as well as
running, updating, and coupling them).

Eight problems of increasing sizes were built in order to test com-
plexity escalation of the proposed framework. The increase in size was
achieved by adding larger sets of bridges and OD pairs. The models
were run on a personal computer with an Intel Core-i5 CPU @ 2.5 GHz

and 8 GB of RAM. The code was implemented in Python 2.7 and run
using Gurobi as a solver for both master and sub-problems.

An incidental insight obtained from solving for several sizes of OD
sets is that the optimization solution is not as good when considering
small OD sets. This occurs because the retrofit policy focuses on few
bridges, thus, when the simulation model is run, desired travel times
become affected by poor performance in the rest of the network. The
“post-simulation performance” of the optimization strategies improves
notoriously when considering larger sets of OD pairs.

Fig. 4 shows the evolution of the computation time as a function of
problem size (given by the product of variables and constraints). The
first points for the stochastic programming curve (green line with
squares) evidence a fixed cost associated to the decomposition proce-
dures (i.e., the overhead cost of having many models), which does not
make it compelling for small problems in which the full MIP can still do
well. However, when the exponential growth of the MIP becomes no-
torious, the decomposition becomes more competitive and starts com-
pensating for the overhead costs. The combinatorial versions of the
Benders and L-Shaped decompositions are known to show slow con-
vergence, as their cuts are considerably poor relative to the non-integer
versions. Furthermore, it should be noted that Gurobi’s state-of-the-art
features induce a competitive advantage for the MIP with respect to our
implementation of the decomposition approaches, namely: while the
MIP uses Gurobi’s solver (implemented in C as a final commercial
product), the decomposition approaches use our academic im-
plementations of Python callbacks, which most certainly slow down the
overall process. Only for demonstrative purposes, this effect can be
mitigated by disabling some of Gurobi’s automatic features (e.g.,
heuristics) to have more comparable performance; evidently, this is not
desirable in practice.

6. Conclusions

An optimization framework was introduced in the context of in-
frastructure risk management with the objective of addressing coupled

Fig. 3. Exceedance curves for aggregate users’ travel time for the network: without intervention (red), with full intervention (green), with optimal intervention of 30%
of bridges (blue), with optimal intervention of 50% of bridges (purple), with greedy randomized intervention of 30% of bridges (cyan), and with greedy randomized
intervention of 50% of bridges (yellow). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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pre- and post-disaster decisions in transportation networks. In parti-
cular, we propose a methodology that integrates sophisticated risk as-
sessment methodologies and optimization techniques in order to inform
preemptive risk management decisions by considering the potential
consequences observed throughout extensive disaster scenarios.

The proposed methodology relies on ground motion simulation,
structural evaluation of physical network components (i.e., bridges),
and traffic simulation, to obtain a set of scenarios, each consisting of an
occurrence rate and a realization of network travel times for a specific
disaster. An optimization model is formulated, which minimizes the
cost of retrofit actions on bridges and the expected cost of post-disaster
consequences, subject to ensuring acceptable travel time increases in
the network throughout disaster scenarios. Finally, Benders and L-
Shaped decomposition techniques are applied to the optimization pro-
blem to address the complexity resulting from extensive scenario eva-
luation.

The main contribution of this paper lies in the integration of prob-
abilistic seismic risk assessment, network performance evaluation, and
advanced optimization methods, which provide a powerful decision
support framework for risk assessment and management for critical
infrastructure systems. The methodology is sufficiently general to fit
applications involving different types of networks, hazards, or perfor-
mance metrics, and can be extended to capture multiple stages. The
developed framework can be used for risk-informed prioritization of
investments, and can be run iteratively to test sensitivity of parameters,
incorporate risk preferences, or evaluate scenarios not related to natural
hazards (e.g., population growth).

In computational terms, although decomposition techniques offer a
compelling possibility to incorporate extensive disaster scenarios, our
current academic implementation (in Python) is not convincingly su-
perior to the state-of-the-art features of commercial software. In addi-
tion to immediate improving steps such as migrating to a C im-
plementation, or exploiting parallelization, ongoing research is devoted
to non-integer versions of the problem and regularization techniques
for the decompositions (as well as the use of stronger cuts). However, in
spite of current limitations, the stochastic programming strategy allows
to deal with a large number of scenarios within an exact optimization
framework.

Future work is directed towards relaxing some of the assumptions in
the optimization model. Currently, performance is monitored through
pre-specified sets of origin-destination paths; this may be improved by
automatic re-routing within the optimization model. Similarly, the
crossed-effect of bridges on arc travel times is not accounted for; this
can be improved by allowing bi-directional communication between
the optimization and the traffic simulation.
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