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ABSTRACT: A significant increase in earthquake occurrence rates has been observed in recent years in
parts of Central and Eastern US. There is a possibility that this increased seismicity is anthropogenic
and is referred to as induced seismicity. In this paper, a Bayesian change point model is implemented
to evaluate whether temporal features of observed earthquakes support the hypothesis that a change in
seismicity rates has occurred. This model is then used to estimate when the change is likely to have
occurred. The magnitude of change is also quantified by estimating the distributions of seismicity rates
before and after the change. These calculations are validated using a simulated data set with a known
change point and event occurrence rates; and then applied to earthquake occurrence data for a site in
Oklahoma.

1. INTRODUCTION
The level of seismicity in the Central and Eastern
US (CEUS) has increased markedly since approxi-
mately 2009 (Ellsworth, 2013). For Oklahoma, the
cumulative number of earthquakes with magnitude
≥ 3 since 1974 is shown in Fig. 1. The figure shows
a marked increase in seismicity rate in Oklahoma
after 2008. The magnitude 3 threshold was chosen
since Coppersmith et al. (2012) described that there
is catalog completeness in CEUS at this magnitude
level. (All earthquake data from Oklahoma used
in this paper has been obtained from catalogs de-
veloped and maintained by Oklahoma Geological
Survey’s Leonard Geophysical Observatory.)

There is a possibility that this increased seismic-
ity is a result of underground wastewater injection
(e.g., Ellsworth 2013; Keranen et al. 2013, 2014).
Seismicity generated as a result of human activities
is referred to as induced or triggered seismicity. In-
duced seismicity in a region can alter its seismic
hazard and risk. One of the important components
in calculating seismic hazard through Probabilis-
tic Seismic Hazard Analysis (PSHA) is the activity
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Figure 1: Cumulative number of earthquakes in Okla-
homa with magnitude ≥ 3 from 1974 to Sept 2014

rate at a seismic source. For a given seismic source,
we thus need to establish whether earthquake oc-
currence data indicates that a change in rates has
occurred, or whether the earthquake activity is con-
sistent with normal features of a process having a
constant rate.
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In this study, we describe a Bayesian change-
point model that uses event occurrence data to indi-
cate whether a change in event rates occurred. We
assume that the event occurrences belong to a Pois-
son distribution. If a change in rates is detected,
we also obtain the probability of change occurring
at any given time, and the probability distributions
of rates before and after the change. Along with the
description of the model, an algorithmic implemen-
tation is provided. The model is validated through
its application to a simulated data set with known
properties.

The Bayesian model is then implemented on a
region in Oklahoma to evaluate whether change in
rates has occurred in this region. Finally, the dis-
tributions for seismicity rates before and after the
change are calculated. This detection could be used
to inform seismic hazard analysis and can serve as
a decision support tool for operations that may be
linked to induced seismicity.

2. BAYESIAN MODEL FOR CHANGE POINT DE-
TECTION

Change point models are used to detect changes
in occurrence rates of events. A Bayesian model
for change point detection is implemented here to
quantify changes in seismicity rates. The unknowns
in our problem are the date of change, event rate
before the change and rate after the change. Un-
like parameter estimation techniques where a single
value of a parameter is obtained, using a Bayesian
model yields a probability distribution for the pa-
rameters. The probability distribution for rates be-
fore and after the change is helpful in seismic haz-
ard calculation as it allows a more rigorous account-
ing of uncertainties.

For our model, it is assumed that occurrence of
earthquakes is a Poisson process. Declustering an
earthquake catalog (i.e. removing dependent af-
tershocks and foreshocks and only preserving in-
dependent mainshocks) accomplishes the require-
ments of this assumption as described by Gardner
and Knopoff (1974) and van Stiphout et al. (2012).
Furthermore, it is assumed that the seismicity rates
before and after the change, as well as the date of
change are mutually independent. Using Bayesian
analysis to detect change point in a Poisson process

has been described by Raftery and Akman (1986).

2.1. Marginal posterior distributions of time of
change and event rates

We define data in an observation period [0, T] as
a vector of inter-event times (i.e. the time between
successive events) ttt. The first event occurs at time
0 and the n+1th event occurs at time T .

ttt = {t1, t2, . . . , tn} s.t. ∑
i

ti = T (1)

The variables τ , λ1, and λ2 define the date of
change, event occurrence rate before the change,
and occurrence rate after the change, respectively.
Since the events belong to a Poisson process, the
inter-event times are exponentially distributed.

f T
λ (s)(t) = λ (s)e−λ (s) t (2)

such that

λ (s) =

{
λ1, 0≤ s≤ τ

λ2, τ < s≤ T
(3)

A Gamma distribution with parameters k j and θ j
is used to define the conjugate prior of λ j.

π(λ j) ∝ λ
k j−1
j e−λ j/θ j (4)

The prior distribution for the time of change, τ is
assumed to be uniformly distributed over the obser-
vation period. This implies that change is equally
likely to occur at any time during the observation
period.

π(τ) =
1
T
, 0≤ τ ≤ T (5)

The likelihood function for the unknown param-
eters can be written as

L (τ,λ1,λ2 | ttt)

=
tτ

∏
t=t1

λ1e−λ1 t
tn

∏
t=tτ+1

λ2e−λ2 t

= λ
N(τ)
1 e−λ1 τ .

λ
N(T )−N(τ)
2 e−λ2 (T−τ) (6)

where N(t) represents the number of events be-
tween [0, t]. Using the fact that all parameters are
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mutually independent, the posterior density is cal-
culated as

π(τ,λ1,λ2 | ttt)
∝ L (τ,λ1,λ2 | ttt)π(λ1)π(λ2)π(τ) (7)

Then the marginal distributions for each of τ , λ1
and λ2 can be obtained by integrating the poste-
rior density over the remaining two variables. The
marginal posterior distribution of τ is calculated as

π(τ | ttt) ∝

∫
∞

−∞

∫
∞

0
π(λ1,λ2,τ | ttt)dλ1 dλ2

= π(τ)

.
∫

∞

0
λ

N(τ)+k1−1
1 e−λ1

(
τ+ 1

θ1

)
dλ1

.
∫

∞

0
λ

N(T )−N(τ)+k2−1
2

.e−λ2

(
T−τ+ 1

θ2

)
dλ2

=
1
T
.

Γ(r1(τ))Γ(r2(τ))

S1(τ)r1(τ)S2(τ)r2(τ)
(8)

where

r1(τ) = N(τ)+ k1
S1(τ) = τ + 1

θ1
r2(τ) = N(T )−N(τ)+ k2
S2(τ) = T − τ + 1

θ2

(9)

The marginal posterior distribution of λ1 is cal-
culated as shown below. A closed form solution
for this double integration does not exist. Hence, to
evaluate the probability distribution, the time range
is discretized on a per day basis, and summed up to
approximate the marginal distribution.

π(λ1 | ttt) ∝

∫ T

0

∫
∞

0
π(λ1,λ2,τ | ttt)dλ2 dτ

=
∫ T

0

∫
∞

0
λ

r2(τ)−1
2 e−λ2S2(τ) dλ2

.π(τ)λ
r1(τ)−1
1 e−λ1S1(τ) dτ

≈
T

∑
τ=0

[
1
T
.λ

r1(τ)−1
1 e−λ1S1(τ)

. Γ(r2(τ))S2(τ)
r2(τ)

]
(10)

Similarly, the marginal posterior distribution of
λ2 can be calculated as

π(λ2 | ttt) ∝

T

∑
τ=0

[
1
T
.λ

r2(τ)−1
2 e−λ2 S2(τ)

. Γ(r1(τ))S1(τ)
r1(τ)

]
(11)

Another quantity of interest is the ratio of pre-
change event rate to post-change event rate (or vice-
versa), defined as β = λ1/λ2. Lindley (1965) de-
scribes the following function of β conditional on
τ to follow the F-distribution with d.o.f. p1 and p2,
where pk = 2rk(τ).

S1(τ)r2(τ)

S2(τ)r1(τ)
β ∼ Fp1,p2 (12)

The above equation can be used to compute the
probability distribution of β conditional on τ .

p(β | τ, ttt) = 1
B(r1(τ),r2(τ))

(
r1(τ)

r2(τ)

)r1(τ)

.

(
S2(τ)+S1(τ)β

S2(τ)

)−(r1(τ)+r2(τ))

.

(
S1(τ)r2(τ)

S2(τ)r1(τ)
β

)r1(τ)−1

.
S1(τ)r2(τ)

S2(τ)r1(τ)
(13)

The marginal distribution of β is then calculated
as

p(β | ttt) =
∫ T

0
p(β | τ, ttt)π(τ | ttt)dτ

∝

∫ T

0
π(τ)β r1(τ)−1

.(S2(τ)+S1(τ)β )
−(r1(τ)+r2(τ)) dτ

≈
T

∑
τ=0

1
T
.β r1(τ)−1

.(S2(τ)+S1(τ)β )
−(r1(τ)+r2(τ)) (14)

It is noted after the evaluation of eq. 14 that there
is some difference in the equation terms compared
to those obtained by Raftery and Akman (1986).
We are able to verify and validate our equation with
the same data as Raftery and Akman (1986), and
believe this formulation to be correct.
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2.2. Bayes factor

The change-point model described in the previous
section does not indicate whether the data supports
the presence of a change in the observed time range.
When the model is applied to observed data, it
assumes that there is a change and calculates the
probability of change on any given date. To indi-
cate whether data favors a change-point model, the
Bayes factor is used.

The Bayes factor is a Bayesian alternative to hy-
pothesis testing. In this case, it is defined as the
ratio of the likelihood function for a constant rate
model (H0) to that for a change model (H1). Hence,
it is used to compare which model better describes
the data.

B01(ttt) =
L (H0 | ttt)
L (H1 | ttt)

(15)

The constant rate model is characterized by a sin-
gle unknown parameter - the rate of occurrence, λ0.
A gamma distribution with parameters k0 and θ0,
similar to eq. 4, is used as its prior distribution.
Then

L (H0 | ttt) =
∫

∞

0
L (λ0 | ttt)π(λ0)dλ0

=
Γ(N(T )+ k0)

Γ(k0)

(
1
θ0

)k0

.

(
1
θ0

+T
)−(N(T )+k0)

(16)

and

L (H1 | ttt) =
∫ T

0

∫
∞

0

∫
∞

0
L (τ,λ1,λ2 | ttt)

.π(λ1)π(λ2)π(τ)dλ1 dλ2 dτ

≈
(

1
θ1

)k1
(

1
θ2

)k2 1
Γ(k1)Γ(k2)

.
T

∑
τ=0

[
π(τ)Γ(r1(τ))Γ(r2(τ))

S1(τ)r1(τ)S2(τ)r2(τ)

]
(17)

If the value of parameters for gamma conjugate
priors are k j = 0.5 and θ j→ ∞ f or j = 0,1,2, then
it is shown by Raftery and Akman (1986) that the

equation for Bayes factor can be simplified to

B01(ttt) = 4
√

π T−n
Γ(n+1/2)

.

[
T

∑
τ=0

Γ(r1(τ))Γ(r2(τ))

. S1(τ)
−r1(τ)S2(τ)

−r2(τ)
]−1

(18)

Smaller values of Bayes factor (less than 1) im-
ply that the change model is more strongly sup-
ported by the data. Bayes factor values of less than
0.01 (or greater than 100) are typically used to indi-
cate decisive preference for one model or the other
(Kass and Raftery, 1995). In this study, a Bayes fac-
tor of smaller than 1×10−3 is used to indicate that
data favors the change model compared to the con-
stant rate model (i.e if the Bayes factor for an ob-
served period is calculated to be less than 1×10−3,
it indicates that a change has occurred within this
observed period).

3. ALGORITHMIC IMPLEMENTATION OF THE

MODEL
Since all the unknown variables in the model de-
scribed above (τ , λ1, and λ2) are continuous and
closed form solutions are not possible for marginal
distributions of λ1, and λ2, some approximations
are required to implement the algorithm for the
change-point model. Additionally, overflow condi-
tions are encountered in the algorithm, for instance
when computing Γ(x) function for big values. The
approximations and inputs required for the imple-
mentation of our algorithm are described below.
Later, the verification and validation processes for
the algorithm are described.

3.1. Approximations and prior parameter inputs
for the algorithm

Under the first approximation, the continuous vari-
ables are discretized. Since it is not computation-
ally possible to calculate the marginal distribution
of τ over a continuous range, the algorithm is im-
plemented on a per-day basis. Hence, probability of
change happening at time τ is calculated for every
day of the observation period. The proportionality
in eq. 8 is converted to a probability by dividing
the values for each day by the sum of values for all
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days in the observation period, such that the sum of
probabilities equals one.

To compute the marginal distributions for λ1, λ2,
and β , the integral over τ is discretized to a sum-
mation by again dividing the observation period
on a per-day basis. Then the marginal distribu-
tions are approximated as shown in the last step of
eqs. 10, 11 and 14. The results are calculated at
discrete values of λ1, λ2, and β over a certain range
[Xlow,Xhigh], and the proportionality is converted to
probability again by dividing each result by the sum
of results over the complete range. It is ensured that
the selected range [Xlow,Xhigh] for each of the vari-
ables is wide enough such that probabilities at the
extreme points are essentially zero.

Secondly, to address the overflow problem, the
results are calculated in the log domain and then
converted back to the original domain. One of the
reasons for the overflow problem is computation of
Γ(x) which grows very rapidly with increasing val-
ues of x. In the log domain, algorithms are available
to calculate log[Γ(x)] directly without first needing
to calculate Γ(x). Another overflow problem is en-
countered when the results obtained in log domain
at each discrete value are converted back to origi-
nal space and summed together. Their sum could
be very large and outside the floating point range
of the computer. Hence, to calculate probability at
each discrete value, the log results are scaled such
that the sum is within the range of computation.

As an example of the implementation of approx-
imations and modifications described above, the al-
gorithm for calculating the probability of change
happening on any given day is written as:

(a) Discretize the observation period on a per-day
basis, τττ = {τi}T

i=1.

(b) At each τi, calculate

probi =− log(T )+ log[Γ(r1(τi))]

+ log[Γ(r2(τi))]− r1(τi) log[S1(τi)]

− r2(τi) log[S2(τi)].

(c) Find a scale such that

∑
i

eprobi−scale ≤ realMax

while preserving as many smallest values as
possible. Here realMax is the largest finite
floating-point number in IEEE double preci-
sion. Update probi = probi− scale.

(d) Normalize to obtain probability,

probi =
eprobi

∑i eprobi
.

The final step in the implementation of the algo-
rithm is selecting the values for the prior parameters
(k j and θ j) for the gamma distribution. The values
are selected as the same ones that are used in the
development of the formulation for Bayes factor in
eq. 18 (i.e. k j = 0.5 and θ j → ∞ f or j = 0,1,2).
Brief analysis was performed to assess the sensitiv-
ity of the prior parameter values on results, and it
was found that marginal distributions of τ , λ1, λ2,
and β did not vary significantly with different prior
parameters.

3.2. Verification and validation
The algorithm developed above for the change-
point model is verified by comparing the results
with those presented in Raftery and Akman (1986).
(The data used for comparison is the coal-mining
disasters data described by Jarrett (1979) and ex-
tended per Raftery and Akman (1986)) . The re-
sults are in very good agreement. The algorithms
are further validated through application on simu-
lated data.

To obtain the simulated data, inter-event times
are randomly generated from an exponential dis-
tribution with different rates and a known change
point. The change-point model is then implemented
on this data and the results for τ , λ1, and λ2 are
compared with the inputs. Here, we describe one
simulation case for validation.

For this validation case, 100 inter-event duration
are generated at a rate of 0.005 events/day and an-
other 50 are generated at a rate of 0.015 events/day.
A plot of cumulative number of events is shown
in Fig. 2. The first event is assumed to occur on
2000-01-01. Since the event rate reduces starting
from the 101st event, a change occurs between the
100th and the 101st event. Without any additional
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information, we cannot determine a specific date of
change. Hence, it is assumed that change occurred
the day before the 101st event which is known from
the data as 2052-06-01.
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Figure 2: Cumulative number of events for simulated
data with known change on 2052-06-02

The change-point model yields a Bayes factor of
6.3×10−7 for this data, implying that data strongly
supports the change-point model. The probability
of change happening on a given date is plotted on
Fig. 3. A 95% credible interval for dates of change
is determined between 2050-03-07 and 2054-05-
28. Hence, the actual date of change is within the
95% credible interval. Additionally, the date of
change with highest associated probability is found
to be 2052-06-01. This date exactly matches our
input date of change. Thus, the Bayesian change
point model correctly estimates the date of change
on simulated data.

The rates of event occurrence are also estimated
using the model. The results of probability distribu-
tions of rates before and after the change are shown
in Fig. 4. The modes of posterior distributions for
rates are 0.0054 and 0.0157 respectively, which are
in good agreement with the input rates.

4. CHANGE POINT MODEL IMPLEMENTATION

IN OKLAHOMA

The change-point model described in previous sec-
tions, is used to quantify the change in seismicity
rates in a local region of Oklahoma. The local re-
gion that is used in this paper is a 25 km radius
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Figure 3: Probability of change on simulated data rep-
resented by the thick solid line, with its 95% credible
interval between 2050-03-07 and 2054-05-28
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Figure 4: Probability of pre-change and post-change
rates

area centered around the location of "Well 1" de-
scribed in Keranen et al. (2013). The center of this
region is located 10 km north-west of Prague, OK
at (35.56◦N, 96.75◦W).

The cumulative number of events within the cho-
sen region from the declustered catalog are shown
with the dashed line in Fig. 5. No events are ob-
served between 1974 and 2009 in this region. A
Bayes factor of 9.6× 10−28 is calculated for this
data, implying that the data almost certainly sup-
ports the change-point model over a constant rate
model. The probability of change occurring on any
given day is then calculated and is shown in Fig. 5.
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The highest probability for change is observed on
2009-06-13. A 95% credible interval is calculated
to be between 2008-12-11 and 2010-02-24. This
implies that there is a high chance that change in
seismicity rates in this local region occurs between
late 2008 and early 2010.
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Figure 5: Probability of change on any given day for
the local region, represented by the solid line

The probabilities of seismicity rates before and
after the change are also calculated and are shown
in Fig. 6. Since the pre-change rate is governed by
the period of no seismicity between 1974 and 2009,
its distribution is left-tailed. The modes for pre-
change and post-change rates are 6.6× 10−5 and
1.8×10−2, respectively.
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Figure 6: Probability of activity rates for earthquakes
in the local region

The ratio of pre-change to post-change rate, β is
shown in Fig. 7. The highest probability is calcu-
lated at a ratio of 3.4×10−3. This implies that the
post-change rate is about 300 times greater than the
pre-change rate.
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Figure 7: Probability of ratio of pre-change to post-
change rates in the local region

5. CONCLUSIONS

An algorithm for change-point detection in event
rates using Bayesian statistics was developed in this
paper. The Bayes factor was defined in the model to
determine whether event occurrence data supported
that a change had occurred in event rates. If the
data supported a change model, the probability of
change happening on a given day could be com-
puted. The model could also be used to estimate the
probability distributions of event rates before and
after the change. The model was validated through
its application on a simulated data set with known
properties.

After validating the model on simulated data, it
was implemented on a region in Oklahoma. The
model detected that a change in seismicity rates oc-
curred sometime between late 2008 and mid 2010.
This period agreed well with the time of change
expected through a visual inspection of the data.
The post-change rate was estimated to be approx-
imately 300 times the pre-change rate. This high
increase in activity rates can substantially increase
the seismic hazard. Assuming that this local region
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is a seismic source and that the magnitude distri-
bution is held constant from pre-change to post-
change, this would imply an increase of about 300
times in rate of exceeding any ground motion at
this site from this source. However, more research
needs to be carried out before calculating hazard
from this increased seismicity. The magnitude dis-
tribution of induced earthquakes could be different
than tectonic earthquakes due to difference in b-
values (in a Gutenberg-Richter relation) or due to
an upper bound on earthquake magnitudes. Addi-
tionally, there could be a difference in ground mo-
tions from induced earthquakes compared to natu-
ral earthquakes (Hough, 2014).

The change point model does not make any asso-
ciation with the causes of rate change. Hence, after
determining that a change has occurred, it should be
linked with a physical phenomenon that might have
caused this change. In the case of induced seismic-
ity in Oklahoma, some of these physical phenom-
ena could be change in number of injection wells,
cumulative injection volume or basement pore pres-
sure. The information about dates of change pro-
vided by the change-point model can be used to
identify the causes of induced seismicity. This iden-
tification can assist in decision-making for opera-
tions potentially linked with induced seismicity and
can thus be used as a tool for risk mitigation.

Although the change-point model described here
was applied for the case of induced seismicity, this
is a versatile model with other potential applica-
tions. Some of the other applications of this model
could be to detect change in storm occurrence rates
to inform decisions about climate change, or to
detect change in population migration rates to in-
form decisions about developing urban infrastruc-
ture. Thus the change-point model described in this
paper can serve as a decision-support tool for a va-
riety of applications involving occurrences of po-
tentially non-stationary events.
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