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Abstract

We present a probabilistic framework to assess induced seismicity hazard and risk,

while accounting for temporally-varying seismicity rates. The framework is based on

the Probabilistic Seismic Hazard Assessment (PSHA) and risk assessment that are used

extensively for tectonic earthquakes. Dynamic estimates of earthquake rates are pro-

duced using a Bayesian change-point approach. The risk framework combines hazard

with vulnerability of the exposure and is implemented at a regional level. We imple-

ment a stochastic Monte Carlo based approach for our hazard and risk assessments

using OpenQuake-engine. We present an application of the framework for Oklahoma,

employ a ground-motion prediction equation applicable for the state and perform re-

gional risk assessment for repair cost on the entire state. We also perform sensitivity

studies on hazard and regional risk assessments for impacts of earthquake activity rate,

magnitude distribution, ground-motion prediction equations and exposure vulnerabil-

ities. Regional risk quantification can support regulators and operators in developing

∗Contact author
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effective risk mitigation measures, and the sensitivity analyses help decision-makers

perform cost-benefit analyses of their decisions and are beneficial for prioritization of

further research.

1 Introduction1

In this paper, we extend the Probabilistic Seismic Hazard Assessment (PSHA) methodology2

to evaluate hazard for induced seismicity and develop regional risk estimates. PSHA is3

a widely used tool to estimate hazard from tectonic (or natural) seismicity (Petersen et4

al., 2014), largely based on work by Cornell (1968). It describes a framework to account5

for both epistemic and aleatory uncertainties involved at various levels of seismic hazard -6

earthquake sources, earthquake ruptures, magnitude distributions, soil velocity and ground7

motion propagation. The methods described here build upon concepts related to induced8

seismicity that have been described in previous research by the authors and have not been9

included here for succinctness - a change-point approach for estimating changing seismicity10

rates (Gupta and J. W. Baker, 2017), and a ground-motion prediction equation developed11

for Oklahoma (Gupta et al., 2017). Additionally, an extension of the framework involving12

hazard assessment using injection volumes in Oklahoma has been described by Gupta (2017)13

but is not presented here.14

The motivation for this paper is the significant increase in seismicity that has been15

observed in the central and eastern US (CEUS) (Ellsworth, 2013) since 2008. Numerous16

studies have linked this increased seismicity to disposal of oilfield wastewater by injection17

(e.g., Ellsworth, 2013; Keranen et al., 2014; Walsh and Zoback, 2015; Horton, 2012; Hornbach18

et al., 2015) and hence it is referred to here as induced seismicity.19

PSHA has been proposed as a valuable tool to develop hazard estimates for induced20

seismicity. The United States Geologic Survey (USGS) has evaluated short-term seismic21

hazard for induced seismicity using PSHA (Petersen et al., 2016; Petersen et al., 2017).22

Eck et al. (2006) and Bourne et al. (2015) estimated hazard for induced earthquakes in the23

Netherlands, and Elk et al. (2017) additionally estimated the risk. J. W. Baker and Gupta24

(2016) present a Bayesian approach to account for uncertainties in induced seismicity, like25
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earthquake rates and location of faults in probabilistic hazard analysis. Several studies have26

been published on the identification of the two major components of hazard assessment27

- estimating seismicity rates (e.g., Llenos and Michael, 2013; Llenos and Michael, 2016;28

Gupta and J. W. Baker, 2017), and developing new ground motion prediction equations29

for regions of induced seismicity (e.g., Atkinson, 2015; Yenier and Atkinson, 2015; Gupta30

et al., 2017). Bommer et al. (2015) emphasize the importance of using seismic risk as a31

metric for decision making by regulators for regions of induced seismicity. Walters et al.32

(2015) present a traffic light system that qualitatively takes into account the seismic hazard,33

exposure and vulnerability of a region. Liu et al. (2017) present the sensitivity of building34

collapse and nonstructural component falling risks for induced seismicity. Mignan et al.35

(2015) estimate the portfolio induced seismicity risk caused by Enhanced Geothermal System36

in Basel, Switzerland, based on discrete damage states of the assets within a 14 km radius.37

Here we extend the PSHA framework to take into account the changing seismicity rates in38

regions of induced seismicity. We use a multiple-change-point approach to identify changes39

in seismicity rates, and perform hazard and risk assessments using a stochastic Monte Carlo40

based method. We apply the approach to Oklahoma, and discuss how the results may be41

useful in risk management decisions. Finally, we perform sensitivity analyses to assess the42

impacts of changes in the following parameters on Oklahoma’s hazard and regional risk -43

seismicity rates, magnitude distribution (b-value in Gutenberg-Richter relation, minimum,44

and maximum magnitudes), ground-motion prediction equations and exposure’s vulnerabil-45

ity. More informed decisions can be made on resource allocation, research efforts and risk46

mitigation measures by understanding these impacts.47

2 Framework for hazard and risk assessments from in-48

duced seismicity49

In this section, we describe a framework for hazard assessment from induced seismicity and50

apply these hazard estimates to develop regional risk estimates.51
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2.1 Hazard assessment52

Seismic hazard refers to the the annual rate of exceeding a certain level of ground shaking.53

In traditional PSHA for tectonic seismicity, the rate of an intensity measure IM exceeding54

an amplitude x, λ(IM ≥ x), is estimated by evaluating equation 1. Intensity measure is a55

catch-all term for various metrics of ground shaking, such as peak ground acceleration, peak56

ground velocity, spectral acceleration, or Modified Mercalli Intensity (J. W. Baker, 2015).57

λ(IM ≥ x) =
N∑

n=1

[
λ(Mn ≥ mmin)

Jn;Kn∑
j=1;k=1

p(IM ≥ x |Mn = mj;Rn = rk) . . .

p(Rn = rk |Mn = mj)p(Mn = mj)

]
(1)

where λ(a) is the annual rate of a, p(a | b) is the probability of a given b, n = 1, . . . , N is the58

earthquake source, Mn = m ≥ mmin is the earthquake magnitude for source n, mmin is the59

minimum magnitude considered at the source, Rn = r is the distance from earthquake source60

to site of interest, and Jn and Kn are the number of discretized magnitudes and source-to-61

site distances, respectively for source n. The probability p(IM ≥ x | Mn = m;Rn = r) is62

typically characterized by a ground motion prediction equation (GMPE) (e.g., Atkinson,63

2015). Earthquakes are typically assumed to occur as a Poisson process with rate λ, with64

p(Rn = r | Mn = m) developed based on the source geometry, and p(Mn = m) developed65

based upon a recurrence relationship (e.g., Gutenberg and Richter, 1949).66

Due to epistemic uncertainties, there may exist multiple source characteristics, GMPE’s67

and magnitude distributions for the same region. These uncertainties are accounted for68

by estimating hazard for each of the individual possibilities, which we then represent as69

individual branches in a logic tree. Each branch d = 1, . . . , D, is assigned weight wd such70

that
∑D

d=1wd = 1, and the hazard is computed by the weighted contribution from each71

branch (Petersen et al., 2014).72

λ(IM ≥ x) =
D∑

d=1

wdλd(IM ≥ x) (2)

where λd(IM ≥ x) is the hazard for branch d.73
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When the seismicity rates are changing over time, as for induced seismicity, then the74

estimated hazard is also time dependent. We represent hazard at time t as λ(IM ≥ x)(t)75

and calculate it by replacing the constant seismicity rate in equation 1 with time-dependent76

λ(Mn ≥ mmin)(t). Then the mean hazard per unit time over a time duration [t1, t2] is77

calculated by78

λ(IM ≥ x) =
1

t2 − t1

∫ t2

t1

λ(IM ≥ x)(t) dt (3)

Hazard estimates are forecasts of anticipated future seismic shaking. Due to the transient79

nature of induced seismicity, these forecasts are meaningful for shorter duration of the next80

6 months to 24 months, as compared to the National Seismic Hazard forecasts developed for81

next 50 years (Petersen et al., 2014).82

Equation 1 estimates hazard at a single site of interest. For multiple sites, this calculation83

is required separately at each of the sites. This is computationally expensive, and Monte-84

Carlo based stochastic approach may be more efficient (Ross, 2009). In this approach, for85

each source, we first simulate earthquakes according to the corresponding seismicity rate86

λ(Mn ≥ mmin). For each earthquake, we assign a magnitude according to the magnitude87

distribution fn(Mn = m), a location according to the source geometry, and finally estimate88

shaking at each of our sites using GMPE’s. Each simulation is independent and 10,000 one-89

year simulations are carried out. This approach also allows for implementation of spatial90

correlation between ground shaking at multiple sites from the same earthquake (e.g., Jayaram91

and J. W. Baker, 2009). The detailed algorithm for this approach is described by Gupta92

(2017) and is implemented here using the OpenQuake-engine (Pagani et al., 2014).93

2.2 Risk assessment94

Seismic risk refers to the annual rate of exceeding a certain level of loss to structures, popula-95

tion or other entities. The risk for loss ψ on a single asset s with a vulnerability distribution96

f(ψs | IM = y) is described by Krawinkler and Miranda (2004) and shown below.97

λ(ψs ≥ x) =

∫
IMs

λ(IMs = y)p(ψs ≥ x | IMs = y) dy (4)
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For a set of assets s = 1, . . . , S, the total loss Ψ is obtained by combining losses of all98

assets, Ψ =
∑S

s=1 ψs. Then the probability distribution of Ψ represents a sum of random99

variables and equation 4 is modified as shown below.100

λ(Ψ ≥ x) =

∫
IM

λ(IM = y)

∫
· · ·

∫
S
f(ψ1, . . . , ψS | IM = y) dS dy

and S = {x1, . . . , xS |
S∑

s=1

xs ≥ x;xs ≥ 0 ∀ s = 1, . . . , S} (5)

where f(ψ1, . . . , ψS | IM = y) is the joint probability distribution for loss to the S assets101

and IM is a vector of IMs at each asset s. We use the stochastic Monte-Carlo simulation102

approach to develop risk assessments at a statewide scale, similar to our approach for hazard103

assessment. In this case, the ground shaking at each site from the hazard estimation is used104

as input to estimate losses for risk assessment. This algorithm is detailed in Gupta (2017),105

and is implemented here through OpenQuake, with the results processed in MATLAB.106

3 Risk assessment for Oklahoma107

We implement the framework described in section 2 to assess hazard and state-wide post-108

earthquake repair costs for Oklahoma. While the hazard is computed at all locations in109

Oklahoma, we show estimates here from a single site at 35.45◦ N and 97.55◦ W in Oklahoma110

City. Due to the transient and rapidly changing nature of induced seismicity (Petersen et al.,111

2017), the hazard and risk forecasts presented here through 2017 are meaningful only for112

short duration of the next 6 to 24 months, although the framework might be used to update113

these estimates with more recent data.114

For reference, we will compare some subsequent hazard results with USGS short-term115

hazard curves (Petersen et al., 2016; Petersen et al., 2017). The USGS computed hazard116

using the weighted mean of multiple branches. Their seismicity rate estimates are based117

on observed seismicity over the previous 1-year, 2-year and 36-year windows. They use the118

same GMPE’s that are used in the 2014 hazard maps for the central and eastern United119

States (Petersen et al., 2014) and the Atkinson (2015) GMPE.120
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3.1 Parameters for risk assessment121

Seismic sources122

Seismicity rates are considered within Oklahoma and in southern Kansas near Oklahoma’s123

northern border. The background rates (before induced seismicity) are multiple orders lower124

than those from induced seismicity (Petersen et al., 2014) and contribute negligibly to short-125

term hazard and risk, hence we only consider regions with a recent rate increase. We use126

the change-point method, with sequential bisection to detect multiple change points, to es-127

timate rates for M ≥ 3 earthquakes (Gupta and J. W. Baker, 2017; Gupta, 2017). Rates128

are estimated from a seismicity catalog declustered using the method proposed by Reasen-129

berg (1985) with an effective lower magnitude cutoff of 3.0, based on Oklahoma’s catalog130

completeness threshold. We chose this declustering method because the alternative Gard-131

ner and Knopoff (1974) declustering removes many non-dependent earthquakes, as shown in132

Figure 1(a). The Reasenberg approach on the other hand appears to follow the number of133

monthly earthquakes much more closely and to smooth out the peaks that could be a result134

of dependent events. Stiphout et al. (2012) have also described that the Gardner-Knopoff135

approach tends to remove more events from the catalog than other approaches. Finally, we136

did not use the more recent and robust ETAS approach (Ogata, 1992) because it requires137

establishing a constant background seismicity rate while the background rate is itself variable138

for regions of induced seismicity.139

Seismic sources are considered as area sources of 0.1◦ latitude by 0.1◦ longitude, similar to140

the USGS implementation. Seismicity rates are estimated at the center of these area sources,141

every 6 months from 2009 through 2017 and are shown in Figure 2. For each point in time,142

only the catalog up to that date is considered. This allows us to evaluate how hazard and143

risk assessments would have evolved over time, had this approach been implemented over144

the past decade. Figure 3 shows that the model corresponds well with observed earthquakes145

at the statewide level; the approximately six-month lag between the two lines is because146

the observed earthquakes are for a future twelve-month period, while the estimated rates147

are empirically-based with no forecasting based on injection rates or other forward-looking148

metrics.149
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Figure 1: (a) Monthly M≥ 3 earthquakes in Oklahoma and (b) Number of earthquakes

exceeding a specified magnitude, for non-declustered catalog and catalogs declustered using

Reasenberg and Gardner-Knopoff declustering.

We use a truncated Gutenberg-Richter relation for magnitude distribution with a b-150

value of 1.3, a minimum magnitude of 3.0 and maximum magnitude of 8.0 at all sources.151

The b-value is selected based on our qualitative analysis of the seismic catalog (as shown152

in Figure 1b) and observation by Langenbruch and Zoback (2016). Different studies have153

suggested different b-values for the region, including a study by (Rubinstein et al. (2018)154

that estimated b = 1 for Kansas. The impact of b-values on hazard and risk is shown in155

section 4. We include a distribution of focal depths within the hazard framework, instead156

of in a logic tree, through a probability mass function that reflects the depth distribution157

in the earthquake catalog. Depths of 3, 4, 5, 6 and 7 km are modeled as occurring with158

probabilities of 0.05, 0.15, 0.6, 0.15 and 0.05, respectively.159

Ground-motion prediction equation160

We use the scaled version of Shahjouei and Pezeshk (2016) GMPE as described by Gupta et161

al. (2017), with spatial correlation in the ground motion fields using the Jayaram and J. W.162

Baker (2009) model. This GMPE has been developed for ground motions in Oklahoma and163

is applicable to earthquakes with magnitude ≥ 3.164
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Figure 2: Predicted rate of M ≥ 3 earthquakes using the change-point model, based on

earthquakes observed prior to the given date.

Exposure and vulnerability165

We use HAZUS data regarding building structure types and counts at a census block level,166

based on the 2010 census (Holmes et al., 2015). Building types in the large number of census167

blocks (≈ 255,000 census-blocks, 3.9× 106 data rows) are aggregated on a 0.1◦ latitude by168

0.1◦ longitude grid (1852 grid points, ≈ 28,500 data rows). This approximately corresponds169

to a 10 km by 10 km grid. Bal et al. (2010) concluded that the difference in the accuracy170
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Figure 3: Annual rates estimated using the change-point method based on earthquakes

observed prior to the given date, and number of earthquakes observed in the year following

the given date.

and precision of loss estimates that come from working at a coarse spatial resolution is likely171

to be insignificant in comparison with the uncertainties associated with the prescription of172

recurrence intervals for major earthquakes in a fully probabilistic loss model. Bazzurro and173

Park (2007) discuss impacts of aggregating assets, one of them being introducing artificial174

correlations that tend to systematically underestimate frequent, small losses and overestimate175

the large, rare ones. One of the reasons for this correlation is using the same spectral176

acceleration at the site of aggregated assets. To address this issue, we aggregate assets by177

distributing them to the nearest grid-points in proportion of their closeness to the point. In178

other words, each grid-point receives a contribution of the assets from the neighboring grid,179

instead of combining all the assets within 5 km north, west, south and east of the point. As180

a result, each asset’s loss is computed based on the spectral accelerations observed at its181

nearest grid-points, instead of only one grid-point. A summary of the assets is provided in182

Table 1. Figure 4 shows the total asset cost at each grid point, along with markers for major183

cities and the Prague M5.7 and Pawnee M5.8 earthquakes.184
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Table 1: Buildings summary in Oklahoma

Building type Cost Count

Wood light frame $127.52 billion 53.10% 0.970× 106 60.39%

Unreinforced masonry $66.62 billion 27.74% 0.407× 106 25.32%

Wood commercial and industrial $9.82 billion 4.09% 0.022× 106 1.34%

Mobile homes $5.75 billion 2.40% 0.156× 106 9.70%

Others $30.44 billion 12.67% 0.052× 106 3.25%

Total $240.15 billion 100% 1.607× 106 100%

−100˚

−100˚

−98˚

−98˚

−96˚

−96˚

34˚
34˚

36˚
36˚

0.01 0.02 0.05 0.10 0.20 0.50 1.00 2.00 5.00 10.00

Tulsa

Oklahoma City

Pawnee

Prague M5.7

Pawnee M5.8

Cost of assets (in $ billion)

Wakita

Figure 4: Total asset value for each grid point. Major cities and epicenters of Prague M5.7

and Pawnee M5.8 earthquakes are marked. The circles around the epicenters are 100 km in

diameter and mark the approximate region with PGA ≥ 0.05 g based on USGS Shakemaps.

We use HAZUS vulnerability functions that relate IM to asset losses, as shown in Fig-185

ure 5a. HAZUS provides damage fragility functions for each asset that relates peak ground186

acceleration (PGA) with four distinct damage levels. Then, at various discrete levels of PGA,187

the probability of being in each damage level can be obtained. HAZUS also provides mean188
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Figure 5: (a) Vulnerability function for low-code classification of the most commonly oc-

curring building types in Oklahoma. (b) Upgraded vulnerability curves developed for this

study based on Krawinkler et al. (2012). The upgraded curves refer to upgrade from HAZUS

curves based on previous research and do not reflect any structural intervention.

loss ratios for each damage level. Then to obtain the vulnerability functions, we estimate189

the probability of loss at each PGA level based on the probability of each damage level and190

its corresponding mean loss ratio. We then assume a log-normal distribution for loss at each191

PGA level and estimate its parameters based on the probability of loss. This yields a vulner-192

ability function that is defined by a log-normal distribution at various PGA levels. We have193

obtained these vulnerability functions from OpenQuake developers through personal com-194

munication (Anirudh Rao, 2016), with the structural loss ratio mapped to total building loss195

ratio as the loss measure ψ. Additionally, HAZUS classifies buildings as pre-code, low-code,196

moderate-code and high-code, based on their location and year of construction. HAZUS197

categorizes post-1975 buildings in low seismicity regions as low-code, hence all buildings in198

Oklahoma are classified as low-code. The vulnerability functions showing variation of the199

mean loss-ratios with PGA for the most common building categories are shown in Figure 5.200

The variation in losses at each PGA level as characterized by the log-normal distribution201

is not shown in the figure. HAZUS’s PGA based fragility functions are developed for large202

magnitude events and hence there is a possibility of introducing bias when using these for203

the short durations and low energy of the motions associated with smaller earthquakes in204

this study. We have explored the impact of vulnerability functions on risk assessment in205
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section 4.4, however specifically exploring the bias of HAZUS fragility curves for small mag-206

nitude earthquakes is beyond the scope of this study.207

OpenQuake implements complete correlation of losses between assets of the same type at208

a site. For example, if there are 6 wood buildings aggregated at a site, then each building will209

have an identical loss ratio for a given simulation. We also assumed mutual independence210

between assets of different types and at different sites (i.e., the loss ratio given a PGA for211

one asset type or site does not influence the loss ratio given PGA for another asset type or212

site). Asset losses may be correlated at different sites when they follow similar designs or213

construction quality, for example, when constructed by the same contractor. However, we214

did not have such information and hence assumed independence. Asset correlation will have215

the effect of reducing the occurrence of lower losses and increasing the occurrence of higher216

losses.217
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Figure 6: (a) Induced seismicity hazard in Oklahoma City, and (b) Statewide risk using

seismicity rates estimated using change-point method. Hazard reported for Oklahoma City

by Petersen et al. (2016) and for Los Angeles (Petersen et al., 2014) are also shown for

comparison.

We calculated risk curves for these vulnerability functions and noted that they highly218

over-estimate the observed losses. For example, Figure 6 shows losses of ≈ $2.8 billion219

with 10% annual probability (exceedance rate of roughly once in 10 years on average)220

and ≈ $383 million with an exccedance rate of once per year, out of total portfolio cost221

of $240.15 billion. In the last 6 years since 2011, when the first M > 5 earthquake occurred222
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in Oklahoma, there have been multiple cases when buildings have been damaged, but their223

exact loss values are not available. However based on estimates generated from news reports,224

we believe that losses have not exceeded ≈ $10 million for any of the earthquakes. Given225

our risk estimates, the probability of exceeding a loss of $2.8 billion in 6 years is 45%, and226

that of $383 million is 99.7%, and given the low occurrence of such high losses, we believe227

that our risk estimate is higher than the true risk. We further explore the reasons for this228

discrepancy in losses.229

Figure 6(a) shows that our hazard estimate for the Reasenberg (1985) declustering ap-230

proach is higher than that of USGS. Since the Gardner and Knopoff (1974) approach used231

by the USGS removes a greater number of earthquakes from the catalog, as described by232

Stiphout et al. (2012) and shown in Figure 1, the hazard estimate based on this approach233

is much lower. Moreover, our hazard estimates and those of USGS for Oklahoma City are234

both greater than that of Los Angeles. This high hazard, combined with higher expected235

vulnerability of the Oklahoma building stock, results in our high loss estimates. Figures 6(a)236

and 8(a) also illustrate that our hazard estimates based on the change-point approach are237

in good agreement with those of USGS using a completely independent approach.238
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Based on our high predicted losses but comparable hazard estimates as those of USGS,239

we believe that our vulnerability curves are too conservative, however few studies exist that240

provide fragility curves for buildings in the central and eastern US, and for small magnitude241

earthquakes. Other effects like aggregation of assets and asset loss correlations can also242

affect loss estimates, however their impacts are not large enough to completely explain the243

high estimated losses. Krawinkler et al. (2012) developed fragility functions for unreinforced244

masonry parapets and chimneys using observations from California and computer modeling.245

Since unreinforced masonry structures in California predate modern seismic design require-246

ments in the region, we believe that these fragility functions developed for chimneys and247

parapets are reasonable estimates for unreinforced masonry structures in Oklahoma. We248

note that chimneys and parapets are not braced at the top and hence these fragility func-249

tions are still conservative when used for buildings. We use these fragility functions here250

because they have been created specifically for unreinforced masonry using more data and251

modeling than the HAZUS functions, however further research is required to generate Okla-252

homa specific fragility functions, which is beyond the scope of this study. The median PGA253

for toppling fragility function by Krawinkler et al. (2012) is 0.5 g compared to 0.35 g for the254

loss vulnerability curve in our study based on HAZUS. To update our vulnerability curves,255

we increase our median PGA for unreinforced masonry to 0.5 g while keeping the same vari-256

ability of the curve. Similar studies could not be found for other building types and hence257

we make the assumption to increase the median PGA for all vulnerability functions by a258

ratio of 1.43 (= 0.5
0.35

). Some of these updated vulnerability curves are shown in Figure 5(b).259

We use these updated vulnerability curves in all subsequent calculations, unless otherwise260

specified.261

Finally, we note that the August 24, 2014 M6.0 earthquake in Napa incurred a loss of262

$700 million (http://www.iii.org/issue-update/earthquakes-risk-and-insurance-issues,263

accessed August 09, 2017). Approximately 410,000 households were affected by that earth-264

quake, compared to ≈ 337,000 households in Oklahoma County (https://www.census.265

gov/2010census/popmap, accessed August 09, 2017). This suggests that it would be pos-266

sible to observe losses in the order of $500 million in Oklahoma City from a nearby ≈M6.0267

earthquake, though fortunately previous earthquakes have caused losses in order of only268
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$10 million as they have not occurred in densely populated regions of the state.269

3.2 Oklahoma Results for 2017270

Figure 8 shows the hazard in Oklahoma City and statewide risk from induced seismicity271

based on the updated vulnerability curves shown in Figure 5(b). The annual exceedance272

rates for PGA using the change-point seismicity rates are approximately twice that of the273

USGS 2017 hazard estimates (Petersen et al., 2017). This comparison is not anticipated to274

produce an exact match, due to differences in assumed seismicity rates and logic trees, but275

the rough correspondence of results is reassuring.276
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Figure 8: (a) Induced seismicity hazard in Oklahoma City and (b) statewide risk with

updated vulnerability functions. Hazard reported by Petersen et al. (2016) in USGS 2016

report is also shown for comparison.

Due to the transient nature of induced seismicity, we consider these calculations as short-277

term forecasts and consider only annual rates of exceedance ≥ 0.01 in our Figures. Our278

estimates indicate that Oklahoma City will experience peak ground acceleration of ≈ 0.08 g279

with 10% annual probability and ≈ 0.3 g with 1% annual probability. Generally, building280

losses occur at accelerations > 0.1 g, but might occur at > 0.05 g in Oklahoma due to higher281

building vulnerability, as shown in Figure 5.282

The statewide risk in Figure 8(b) indicates loss of ≈ $1.2 billion with 10% annual prob-283

ability and ≈ $5.5 billion with 1% annual probability. Our estimate indicates a loss of284

≈ $125 million expected once every year on average. The total asset cost for our exposure285
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portfolio is $240 billion for the state. This indicates loss ratios of ≈ 2.3% at the 1% an-286

nual probability level, which appears reasonable given the high hazard and the vulnerability287

curves for wood buildings that are 53% of the total cost. However, the loss estimates are288

still substantially higher than those actually observed in the state to date. Since our haz-289

ard estimates are comparable to those of the USGS, we explore the relationship between290

vulnerability models and losses in section 4.4.291

4 Sensitivity Analysis292

In this section, we study the impacts of changes in seismicity rates, magnitude distribution (b-293

value in Gutenberg-Richter relation, minimum and maximum magnitudes), ground-motion294

prediction equations and exposure’s vulnerability on induced seismicity hazard and statewide295

loss risk in Oklahoma. Unless noted otherwise, the results are estimated based on seismicity296

rates estimated on 2017-01-01, with minimum and maximum magnitudes of 3.0 and 8.0297

respectively, a b-value of 1.3, the SP16scaled GMPE and the vulnerability with upgrade ratio298

of 1.43 as described in the previous section.299

4.1 Changes in seismicity rates300

We illustrate the effect of changing seismicity rates by studying the evolution of hazard and301

risk in Oklahoma over time. We use the multiple change-point model to estimate rates at302

6-months intervals, starting in 2009 (Figures 2 and 3).303

We observe in Figure 9 that shaking in Oklahoma City increases considerably at a given304

exceedance level between 2009 and 2010. There is little difference in PGA increase after 2010,305

however, despite high rate increases in the state, because the more recent rate increases306

occurred in northern Oklahoma (an area with less exposure). We observe a significant307

increase in statewide risk between 2013 and 2014, which agrees with the rate increase from308

the change-point model during the same time. There has been a reduction in observed309

seismicity since 2015 in the state and subsequently also reflected in the rate estimates from310

the change-point model starting in 2016, as shown in Figure 3. However, this reduction is not311

pronounced in hazard estimates for Oklahoma City in Figure 9(a) while the loss estimates312
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show some reduction. This is because most of the rate reduction in 2015 occurred in Northern313

Oklahoma and southern Kansas while Oklahoma City is in central Oklahoma. This is also314

illustrated in the reduction of hazard in Wakita in Northern Oklahoma (shown in Figure 4)315

as shown in Figure 10. The statewide loss risk has only reduced slightly since earthquake316

rates have not decreased uniformly across the urban centers.317
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Figure 9: (a) Evolving hazard over time in Oklahoma City and (b) statewide risk at 10%,

50% and 90% annual rates of exceedance . Seismicity rates are too low for 2009-01-01 with

the number of years considered in our simulations to generate loss estimates at the 50% and

90% annual rates of exceedance.
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Figure 10: Evolving hazard over time in Wakita in northern Oklahoma at 10%, 50% and

90% annual rates of exceedance
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4.2 Changes in magnitude distribution318

We use a truncated Gutenberg-Richter magnitude distribution, and vary the minimum mag-319

nitudes from 3 to 5 and maximum magnitudes from 5 to 8. In hazard analysis, the minimum320

magnitude is specified at a level such that shaking from lower magnitude earthquakes is not321

relevant because it will not affect buildings (Bommer and Crowley, 2017), and the maximum322

magnitude is governed by the maximum earthquake that a seismic source can produce. For323

induced seismicity, the maximum possible magnitude continues to be an active area of study324

(McGarr, 2014; Ellsworth, 2013) and understanding its influence can inform future research.325

Figure 11 shows the impact of these parameters on hazard and risk. We observe that using a326

minimum magnitude mmin = 5 yields lower shaking and losses than the other cases, because327

M < 5 earthquakes do contribute to shaking and losses in the baseline analysis case. We328

observed in Figure 7 that only a small percentage of M < 5 earthquakes cause losses larger329

than $1 billion, however since M < 5 earthquakes are much more frequent than M > 5330

earthquakes, setting a larger mmin has a potential to reduce the risk at these fairly high loss331

values. As the loss value is increased further, setting mmin ≥ 5 does not change the risk332

significantly because smaller earthquakes do not cause losses larger than $10 billion. This333

also explains the difference observed between mmin = 3 and mmin = 4 for the lower shaking334

and loss levels at the higher exceedance rates. The high frequency of M < 4 earthquakes335

contribute to the low levels of shaking at PGA ≤ 0.1 g and, combined with the high vul-336

nerability of our exposure, this difference in hazard at low shaking levels also propagates to337

risk at lower loss levels. The difference becomes negligible for losses ≥ $100 million because338

M ≥ 4 earthquakes are responsible for most of these losses. We observe that mmax > 6 have339

little influence on shaking and loss levels for the same reason that these larger earthquakes340

are less frequent and hence contribute little to the short-term hazard and risk estimates at341

these high annual rates of exceedance. As expected, the influence of mmax increases as the342

shaking and loss levels increase.343

Figure 12 shows the variation of hazard and risk with changes in b-value. Dempsey et al.344

(2016) show that induced earthquakes follow the Gutenberg-Richter relation, with b-values345

estimated between 0.8 and 1.5 for most regions. A smaller b-value indicates higher frequency346
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Figure 11: (a) Hazard in Oklahoma City and (b) statewide risk for different values of mini-

mum and maximum magnitudes

of observing large magnitude earthquakes, for a given overall earthquake rate. As expected,347

we observe that increasing b-values reduce both hazard and risk due to lower frequency of348

large magnitude events. The reduction in hazard and risk with increasing b-values is greater349

at higher shaking and loss values due to the lower frequency of large magnitude earthquakes.350
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Figure 12: (a) Hazard in Oklahoma City and (b) statewide risk for different b-values at

different minimum and maximum magnitudes
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4.3 Changes in ground-motion prediction equations352

Well-constrained ground-motion prediction equations for Oklahoma have only been available353

recently (Yenier et al., 2017) and had not been developed earlier due to extremely low354

seismicity in the region. Moreover, induced earthquakes have been generally located at355

shallower depths (≈ 5 km) compared to tectonic earthquakes (≈ 10 km) and it has been356

contended that ground motions from induced earthquakes exhibit different behavior than357

those from tectonic earthquakes (Hough, 2014; Cremen et al., 2017; Gupta et al., 2017).358

In Figure 13, we compare hazard and risk variation for the Atkinson (2015) (A15) and359

the Gupta et al. (2017) (SP16scaled) GMPE’s that have been developed for application in360

Oklahoma. We observe that hazard and risk estimates based on the A15 are lower than361

those based on the SP16scaled. The A15 and the SP16scaled models have similar amplitudes362

at source-to-site distances of ≤ 60 km, while A15 predicts lower amplitudes than SP16scaled363

at larger distances. The two GMPE’s have similar standard deviations. This explains the364

differences in our estimates in Figure 13. We also observe that the differences increase at365

larger acceleration values as we would expect, because larger values are governed by larger366

magnitude earthquakes for which ground shaking at longer distances is a more important367

factor. However, this increased difference is not reflected in the risk curve because the higher368

losses at our exceedance levels of interest are governed by damages to large asset cost cities369

located at short distances from earthquake epicenters. This analysis emphasizes the need for370

better constrained GMPE’s for regions of induced seismicity especially at shorter distances,371

to better resolve the shaking and losses resulting from small-magnitude earthquakes at short372

distances.373

4.4 Changes in vulnerability374

We consider the reduction in risk by decreasing the exposure’s vulnerability, by increasing the375

medians of the vulnerability curves by a certain ‘upgrade ratio.’ In section 3.1 we increased376

the medians by a ratio of 1.43. Here we further upgrade the vulnerability curves by ratios377

of 2.0 and 3.0. This upgrade could be achieved by retrofitting the buildings to a newer378

code standard or to the code standard applicable for high seismicity regions like California.379
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Figure 13: Hazard in Oklahoma City (a) and statewide risk (b) for A15 and SP16scaled

GMPE’s

Figure 14 shows the anticipated result that decreased vulnerability (or higher upgrade ratio)380

yields lower risk. The losses are $63 million and $26 million exceeded once a year on average,381

and $700 million and $344 million exceeded with 10% annual probability for the upgrade382

ratios of 2.0 and 3.0, respectively.383

In section 3.2, we mentioned that based on observed losses in Oklahoma, risk in re-384

cent years might be on the order of $100 million exceeded with 10% annual probability.This385

indicates that vulnerability curves associated with upgrade ratio = 3.0 might be more rep-386

resentative of the building vulnerability in Oklahoma–this may reflect either stronger than387

expected seismic strength of buildings, or lower damage potential of ground motions with a388

given PGA in Oklahoma, e.g., due to short shaking duration or low long-period energy. This389

vulnerability roughly corresponds to the High-code classification in HAZUS in the case of390

masonry structures and exceeds this classification for wood structures. High-code classifica-391

tion in HAZUS is used for fragility functions of new buildings in California. Risk analysis for392

different vulnerability levels can be a useful tool for city officials and operators to quantify393

benefit-cost ratios of upgrading structures in a region.394
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Figure 14: Statewide risk for vulnerability curves with medians increased by the ratio shown,

corresponding to change-point rates on January 01, 2017

5 Conclusions395

We have presented a framework to estimate temporally-varying hazard for induced seismicity,396

and a stochastic Monte-Carlo simulation procedure to estimate regional risks. We estimated397

seismic risk for the state of Oklahoma, and confirmed that short-term hazard and risk are398

significantly elevated due to induced seismicity. We estimated peak ground acceleration399

of 0.08 g with 10% annual exceedance probability and 0.3 g with 1% annual exceedance400

probability in Oklahoma City. The statewide risk indicated losses of $1.2 billion with 10%401

annual exceedance probability and $5.5 billion with 1% annual exceedance probability. These402

hazard estimates are of the same order of magnitude as those estimated by USGS, but the risk403

estimates are an order of magnitude higher than anticipated based on observed losses from404

recent earthquakes. We explored this inconsistency by changing the vulnerability curves for405

buildings in Oklahoma and observed that curves with median PGA equal to three times those406

specified by HAZUS yielded risk curves in the expected range. The losses from this upgraded407

vulnerability were $344 million with 10% annual exceedance probability and $2.2 billion with408

1% annual exceedance probability. Similar analyses with changing vulnerability curves can409

be used to quantify the benefits of retrofitting buildings to higher seismic resistance.410

Analysis of Oklahoma hazard and risk over time in indicate that risk increased substan-411

tially between 2009 and 2010, and then again between 2013 and 2014. More recently, a412
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reduction in seismicity rates, potentially resulting from reduction in injection volumes in the413

state as a result of regulation (T. Baker, 2017) and market conditions, has caused a decrease414

in statewide risk. We also assessed the impacts on hazard and risk from changes in mag-415

nitude distribution and ground-motion prediction equations. Due to higher vulnerability of416

buildings in Oklahoma, buildings could be impacted by magnitude ≤ 5 earthquakes, hence417

we suggest using minimum magnitudes of M ≤ 3 for hazard and risk assessment. Maximum418

magnitudes above 5.0 did not have significant impacts on hazard and risk for the annual ex-419

ceedance rates of interest. Since we have already observed a M5.8 earthquake in Oklahoma,420

we suggest using M ≥ 6 for maximum magnitude. b-values and GMPE’s impacted risk421

significantly, indicating that further research on these topics will benefit risk assessments.422

The risk analyses presented here served three main objectives - (1) to demonstrate the423

framework, (2) to suggest how the current results can be used to inform policy, and (3) to424

evaluate the reasonableness of model inputs. Some of our observations, such as the issues425

with assumed building vulnerabilities, were a result of our implementation of the framework426

within the constraints of previous available data and research. There remain uncertainties427

associated with seismicity rates, ground-motion prediction equations, asset loss correlations428

and building vulnerability functions and their assumed distributions that should be further429

studied to better constrain the risk analyses.430

The seismicity rates for induced seismicity need to be updated regularly, and resulting431

assessments can be used to quantify time-varying hazard and regional risk as presented in this432

study. Risk assessment using this framework for different vulnerability levels and seismicity433

rates can be performed in an automated and ongoing manner, and will help stakeholders to434

quantify the benefits of various risk mitigation measures, thus serving as a valuable decision435

support tool.436
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