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ABSTRACT 

One of the challenges in assessing structural collapse performance is the appropriate selection of 

ground motions for use in the nonlinear dynamic collapse simulation.  The ground motions 

should represent characteristics of extreme ground motions that exceed the ground motion 

intensities considered in the original building design.  For modern buildings in the western United 

States, ground motions that cause collapse are expected to be rare high-intensity motions 

associated with a large magnitude earthquake. 

 Recent research has shown that rare high-intensity ground motions have a peaked spectral 

shape that should be considered in ground motion selection and scaling.  One method to account 

for this spectral shape effect is through selection of a set of ground motions that is specific to the 

building’s fundamental period and the site hazard characteristics.  This selection presents a 

significant challenge when assessing the collapse capacity of a large number of buildings or for 

developing systematic procedures, since it implies the need to assemble specific ground motion 

sets for each building.  This paper proposes an alternative method, whereby a general set of far-

field ground motions is used for collapse simulation, and the resulting collapse capacity is 

adjusted to account for spectral shape effects that are not reflected in the ground motion selection. 

The simplified method is compared with the more direct record selection strategy, and results of 

the two approaches show good agreement.  
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INTRODUCTION AND GOALS OF STUDY 

One of the challenges in assessing structural collapse capacity by nonlinear dynamic analysis is 

the selection and scaling of ground motions for use in analysis.  Baker and Cornell (2006) have 

shown that spectral shape, in addition to ground motion intensity, is a key characteristic of ground 

motions affecting the structural response.  In particular, for a given ground motion hazard level 

(e.g. 2% chance of exceedence in 50 years), the shape of the uniform hazard spectrum (UHS) can 

be quite different from the shape of the mean (or “expected”) response spectrum of a real ground 

motion having an equally high spectral amplitude at a single period (Baker 2005, Baker and 

Cornell 2006).  Spectral shape characteristics are especially important for structural collapse 

assessments because it is at high amplitudes that these differences are most significant..  

Therefore, when assessing the probability of collapse under high-amplitude motions, the choice 

of ground motions significantly impacts the collapse assessment.   

 To illustrate the distinctive spectral shape of rare ground motions, Figure 1 shows the 

acceleration spectrum of a Loma Prieta ground motion1 . This spectrum has a rare spectral 

intensity at 1.0 second of 0.9g, which has only 2% chance of exceedance in 50 years.  The figure 

also shows the mean expected spectrum predicted by Boore et al. (1997) attenuation prediction, 

consistent with the event magnitude, distance, and site characteristics associated with this ground 

motion.  Figure 1 shows that this extreme ground motion has a much different shape than the 

mean predicted spectrum.  In particular, the spectrum for this record has a “peak” from 

approximately 0.6 to 1.8 seconds and lower intensities (relative to the predicted spectrum) at 

other periods.  The intensity at 1.0 second, exceeded with 2% likelihood in 50 years, is in the 

peaked region of the spectrum and at this period the observed Sa(1s) = 0.9g is much higher than 

the mean expected Sa(1s) = 0.3g; at other periods away from the peak, spectral values are closer 

to the mean expected Sa.  This peaked shaped arises because ground motions that have an above 

average intensity do not necessarily have equally large intensities at other periods.  

 At a 1.0 second period, the spectral value of the Loma Prieta record is 1.9 standard 

deviations above the predicted mean spectral value from the attenuation relationship, so this 
                                                   

1 This motion is from the Saratoga station and is owned by the California Department of Mines and 
Geology and included in the PEER NGA database (PEER 2008).  For this illustration, this spectrum was 
scaled by a factor of +1.4.  This scaling is for illustration purposes only, and epsilons should be computed 
using unscaled spectra. 
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record is said to have “ε = 1.9 at 1.0 second.”  ε (epsilon) is defined as the number of logarithmic 

standard deviations between the observed spectral value and the mean Sa prediction from an 

ground motion prediction (“attenuation”) model.  Similarly, this record has ε = 1.1 at 1.8 seconds.  

Thus, the parameter ε is a function of the ground motion record, the ground motion prediction 

model to which it is compared, and the period of interest.   

 Just as ε is a function of period, the relationship between ε and spectral shape depends on 

the period being considered.  For example, a motion with ε(1s) = 2.0 would tend to have a peak 

near a period of one second, and a motion with ε(2s) = 2.0 would tend to have a peak near a 

period of two seconds.  Since ground motions are inherently random, this relationship between ε 

and the spectral shape (as shown in Figures 1 and 2) is not necessarily evident for individual 

ground motions, but is clearly seen (and statistically defensible) when examining average trends 

in large data sets of recorded ground motions (Baker and Jayaram 2008). 

 The “peaked” spectral shape of rare ground motions observed in Figure 1 is general to 

non-near-field sites in coastal California.  In particular, such sites typically exhibit values of ε 

between 1 and 2 for the motions with 2% in 50 year intensity levels.  These positive ε arise from 

the fact that the return period of the ground motion (i.e. 2475 years for a 2% in 50 year motion) is 

much longer than the return period of the earthquake that causes the ground motion (i.e. typical 

earthquake return periods that govern the high seismic hazard are 150-500 years in California).  

Accordingly, record selection for structural analyses at such sites should reflect the expectation of 

ε = 1 to 2 for 2% in 50 year motions.   

This paper focuses on consideration of spectral shape through the parameter ε, for 

purposes of collapse assessment through nonlinear dynamic analysis.  Prediction of structural 

collapse requires a set of ground motions, where the amplitude of each ground motion in the set is 

scaled to increasing intensity until it causes collapse. The collapse capacity of an individual 

ground motion record is denoted by the corresponding intensity, based on the spectral 

acceleration at the first-mode period of the building, Sa,col(T1).  The structure’s collapse capacity 

is then defined by the mean2 and dispersion of the collapse capacities of the individual records.  

Note that the proposed approach for scaling records and characterizing spectral shape through the 

ε parameter is based on the defining the ground motion intensities based on Sa(T1).   

As described later, previous research has shown that consideration of this peaked spectral 

shape significantly increases the computed collapse capacity of a structure relative to results 

                                                   
2 Strictly speaking, the “mean” used in this paper is the geometric mean (the exponential of the mean of the 
logarithms).  This is equal to the median of a lognormal distribution, so it is also sometimes referred to as 
the “median”.  This definition of “mean” is used throughout this paper. 
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obtained using motions without a peaked spectral shape.  For cases where these rare motions 

(those with ε values approaching 2.0) govern the performance assessment, such as when assessing 

collapse risk of modern buildings in seismic regions of California, properly accounting for this 

expected +ε is critical.   

The most direct approach to account for spectral shape in structural analysis is to select 

ground motions that have ε(T1) values that match the target ε(T1) obtained from hazard analysis 

for the intensity level of interest, measured at the fundamental period of the structure.  An 

alternative approach is to select and scale ground motions by an intensity measure other than 

Sa(T1), which accounts for spectral shape in either an implicit or explicit manner.  Possible 

intensity measures include inelastic spectral displacement (Tothong 2007) or Sa values averaged 

over a period range (Baker and Cornell 2006).  However, since the Sa(T1) intensity measure is 

widely used to describe the seismic hazard, the goal of this study is to develop an alternative 

approach to define and characterize the ground motions for analysis.  

The proposed approach is intended to (1) permit the use of a general ground motion set 

for structural analysis, selected independently of ε values, and (2) then correct the collapse 

capacity estimates to account for spectral shape. This adjustment is based on ε(T1), which  is 

computed for a given site and hazard level through dissagregation of the seismic hazard for the 

site.  Development of this proposed approach was motivated by related studies (FEMA 2008; 

Haselton and Deierlein 2007, chapters 6-7) that involved assessing the collapse safety of a large 

set of buildings with differing fundamental periods.  Owing to the large number of buildings and 

a desire to generalize the site characteristics in terms of the Seismic Design Categories, selecting 

unique ground motion sets for each of the buildings was not feasible.  

 This paper begins by discussing how spectral shape and ε are related, and then illustrates 

how spectral shape affects the calculated structural collapse capacity.  Next considered are the 

representative spectral shapes and ε values expected for various sites and hazard levels. A 

regression method is proposed to account for the effects of spectral shape on collapse by applying 

a correction factor to the mean collapse capacities obtained using a generic ground motion record 

set.   The regression method is then applied to 111 buildings for the purpose of developing a 

simplified method to adjust the collapse capacity through an ε correction factor.   
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PREVIOUS RESEARCH ON THE EPSILON PARAMETER AND SPECTRAL SHAPE EFFECTS ON 

COLLAPSE ASSESSMENT 

How Spectral Shape Relates to the Epsilon Values of Ground Motions 

Figure 1 showed the spectral shape of a single Loma Prieta ground motion record that is 

consistent with a 2% in 50 year intensity level at 1.0 second and has ε(1s) = 1.9.  This figure 

suggests that a positive ε value tends to be related to a peak in the acceleration spectrum around 

the period of interest.  Recent studies have verified the statistical robustness of this relationship 

between a positive ε and a peaked spectral shape using multiple ground motions.  To illustrate, 

Figure 2 compares the mean spectral shape of three ground motion sets3: (1) a set selected 

without regard to ε (General Far-Field Set, described in FEMA 2008), (2) a set selected to have 

ε(1s) = +2, and (3) a set selected to have ε(2s) = +2.  The General Far-Field Set is approximately 

epsilon-neutral. To facilitate comparison, these record sets are scaled such that the mean Sa(1s) 

for set (2) and Sa(2s) for set (3) are matched to the respective values of set (1).  Figure 2 shows 

that the spectral shapes are distinctly different when the records are selected with or without 

regard to ε.  When the records have positive ε values at a specified period, their spectra tend to 

have a peak at that period.  This shape is much different than a standard uniform hazard spectral 

shape.  Baker and Cornell (2006) have developed a statistically rigorous method to predict this 

expected spectral shape, which is termed the Conditional Mean Spectrum (CMS) because it is 

conditioned on a Sa value at a specified period. 

How Spectral Shape (Epsilon) Affects Collapse Capacity 

Selecting ground motions with peaked spectral shapes typical of rare ground motions, as 

represented by positive ε(T1) values, has been shown to significantly increase collapse capacity 

predictions (where capacity is defined in terms of Sa(T1)).  Conceptually, this difference in 

collapse capacity can be explained by comparing the spectral shapes of the Epsilon Neutral Set 

(1) and the Positive Epsilon Sets (2) or (3) shown in Figure 2.  For example, if a building period 

is 1.0 second and the ground motion records are scaled to a common value of Sa(1s), the spectral 

values of the Positive Epsilon Set (2) are smaller than those of the Epsilon Neutral Set (1) for 

Sa(T > 1s).  The spectral values at longer periods are significant since the effective period will 

elongate as the structure becomes damaged.  Similarly, the smaller spectral values for shorter 

                                                   
3 These ground motion sets contain 78 motions, 20 motions, and 20 motions, respectively.   
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periods (T < 1s) for the Positive Epsilon Set (2) are significant since they will impact the 

contribution of higher modes with T < T1.  

Four studies have documented the effect of epsilon on nonlinear collapse simulations. 

Baker and Cornell (2006) studied the effects of various ground motion properties on the collapse 

capacity of a seven-story non-ductile reinforced concrete (RC) frame building with a fundamental 

period (T1) of 0.8 seconds.  They found that the mean collapse capacity increased by a factor of 

1.7 when an ε(0.8s) = 2.0 ground motion set was used in place of a set selected without regard to 

epsilon (which has mean ε(0.8s) = 0.2). Goulet et al. (2006) studied the collapse safety of a 

modern four-story RC frame building with a period of T1 = 1.0 seconds, and compared the 

collapse capacities for a ground motion set with a mean ε(1.0s) = 1.4 and another set that had a 

mean ε(1.0s) = 0.4.  The set with ε(1.0s) = 1.4 resulted in a mean collapse capacity that was 1.3 to 

1.7 times larger than that of the ε(1.0s) = 0.4 set (where the range was associated with variations 

in building design and modeling attributes).  Haselton and Baker (2006) used a ductile, but 

degrading, single-degree-of-freedom oscillator, with a period of T1 = 1.0 seconds, to demonstrate 

that a ε(1.0s) = 2.0 ground motion set resulted in a 1.8 times larger mean collapse capacity as 

compared to using a ground motion set selected without regard to ε (which has mean ε(1.0s) = 

0.2).  Likewise, Zareian (2006) investigated the effects that ε has on the collapse capacities of 

generic frame and wall structures.  For a selected eight-story frame and eight-story wall building, 

he showed that a change from ε(T1) = 0.0 to ε(T1) = 1.5 results in a factor of 1.5 to 1.6 increase in 

mean collapse capacity. 

The ε parameter has also been considered for prediction of response from near-fault 

ground motions, but was found to not fully quantify the impact of forward-directivity velocity 

pulses on structural response (Baker and Cornell 2008).  The approach proposed in this paper 

should not be applied to near-fault motions with large forward-directivity velocity pulses. 

WHAT EPSILON VALUES TO EXPECT FOR A SPECIFIC SITE AND HAZARD LEVEL 

Illustration of Concept using a Characteristic Event 

To illustrate the relationship between expected ε, site, and hazard level, consider an idealized site 

where the ground motion hazard is dominated by a single characteristic event: 

- Characteristic event return period = 200 years 

- Characteristic event magnitude = 7.2 

- Closest distance to fault = 11.0 km 

- Site soil conditions – Vs_30 = 360 m/s 
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- Building fundamental period of interest = 1.0 second 

Figure 3 shows the predicted mean spectrum and spectra for mean +/- one and two standard 

deviations (i.e. +/- 1ε and +/- 2ε), given occurrence of the characteristic event.  The mean 

predicted ground motion is Sa(1s) = 0.40g using the Boore et al. (1997) attenuation model.  This 

figure also includes a superimposed lognormal distribution of Sa(1s), representing the predicted 

distribution of Sa(1s) values (with a  logarithmic standard deviation of 0.57) expected from an 

event with this magnitude, distance, etc.  The Sa(1s) values associated with less frequent ground 

motions (i.e. 2% in 50 years) are associated with the upper tail of the distribution of Sa(1s) for 

this event.   

In general, when the return period of the characteristic earthquake (e.g. 200 years) is 

much shorter than the return period of the ground motion of interest (e.g. 2475 years), then the 

ground motion of interest will have a positive ε.  This statement is easily illustrated for the 

idealized site. When a single characteristic event dominates the ground motion hazard, the mean 

return period (RP) of the ground motion Sa ≥ x is related to the characteristic event as follows: 

 ( )1 1 [ | ]
Sa x CharactersticEvent

P Sa x CharacteristicEvent
RP RP≥

⎛ ⎞
= ≥⎜ ⎟

⎝ ⎠
          (1) 

The return period for a 2% in 50 year motion, computed using the standard Poissonian 

occurrence assumption, is P(Sa>x in time t) = 1 – exp(-t / RPSa>x), where t= 50 years and P(Sa>x 

in time t) = 0.02.  This results in a return period, RPSa>Sa2/50, of 2475 years.  The return period of 

the characteristic event is 200 years.  From Equation 1 then, (1/2475years) = 

(1/200years)*(0.081).  This means that only 8% of motions that come from the characteristic 

earthquake are at least as large as the 2% in 50 year motion.  From basic probability, this 8% 

probability of exceedance corresponds to 1.43 standard deviations above the mean value, or ε(1s) 

= 1.43.  Note that a change in site soil conditions would impact the predicted spectral 

accelerations at the site due to a change in the attenuation prediction, but it would not change the 

ε value because the ratio of return periods of the ground motion of interest and the return period 

of the earthquake would be unchanged. The situation is more complicated for realistic sites with 

more earthquake sources, but in general the ε value associated with a design Sa level does not 

change significantly when the site conditions are varied. 

The expected ε value depends strongly on the return period of the ground motion of 

interest.  Figure 3 shows that a 10% in 50 year motion (return period of 475years) is associated 

with Sa(1s) = 0.46g and ε(1s) = 0.3.  For a much more frequent 50% in 5 year motion (return 

period of 7.2 years), Sa(1s) = 0.15g and ε(1s) = -1.7. For cases where rare motions drive the 
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performance assessment, such as with collapse assessment of modern buildings, it is likely that 

the ground motion will fall into the “positive ε” category.   

 Equation 1 also shows that the expected ε value depends on the return period of the 

characteristic event.  In coastal California, earthquake return periods of 200 years are common, 

but in the Eastern United States, large earthquake return periods are longer.  These longer return 

periods in the Eastern United States will cause the expected ε values for extreme (rare) ground 

motions to be smaller.  

Expected Epsilon Values from the United States Geological Survey 

Unlike the idealized site considered above, most locations have several causal earthquake sources 

that contribute significantly to ground motion hazard, as well as having more complex 

distributions of magnitude.  For the general case, expected ε values must be computed by 

disaggregating the results of seismic hazard analysis. 

 The United States Geological Survey (USGS) conducted seismic hazard analyses across 

the United States and used dissagregation to determine the mean ε ( 0ε ) values for various periods 

and hazard levels of interest (Harmsen et al., 2002; Harmsen 2001).  Figure 4 shows the 0ε  for a 

2% in 50 year Sa(1s) intensity for the Western United States, for site class B (rock sites). Values 

of 0ε (1s) = 0.50 to 1.25 are typical in most of the Western United States, except for the high 

seismic coastal regions of California, where the typical values are 0ε (1s) = 1.0 to 1.75 with peak 

values as high as 2.0.  As shown in Figure 5a, in the Eastern United States, typical values of 

0ε (1s) are 0.75 to 1.0, with some values reaching up to 1.25.  Expected 0ε (1s) values fall below 

0.75 for the New Madrid Fault Zone, portions of the eastern coast, most of Florida, southern 

Texas, and areas in the north-west portion of the map.  The effect of period is illustrated by 

comparing Figure 5a, 0ε (1s), to Figure 5b, for 0ε (0.2s), which shows that typical 0ε (0.2s) are 

slightly lower and more variable than 0ε (1s).   

To further quantify the expected 0ε  values in various regions of the United States, the 

numeric data used to create the above maps were examined. The data consists of expected 

0ε values for periods of 0.2 and 1.0 seconds at the centroid of each zip code in the United States.  

Table 1 summarizes the subsets of these data for seismic design categories B, C, and D, as 

defined in the International Building Code (ICC 2006).  For each of these seismic design 

categories (SDCs), the table provides average 0ε  values and spectral accelerations for four 
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ground motion hazard levels: 10%, 2%, 1%, and 0.5% in 50 years.  The number of zip codes in 

each SDC, which is a general measure of building inventories, is also listed. 

 Since the fault characteristics on the western coast of the United States vary from those in 

other parts of the country (e.g. the recurrence intervals of seismic events is shorter), Table 1 also 

shows the data for the SDC D sites in California and selected California cities.  On average, the 

0ε  values are consistently higher in California (as compared to other geographic locations of 

SDC D), and the 0ε  values for many of the highly populated California cities are often even 

higher than the California average.  For example, the 0ε (1s) values for the 2% in 50 year hazard 

in San Francisco is 1.5, as compared to the average value for SDC D of 0.99.  Values in Oakland, 

San Jose and Riverside are even higher, ranging between 1.65 and 1.95. 

Figure 4, Figure 5, and Table 1 illustrate the expected 0ε  values for site class B (rock 

sites).  These values should be generally applicable to other site conditions, provided that the 

variability of the ground motions is similar to that of site class B.  In cases where the variability in 

the ground motions differs from that of site class B (e.g. soft soil under very high levels of 

shaking), additional study is required to determine how the expected 0ε  values may vary from 

those for site class B. 

Target Epsilon Values  

The expected or target 0ε  value for building response assessment depends on the site and hazard 

level of interest.  Thus, the target ε should be determined based on the hazard level that 

corresponds to the building performance level being considered. For example, when computing 

the probability of collapse under a ground motion with a 2% frequency of exceedence in 50 years, 

P[Col|Sa = Sa2/50], the appropriate target hazard level is the 2% in 50 year intensity.  When 

computing the mean annual frequency of collapse (λcol), the appropriate target hazard level is 

more difficult to determine.  Ideally, one would increment the target 0ε  value for the various 

levels of Sa when integrating over the hazard curve.  Alternatively, as an approximate approach, 

one could use the target hazard level that most significantly influences λcol, which will be a 

function of both the site and the collapse capacity of the structure.  Haselton and Deierlein (2007, 

chapter 5) looked at this question for two example four-story RC frame buildings at a site in Los 

Angeles and, for those buildings and site, the ground motion intensity level at 60% of the mean 

collapse capacity was the most dominant contributor to the calculation of λcol. In their example, 
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this corresponded to motions that have roughly 1.5x the spectral acceleration of a 2% in 50 year 

ground motion with corresponding characteristic ε values typically being larger than two. 

APPROACHES TO ACCOUNT FOR EPSILON IN COLLAPSE ASSESSMENT 

Two alternative methods of accounting for ε are illustrated by application to the collapse 

assessment of an eight-story reinforced concrete (RC) frame model.  This design and model was 

developed by the authors in a related study (Haselton and Deierlein 2007, ID 1011 in chapter 6), 

and consists of a three-bay special moment resisting perimeter frame (SMF) with 6.1 meter (20 

foot) bay widths, a tributary seismic mass floor area of 669 square meters (7,200 square feet), and 

a fundamental period (T1) of 1.71 seconds.  Haselton and Deierlein (2007) provide more details 

regarding the nonlinear structural modeling and the methodology used for predicting collapse. 

The site used for this example is in northern Los Angeles, is typical of the non near-field regions 

of coastal California (see Goulet et al. 2006), and has NEHRP Category D soil.  The primary 

purpose is to compute the conditional collapse probability for a 2% in 50 year ground motion 

(which is Sa(1.71s) = 0.57g), and hazard disaggregation provides a target epsilon of ε = 1.7 for 

this level of ground motion.   

Method One: Ground Motion Set Selected with the Target Epsilon  

One method to account for ε is to select ground motions with ε values that are consistent with 

those expected for the site and hazard level of interest.  For the assumed site in this example, we 

selected4 a Positive ε Ground Motion Set to include 20 ground motions that have a mean ε(T1) = 

1.7 (where T1 = 1.71 seconds); each individual record has ε(T1) > 1.25.  In addition, we imposed 

additional selection criteria such as minimum earthquake magnitude and site class.  Haselton and 

Deierlein (2007, chapter 3) document the motions included in this ground motion set and provide 

the complete list of selection criteria.   

 Figure 6 shows the resulting collapse capacity distribution predicted by subjecting the 

eight-story RC SMF to the 20 ground motions of the Positive ε Set.  The collapse capacity for a 

single ground motion record is defined as the minimum Sa(T1) value that causes the building to 

become dynamically unstable, as evidenced by excessive drifts.  This figure shows both the 

individual collapse capacities of the 20 records and a fitted lognormal distribution. The mean 

collapse capacity is Sa,col(T1) = 1.15g, and the standard deviation of the logarithm of collapse 

                                                   
4 When selecting records, we used the ε(T1) values computed using the Abrahamson and Silva ground 
motion prediction equation (1997).   
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capacities (denoted σLN(Sa,col)) is 0.28. This dispersion, termed record-to-record variability, is 

associated with variation in ground motion properties other than Sa(T1). For the 2% in 50 year 

Sa(T1)=0.57g, the conditional probability of collapse is quite low, equal to 0.5%. 

Method Two: General Ground Motion Set with Adjustments for Epsilon  

Motivation and Overview of Method 

Method One may not be feasible or practical in all situations, as it requires selecting a specific 

ground motion set for a specified period (T1) at a specified site with a target ε.  For example, 

related work in the Applied Technology Council 63 Project (FEMA 2008) involves collapse 

assessment of approximately 100 buildings, with differing fundamental periods, for generic 

Seismic Design Categories.   In such a study, selecting a specific ground motion set for each 

building is not practical; nor is it desirable since the goal of that project is to generalize the 

collapse assessment results across Seismic Design Categories. 

 Method Two uses a general ground motion set, selected without regard to ε values, and 

then corrects the calculated structural response distribution to account for the 0ε  expected for the 

specific site and hazard level.  The method could be applied to all types of structural responses 

(interstory drifts, plastic rotations, etc.), but this study focuses on prediction of collapse capacity.  

The method is outlined as follows: 

1) Select a general far-field ground motion set without regard to the ε values of the motions 

(termed the General Set).  This set should have a large number of motions to provide a 

statistically significant sample and ensure that the regression analysis in step (3) is 

accurate.  

2) Calculate the collapse capacity by nonlinear dynamic analyses, using the Incremental 

Dynamic Analysis (Vamvatsikos and Cornell 2002) method to scale records and organize 

the results in a cumulative distribution that is characterized by the mean and record-to-

record dispersion of collapse capacity. 

3) Perform linear regression analysis between the collapse capacity of each record, 

LN[Sa,col(T1)], and the ε(T1) of the record.  This establishes the relationship between the 

mean LN[Sa,col(T1)] and the ε(T1) value.   

4) Adjust the collapse capacity distribution, using the regression relationship, to be 

consistent with the target ε(T1) for the site and hazard level of interest.   
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General Far-Field Ground Motion Set and Comparison to Positive ε Set 

The General Ground Motion Set used in this study consists of 78 strong far-field motions that 

were selected without consideration of their ε values.  Haselton and Deierlein (2007, chapter 3) 

document these motions and provide the complete list of selection criteria.  A subset of 44 of 

these ground motions is also used in Applied Technology Council 63 Project (FEMA 2008) as 

part of a procedure to validate seismic provisions for structural design.  The expanded set of 78 

records was used to achieve more accurate regression trends between collapse capacity and the ε 

values, but fewer may suffice. Figure 7 compares the mean response spectra of the General 

Record Set to the Positive ε Ground Motion Record Set used in Method One.  For comparison, 

both sets have been scaled so that each ground motion has the same Sa(T1)=0.57g at T = 1.71 

seconds. The peaked shape of Positive ε Set, relative to the General Set, is evident.   

Application of Method Two to Assess Collapse of Eight-Story RC SMF Building 

When subjected to General Set, the eight-story RC SMF building (T1 = 1.71s) has a mean 

collapse capacity (
1, ( )Sa col Tμ ) of 0.72g and a dispersion in capacity of σLN(Sa,col) = 0.45.  The 2% in 

50 year intensity for this site is Sa(1.71s) = 0.57g, so the probability of collapse for this level of 

motion is 29%.  Recall that the probability of collapse under the 2% in 50 year motion when 

analyzed using the Positive ε Set was only 0.5%. Under Method Two the collapse capacity 

prediction from the General Set still needs to be adjusted to be consistent with the target ε(T1).   

Shown in Figure 8 is a plot of the collapse capacity, LN[Sa,col(T1)], versus the 

corresponding ε(T1) values for each record.  Also shown is a linear regression (Chatterjee et al. 

2000) between LN[Sa,col(T1)] and ε(T1), which follows an approach previously proposed by 

Zareian (2006). The relationship between the mean of LN[Sa,col(T1)] and ε(T1) can be described 

as: 

1[ , ( )] 0 1 1' ( )LN Sa col T Tμ β β ε= + i        (2) 

where β0 = -0.356 and β1 = 0.311 in this example. Note that β1 represents the slope between ε and 

collapse capacity, such that larger values of β1 indicate a greater significance of ε in prediction of 

collapse capacity.   

To adjust the mean collapse capacity for the target ε(T1) = 1.7, Equation 2 can be 

evaluated for the target 0ε (T1), resulting in the following adjusted mean of LN[Sa,col(T1)]:  

( ) [ ][ , (1.71 )] 0 1 0 1' 0.356 0.311 1.7 0.173LN Sa col s Tμ β β ε= + = − + =⎡ ⎤⎣ ⎦i i    (3) 

The adjusted mean collapse capacity is now computed by taking the exponential of Equation 3, 
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[ ]( ) ( )
1 1, ( ) , ( )' exp ' exp 0.173 1.19Sa col T LN Sa col TMean gμ= = =    (4) 

The ratio of adjusted to original mean collapse capacity, is calculated as, 

 
( )
( )

1

1

[ , ( )]

[ , ( )]

exp ' 1.19 1.65
0.72exp

LN Sa col T

LN Sa col T

gRatio
g

μ

μ
= = =      (5) 

where 
1[ , ( )]LN Sa col Tμ  is computed directly from the collapse simulation results using the General 

Set of ground motions and [ ]1, ( )'LN Sa col Tμ  is the value adjusted by the regression analysis for the 

target 0ε (T1) value. The calculated increase in mean collapse capacity from 0.72g to 1.19g (a ratio 

of 1.65) has a significant impact on collapse performance assessment. 

 The dispersion in collapse capacity computed directly from the records is σLN(Sa,col(T1)) = 

0.45, but this is also reduced by the adjustment to the target 0ε (T1).  This reduced conditional 

standard deviation can be computed as follows (Benjamin and Cornell, 1970; equation 2.4.82): 

 ( ) ( ) ( )
1 1

2 2 2
LN(Sa,col(T )) LN(Sa,col(T )),reg 1' εσ σ β σ= +     (6) 

where the σLN(Sa,col(T1)),reg = 0.36 is computed from the residuals of the regression analysis shown 

in Figure 8, and σε is the standard deviation of the ε(T1) values from dissagregation for a site and 

hazard level.  For the example site used in this study, σε is estimated to be 0.35 for the 2% in 50 

year intensity of ground motion.  Equation 7 computes the reduced standard deviation, showing 

that the original record-to-record dispersion in collapse capacity (i.e. σLN(Sa,col(T1)),reg) is more 

dominant than the effects of dispersion in the expected ε value (i.e. 2 2
1 εβ σ ).   

( ) ( ) ( )
1

2 2 2
LN(Sa,col(T )) ' 0.36 0.31 0.35 0.38σ = + =      (7) 

This reduced dispersion is 15% lower than the dispersion in collapse capacity computed directly 

from the records, which was σLN(Sa,col(T1)) = 0.45. Relative to the increase in mean collapse 

capacity described above, this decrease in dispersion (from 0.45 to 0.38) has only a moderate 

impact collapse performance assessment, which is most apparent near the tails of the collapse 

capacity distribution. 

Comparison of the Two Methods 

Figure 9 overlays the predicted collapse capacity distributions obtained from Methods One and 

Two for the 8-story RC frame.  The plot also includes the collapse predictions of Method Two 

before the adjustment for ε. Figure 10 is similar to Figure 8, but for comparison, Figure 10 
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includes the data for Positive ε Set of ground motions.  Together, Figure 9, Figure 10, and Table 

2 show that the two methods produce nearly the same results, with the predictions of mean 

collapse capacity differing by only 4%.  The dispersion in collapse capacity (σLN(Sa,col)) differs 

from 0.28 for Method One to 0.38 for Method Two.  From the authors’ past experience, it is not 

expected that such a large observed difference occurs in general, and the large difference in 

dispersion could be due to the smaller number of ground motions in the Positive ε Set for Method 

One.  From Figure 9, the probabilities of collapse associated with the 2% in 50 year motion are 

similar (0.5% and 2.4%), and when the collapse CDF is integrated with the site hazard curve for 

the example site, the mean annual rates of collapse (λcol) differ only by a factor of 2.  These 

differences are negligible when compared to a factor of 23 in over-prediction of λcol that results 

from not accounting for the proper ε.  In addition, data from Haselton and Deierlein (2007, 

Chapter 6) show that even minor differences in the structural design can cause the λcol prediction 

to change by a factor of 1.5 to 2.2, which is similar to the difference in results from the two 

methods being compared here. 

SIMPLIFIED METHOD TO ACCOUNT FOR EFFECTS OF EPSILON 

Motivation and Overview 

The previous section showed that we can obtain roughly the same collapse capacity predictions 

by either (a) selecting records with appropriate ε values (Method One) or (b) using general 

ground motions and then applying a correction factors to account for appropriate ε (Method 

Two).  Method Two is useful because it can account for the target ε without needing to select a 

unique ground motion set for each building period and site.  However, as presented above, 

Method Two requires significant effort to compute ε(T1) values for each ground motion record 

and then a regression analysis to relate Sa,col(T1) to ε(T1). To provide a more practical method for 

adjusting the collapse capacity, a simplified version of Method Two is proposed for determining 

the appropriate adjustment factors the collapse capacity distribution without requiring 

computation of ε(T1) values for each record and the regression analysis.  Instead, this simplified 

method uses an empirical equation to estimate β1 (from Equation 2 above) and an approximate 

value of σLN(Sa,col(T1)) to correct the collapse capacity distribution. 

Building Case Studies to Develop the Simplified Method for ε Adjustment 

To develop a simplified adjustment approach, the complete Method Two was applied to three sets 

of RC frame buildings (for a total of 111 buildings), including: 
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• 65 modern RC SMF buildings ranging in height from 1 to 20 stories.  Thirty of these 

buildings are code-conforming buildings representative of current design (ASCE 7-02 

and ACI 318-02) in high seismic regions of California (Haselton and Deierlein 2007, 

chapter 6).  The other thirty-five RC SMF buildings (4- and 12-story) are designed 

according to revised structural design requirements, including variations to design 

strength requirements, interstory drifts, and strong column-weak beam ratio (Haselton 

and Deierlein 2007, chapter 7).   

• 20 code-conforming ordinary moment frame (OMF) buildings ranging from 2-12 stories, 

which are representative of buildings in the eastern United States. These designs were 

developed as part of the Applied Technology Council 63 Project (FEMA 2008). 

• 26 non-ductile RC frame buildings, which are representative of existing 1967-era 

buildings, ranging from 2-12 stories, in high seismic regions of California (Liel, 2008). 

Collapse analysis was conducted for each building and regression analysis applied to 

LN[Sa,col(T1)] versus ε(T1) to determine the factor β1 (as defined in Equation 2).  A selected subset 

of these values is presented in Table 3. The mean β1 value for the 65 RC SMF buildings is 

β1=0.28. This value is exceptionally stable, with a coefficient of variation value of only 0.14 over 

the wide variety of buildings of varying heights and design.  This stability of the β1 values 

indicates that the influence of ε (spectral shape) on collapse capacity is fairly consistent between 

buildings with similar levels of inelastic deformation capacity.  The mean value for the 20 RC 

OMF buildings is β1=0.19, which is 40% lower than the more ductile SMF buildings, and the 

mean value for the 1967-era buildings was β1=0.18, which is quite similar the RC OMF frames.  

These lower β1 values indicate that ε has less influence on the collapse capacities of these RC 

OMF and 1967-era RC frame buildings, which have less inelastic deformation capacity as 

compared with the RC SMF buildings. Building deformation capacities, as quantified by the 

ultimate roof drift ratio, are also reported in Table 3.  Note that RDRult is the roof drift ratio at 

20% strength loss, as predicted using static pushover analysis (e.g. RDRult = 0.047 for the 

pushover shown in Figure 13).  Table 3 shows generally that buildings with larger deformation 

capacity (RDRult) have higher values of β1.   

Developing Components of the Simplified Method 

Prediction of β1 

The significance of ε, as reflected in the β1 parameter, is larger for buildings with higher 

deformation capacity because ductile buildings soften (and thus their effective period increases) 
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prior to collapse, which makes the spectral shape (specifically spectral values at T>T1) more 

important to the structural response.  The trend between β1 and RDRult is illustrated in Figure 11a 

for four sets of RC SMF buildings, each set with the same height.  These data show a trend for 

deformation capacities up to RDRult = 0.04, and suggest that deformation capacity in excess of 

this (i.e. RDRult > 0.04) does not influence β1. 

β1 also tends to be larger for taller buildings, because of the significance of higher mode 

effects on the dynamic response of tall buildings, thereby making the spectral shape for periods 

less than T1 an important consideration.  To investigate the impact of building height, separate 

from deformation capacity, Figure 11b compares the β1 values for six pairs of 4- and 12-story RC 

SMF buildings that have the same RDRult values.  These data show a clear trend between β1 and 

building height, for 5 of the 6 sets of buildings considered.  

To create the predictive equation for β1, standard linear regression analysis was used to 

relate calculate LN(β1) as a function of RDRult and building height, based on the data from all 111 

buildings (Chatterjee et al 2000).  We then applied judgmental corrections to better replicate the 

trends with deformation capacity and building height (see Figure 11).  These corrections were 

required because of the limited number of data points available to reflect the separate trends of 

height and building deformation capacity. The functional form of Equation 8 captures the nearly 

linear effects of height and the nonlinear effects of RDR*
ult for buildings with lower deformation 

capacity. The resulting equation for β1 is as follows,   

( )( ) ( )0.35 0.38
1̂ 0.4 5 *ultN RDRβ = +       (8) 

where N is the number of stories (limited to N ≤ 20 based on available data); and RDRult is the 

roof drift ratio at 20% base shear strength loss from static pushover analysis (RDR*
ult = 

min(RDRult, 0.04), based on the observation from Figure 11a that the trend saturates at a value of 

0.04).  It is noted that application of static pushover analysis to taller buildings is limited because 

of the important impact of higher modes, but it is utilized here to approximate the building 

deformation capacity.    

 The effects of height and deformation capacity tend to counteract one another, which is 

why β1 is fairly consistent for the set of 30 code-conforming RC frame buildings varying from 1-

story to 20-stories.  In Figure 12, the ratio of observed β1 to predicted β1 from Equation 8 is 

plotted against the building deformation capacity and the number of stories, showing that 

Equation 8 provides reasonable predictions for most of the 111 buildings used in this study.  

However, β1 is significantly under-predicted (i.e. conservative) for three of the 1-story buildings, 

but is accurate for the fourth 1-story building.  It would be useful to extend this study to include a 

larger number of short period buildings to further validate the proposed relationship. 
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Prediction of σ’LN(Sa,col(T1)) 

The data in Table 3 show that accounting for ε reduces the dispersion in collapse capacity.  This 

reduction in dispersion is reduced by about 10-15% for ductile RC SMF buildings and 5% for 

non-ductile buildings.  For simplicity, it is proposed to ignore this effect and to compute the 

dispersion directly from the set of General Set of records, i.e., to assume that 

1 1( , ( )) ( , ( ))'LN Sa col T LN Sa col Tσ σ≈        (9) 

Proposed Simplified Method 

The section summarizes the proposed Simplified Method for adjusting collapse capacity to reflect 

appropriate spectral shape with illustration for a 4-story RC SMF space frame.   

Step 1.  Build a structural model that is robust and able to simulate structural collapse.  

Calculate the building period and perform a static pushover analysis (with a reasonable load 

pattern) to determine the roof drift ratio at 20% lateral strength loss (RDRult).  For this example 4-

story RC SMF building, T1 = 0.94 seconds.  The static pushover analysis was based on the lateral 

load pattern recommended by ASCE 7-05 (ASCE 2005), resulting in the pushover curve shown 

in Figure 13 where RDRult = 0.047. 

Step 2.  Perform nonlinear dynamic analyses to predict collapse capacity using the 

FEMA P695 (FEMA 2008) far-field set of 44 records5.  Compute the natural logarithm of the 

collapse capacity for each record, and then compute the mean and standard deviation of these 

values for all records (i.e. [ , ( 1)]LN Sa col Tμ  and [ , ( 1)]LN Sa col Tσ ).  For the example 4-story RC SMF 

building, the results of the nonlinear dynamic collapse analyses are shown as follows.   

[ , ( 1)] [ , (0.94 )] 0.601LN Sa col T LN Sa col sμ μ= =       (10) 

[ , ( 1)] [ , (0.94 )] 0.40LN Sa col T LN Sa col sσ σ= =       (11) 

The mean collapse capacity can be computed from the logarithmic mean as follows: 

 ( )[ , (0.94 )] [ , (0.94 )]exp 1.82Sa col s LN Sa col sMean gμ= =     (12) 

Step 3.  Estimate β1 using Equation 8.  For the 4-story RC SMF example:  

( )( ) ( )0.380.35 *
1̂ 0.4 5 ultN RDRβ = +       (13) 

                                                   
5 Alternatively, one could use the larger General Set of 78 records.  However, our analyses have shown that 
the two sets result in about the same mean and dispersion of collapse capacity.  The reason for using the 
larger set in this paper was to better predict the regression line between LN(Sa,col(T1)) and ε(T1); this 
additional information is not required in the simplified method. 
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* 0.04ultRDR =          (14) 

( )( ) ( )0.35 0.38
1̂ 0.4 4 5 0.04 0.254β = + =      (15) 

Step 4.  Determine the target mean ε value ( 1 ,target(T )ε ) for the site and hazard level of 

interest.  For illustration the 4-story RC SMF, we assume that the target is ( 1 ,target(T )ε ) = 1.9, 

which is similar to an expected ε value of a 2% in 50 year ground motion level in Riverside 

California (see Table 1). 

Step 5.  Adjust for the difference between the target ε value and the ε values of the 

ground motions used in the collapse simulation.  To do this, the mean ε value from the General 

Set of records ( 1 ,records(T )ε ) is required.  Shown in Figure 14 is a plot of mean ε values for the 

General Set of records.  From this figure one can read the value of 1 ,records(T )ε .  For the example 

building, T1 = 0.94 seconds and the collapse simulation is based on the 78 General Record set, so 

1 ,records(T )ε  = 0.17.  In general, any set of ground motions could be used, provided that 

1 ,records(T )ε  is known. 

Step 6.  Compute the adjusted mean collapse capacity.  This adjusted capacity accounts 

for the difference between the mean ε of the General Set of records ( 1 ,records(T )ε ) and the target ε 

values that comes from dissagregation ( 0 1(T )ε ).  The following equations illustrate this 

calculation for the example 4-story RC SMF:   

( )[ , ( 1)] [ , ( 1)] 1 0 1 1 ,records
ˆ' (T ) (T )LN Sa col T LN Sa col Tμ μ β ε ε= + −     (16) 

( )[ , (0.94 )]' 0.601 0.254 1.9 0.17 1.040LN Sa col sμ = + − =     (17) 

( ) ( ), (0.94 ) [ , (0.94 )]' exp ' exp 1.040 2.83Sa col s LN Sa col sMean gμ= = =    (18) 

As additional information, the ratio of the adjusted to unadjusted mean collapse capacity can also 

be computed using Equations 12 and 18, as follows: 

1

1

, ( ) , (0.94 )

[ , ( )] [ , (0.94 )]

' ' 2.83 1.55
1.82

Sa col T Sa col s

Sa col T Sa col s

Mean Mean gRatio
Mean Mean g

= = = =    (19) 

Step 7.  Compute the dispersion in collapse capacity using Equation 10.  In this step, we 

propose to simply use the value computed directly from the nonlinear dynamic analyses, where,   

1 1( , ( )) ( , ( )' 0.40LN Sa col T LN Sa col Tσ σ≈ =       (20) 
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Comparison Between Simplified and Full Method Two 

For comparison, applying Method Two to this same building (based on data for this building from 

Haselton and Deierlein 2007, chapter 3) would result in very similar results to the Simplified 

Method.  The full regression analysis results yield β1 = 0.257, which agrees very well with the 

simplified value of 1̂β  = 0.254.  The corresponding mean collapse capacity from the full Method 

Two is 2.63g as compared to the simplified value of 2.83g.  This difference of about 8% is 

reasonable for most applications, particularly in contrast to the alternative of neglecting the 

spectral shape effects. The calculated dispersion from the full Method Two is
1( , ( ))'LN Sa col Tσ  = 

0.35, which is about 10% lower than the slightly conservative value of 0.40 used in the simplified 

method. The conditional probability of collapse for the 2% in 50 year ground motion level 

(Sa(0.94s) = 0.87g) is effectively zero in both cases (0.2% and 0.1%). 

SUMMARY, LIMITATIONS, AND FUTURE WORK 

Consideration of spectral shape is critical in selection and scaling of ground motions for use in 

collapse assessment by nonlinear dynamic analysis.  As proposed herein, the spectral shape 

characteristics can be included in collapse assessment through consideration of the parameter ε, 

which is a measure of how ground motion acceleration spectra vary from the mean predictions 

provided by ground motion attenuation relationships.  For an example 8-story RC SMF building, 

accounting for the ε adjustment increased the mean collapse capacity by a factor of 1.6, decreased 

the conditional probability of collapse for the 2% in 50 year ground motion, P[C|Sa2/50], from 

29% to 0.5%, and decreased the mean annual frequency of collapse by a factor of 23. 

 The most direct approach to account for the ε-effect in collapse assessment is to select 

ground motions whose ε(T1) values match those of the building site, collapse Sa intensity, and 

structural period of interest.  However, this approach is often impractical and sometimes 

infeasible when assessing the collapse performance of buildings with varying vibration periods at 

multiple sites and under varying ground motion intensities.  An alternative simplified approach is 

proposed that applies an adjustment to the collapse capacity, based on the target ε(T1), which 

eliminates the necessity of considering ε(T1) in selection of the ground motion records.  Two 

variants of the ε-adjustment method are proposed, one of which is a simplified version of the 

other. 

 To develop and validate the proposed ε-adjustment method, the collapse capacities of 

three sets of RC frame buildings were investigated including (a) 65 modern RC ductile special 

moment frames, (b) 26 non-ductile 1967-era RC frames, and (c) 20 RC limited-ductility ordinary 



 

Page 20 of 33 

moment frames.  These 111 buildings range in height from 1 to 20 stories with fundamental 

vibration periods ranging from 0.4 to 4.4 seconds (with most periods being less than 3.0 seconds).  

We simulated the collapse capacity of each building for 78 ground motion records, and then used 

regression analysis to find the relationship between the collapse intensity, Sa,col(T1), and the 

corresponding ε(T1) for each building and ground motion.  The resulting collapse capacities 

calculated through this regression technique (called Method Two in this paper) are shown to 

agree well with the results obtained by using a ground motion set selected to have the target ε.   

A simplified version of Method Two is developed, in which a semi-empirical equation 

(Equation 8) is used to calculate the ε(T1) collapse adjustment factor in lieu of conducting 

regression analyses.  This equation is developed based on generalized regression analyses 

conducted using data from the collapse capacities of the 111 case study buildings. The resulting 

semi-empirical equation (Equation 8) reflects variations in building height and deformation 

capacity, the latter of which is determined using a pushover analysis.  The proposed Simplified 

Method allows the analyst to use a general ground motion set, selected without regard to ε, to 

calculate an unadjusted building collapse capacity by using nonlinear dynamic analysis, and then 

to correct this capacity using an adjustment factor to reflect the expected ε(T1) for the building 

site and collapse hazard intensity, Sa,col(T1).  The general set of far-field strong ground motions 

from the FEMA P695 (FEMA 2008) are suggested for applying this simplified procedure.   

 Whereas the full Method Two is general in its applicability, the simplified version of the 

method should only be utilized for structures and ground motions similar to those to which it was 

developed and calibrated.  In terms of structural type, the development was limited to moment 

frame buildings, ranging in height from 1-20 stories and ranging in periods from 0.4 to 3.0 

seconds.  The ground motions and target ε values used in the study are generally representative of 

Site Classes B, C, and D, with a focus on ε values in the range of ε = 0 to +2.0.  The simplified 

Method Two should not be used for other site classes (particularly soft soil sites) or for sites with 

target ε values outside of the noted range without appropriate ground motion selection and 

recalibration of the adjustment factor for these conditions. 

 An implicit assumption of the proposed techniques is that the spectral acceleration at the 

fundamental period of the building, Sa(T1), is used to scale the ground motions and quantify the 

collapse intensity.  This assumption is fundamental to the definition of the ε adjustment factor. 

For tall or irregular buildings, there may be multiple dominant periods of response, the effects of 

which warrant further study.  For example, if three periods dominate the structural response of a 

tall building, perhaps the collapse assessment could be completed once for each of the three 

periods, and the controlling case could be used. 
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 This work is currently being adapted for use in the ATC Project 63 (FEMA 2008), which 

is aimed at providing codified guidelines and procedures for the collapse capacity prediction of 

buildings.  The goal of the ATC project is to use the codified collapse prediction procedures to 

determine the appropriate prescriptive design requirements (e.g. the R factor) for newly proposed 

structural systems. 

 This research could also be extended to look more closely at impacts of spectral shape (ε) 

on the collapse behavior of short period buildings.  Additionally, this method was developed with 

the primary goal of generalized collapse assessment to evaluate the relative safety among groups 

of buildings located on comparable sites. Further work would be useful to extend this method for 

case-specific collapse analysis of specific buildings at particular sites. This extension may involve 

selection of records to match the target spectral shape directly (Baker and Cornell 2006), 

including factors such as site class, which may significantly alter the shape.  

ACKNOWLEDGEMENTS 

This research was supported primarily by the Earthquake Engineering Research Centers Program 

of the National Science Foundation, under award number EEC-9701568 through the Pacific 

Earthquake Engineering Research Center (PEER). The research findings were also supported by 

related studies conducted for the ATC 63 Project, supported by the Federal Emergency 

Management Agency.  Any opinions, findings, and conclusions or recommendations expressed in 

this material are those of the authors and do not necessarily reflect those of the National Science 

Foundation or the Federal Emergency Management Agency. 

 The authors would also acknowledge the contributions of (1) Nico Luco, Stephen 

Harmsen, and Arthur Frankel of the United States Geological Survey (USGS) who provided 

mean 0ε  data used in this research, (2) the suggestions and advice of Dr. Charlie Kircher and 

other members of the ATC 63 project, and (3) the assistance of Jason Chou and Brian Dean in 

conducting the structural collapse analyses used in this study.   

REFERENCES 

Abrahamson N.A. and W.J. Silva (1997).  Empirical response spectral attenuation relations for shallow 

crustal earthquake, Seismological Research Letters, 68 (1), 94-126. 

Baker, J.W. and N. Jayaram (2008). Correlation of spectral acceleration values from NGA ground motion 

models, Earthquake Spectra, 24 (1), 299-317. 

Baker, J.W. and C.A. Cornell (2008). Vector-valued intensity measures for pulse-like near-fault ground 

motions, Engineering Structures, 30 (4), 1048-1057. 



 

Page 22 of 33 

Baker, J.W. and C.A. Cornell (2006). “Spectral shape, epsilon and record selection”, Earthquake Engr. & 

Structural Dynamics, 34 (10), 1193-1217. 

Baker, J.W. (2005). Vector-Valued Ground Motion Intensity Measures for Probabilistic Seismic Demand 

Analysis, Ph.D. Dissertation, Department of Civil and Environmental Engineering, Stanford 

University. 

Bazzurro, P. and C.A. Cornell (1999) “Disaggregation of Seismic Hazard,” Bull. Seism. Soc. Am., Vol. 89, 

no. 2, 501-520. 

Benjamin, J.R. and C.A. Cornell (1970).  Probability, statistics, and decision for civil engineers, McGraw-

Hill, New York, 684 pp. 

Boore, D.M., W.B. Joyner and T.E. Fumal (1997).  Equations for estimating horizontal response spectra 

and peak accelerations from western North America earthquakes: A summary of recent work, 

Seismological Research Letters, 68 (1), 128-153. 

Chatterjee, S., A.S. Hadi and B. Price (2000).  Regression Analysis by Example, Third Edition, John Wiley 

and Sons Inc., New York, ISBN: 0-471-31946-5. 

Goulet, C., C.B. Haselton, J. Mitrani-Reiser, J. Beck, G.G. Deierlein, K.A. Porter, and J. Stewart (2007).  

“Evaluation of the Seismic Performance of a Code-Conforming Reinforced-Concrete Frame Building - 

from seismic hazard to collapse Safety and Economic Losses”, Earthquake Engineering and Structural 

Dynamics. 

Federal Emergency Management Agency (FEMA) (2008). ATC-63 Project 90% Draft Report - FEMA 

P695 Recommended Methodology for Quantification of Building System Performance and Response 

Parameters, Prepared by the Applied Technology Council, Redwood City, CA. 

Harmsen, S.C., A.D. Frankel and M.D. Petersen (2002).  “Deaggregation of U.S. Seismic Hazard: The 

2002 Update”, U.S. Geological Survey Open-File Report 03-440, http://pubs.usgs.gov/of/2003/ofr-03-

440/ofr-03-440.html (last accessed September 12, 2006). 

Harmsen, S.C. (2001).  “Mean and Modal ε in the Deaggregation of Probabilistic Ground Motion”, Bulletin 

of the Seismological Society of America, 91, 6, pp. 1537-1552, December 2001. 

Haselton, C.B. and G.G. Deierlein (2007).  Assessing Seismic Collapse Safety of Modern Reinforced 

Concrete Frame, PEER Report 2007/08, Pacific Engineering Research Center, University of 

California, Berkeley, California. 

Haselton, C.B., J. Mitrani-Reiser, C. Goulet, G.G. Deierlein, J. Beck, K.A. Porter, J. Stewart, and E. 

Taciroglu  (2008).  An Assessment to Benchmark the Seismic Performance of a Code-Conforming 

Reinforced-Concrete Moment-Frame Building, PEER Report 2007/12, Pacific Engineering Research 

Center, University of California, Berkeley, California. 

Haselton, C.B. and J.W. Baker (2006), “Ground motion intensity measures for collapse capacity prediction: 

Choice of optimal spectral period and effect of spectral shape”, 8th National Conference on 

Earthquake Engineering, San Francisco, California, April 18-22, 2006. 

International Code Council. (2003). 2003 International Building Code, Falls Church, VA. 



 

Page 23 of 33 

Liel, A. B. (2008). Assessing the Collapse Risk of California’s Existing Reinforced Concrete Frame 

Structures: Metrics for Seismic Safety Decisions, Ph.D. Dissertation, Stanford University.  

McGuire, R.K. (1995).  “Probabilistic seismic hazard analysis and design earthquakes: closing the loop”, 

Bulletin of the Seismological Society of America, 85, pp. 1275-1284. 

PEER (2008). Pacific Earthquake Engineering Research Center: PEER NGA Database, University of 

California, Berkeley, http://peer.berkeley.edu/nga/ (last accessed July 2008). 

Tothong, P. (2007). Probabilistic Seismic Demand Analysis using Advanced Ground Motion Intensity 

Measures, Attenuation Relationships, and Near-Fault Effects, PhD Dissertation, Department of Civil 

and Environmental Engineering, Stanford University. 

Vamvatsikos, D. and C.A. Cornell (2002).  “Incremental Dynamic Analysis,” Earthquake Engineering and 

Structural Dynamics, Vol. 31, Issue 3, pp. 491-514. 

Zareian, F. (2006). Simplified Performance-Based Earthquake Engineering, PhD Dissertation, Department 

of Civil and Environmental Engineering, Stanford University. 

 



 

Page 24 of 33 

TABLES 

 
Table 1. Mean predicted 0ε  values for periods of 0.2 and 1.0 seconds, 

sorted by seismic design category, with additional detail given for 
California sites and selected California cities. 

ε10/50 ε2/50 ε1/50 ε0.5/50 ε10/50 ε2/50 ε1/50 ε0.5/50 Sa10/50 Sa2/50 Sa1/50 Sa0.5/50 Sa10/50 Sa2/50 Sa1/50 Sa0.5/50

SDC B 0.14 0.42 0.49 0.55 0.31 0.80 0.94 1.04 0.06 0.18 0.26 0.39 0.02 0.06 0.08 0.11 20,142

SDC C 0.11 0.51 0.63 0.75 0.23 0.74 0.88 1.00 0.11 0.31 0.46 0.66 0.04 0.10 0.14 0.19 7,456

SDC D 0.25 0.88 1.09 1.27 0.33 0.99 1.21 1.39 0.50 1.05 1.35 1.68 0.18 0.38 0.49 0.62 6,461

SDC D, CA 0.67 1.12 1.30 1.46 0.89 1.35 1.52 1.67 0.81 1.42 1.73 2.07 0.31 0.55 0.68 0.81 2,273

San Francisco, SDC D 0.88 1.57 1.79 1.95 0.75 1.50 1.75 1.94 1.13 1.78 2.07 2.37 0.52 0.89 1.07 1.25 16

Oakland, SDC D 0.75 1.50 1.75 2.00 0.95 1.65 1.89 2.13 1.56 2.60 3.07 3.55 0.60 1.01 1.21 1.41 10

Berkeley, SDC D 0.67 1.41 1.66 1.91 0.90 1.58 1.82 2.04 1.55 2.62 3.11 3.65 0.59 1.01 1.22 1.43 3

San Jose, SDC D 1.11 1.67 1.84 1.94 0.97 1.64 1.86 2.06 1.23 1.92 2.24 2.59 0.47 0.79 0.94 1.10 29

Los Angeles, SDC D 0.66 1.17 1.39 1.62 0.90 1.33 1.50 1.70 1.12 1.99 2.43 2.92 0.39 0.69 0.85 1.02 58

Riverside, SDC D 1.35 1.77 1.87 1.88 1.41 1.95 2.12 2.22 1.17 1.74 2.02 2.32 0.47 0.72 0.83 0.94 8

Number of 
Zip Code 

Data 
Points

Seismic Design Category

Average ε Values Average Sa Values
ε0(0.2s) ε0(1.0s) Sa(0.2s) [g] Sa(1.0s) [g]

 
 

Table 2.  Comparison of collapse risks for the example Eight-Story RC 
SMF Building, predicted using the two proposed methods, as well as 

without any treatment of ε.   

Method Mean 
Sa,col(1.71s)

σLN(Sa,col) P[C|Sa2/50] λcol [10-4]

Method One 1.15 0.28 0.005 0.28

Method Two 1.20 0.38 0.024 0.50

Predictions with no ε Adjustment 0.72 0.45 0.29 6.3

Ratio: Method Two to Method One 1.0 1.2 5 2

Ratio: No Adjustment to Method One 0.63 1.6 58 23
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Table 3.  Results for a subset of the 111 buildings showing the 
relationship between building deformation capacity (RDRult) and β1, a 

measure of the significance of ε(T1) in collapse capacity predictions. β1 is 
obtained from regression analysis.  

No. of 
stories

Framing 
System

RDRult β1
σLN,reg / 
σLN

RDRult β1
σLN,reg / 
σLN

RDRult β1
σLN,reg / 
σLN

Perimeter 0.067 0.26 0.82 0.035 0.22 0.86 0.024 0.28 0.95
Space 0.085 0.26 0.81 0.019 0.16 0.91 0.019 0.09 0.97

Perimeter 0.038 0.27 0.83 0.013 0.18 0.90 0.016 0.24 0.92
Space 0.047 0.26 0.83 0.016 0.20 0.88 0.011 0.27 0.97

Perimeter 0.023 0.31 0.81 0.007 0.16 0.97 0.009 0.12 0.82
Space 0.028 0.32 0.79 0.011 0.18 0.95 0.014 0.19 0.95

Perimeter 0.026 0.29 0.84 0.005 0.10 0.97 0.009 0.17 0.97
Space 0.022 0.25 0.86 0.010 0.16 0.95 -- 0.16 --

0.033 0.27 0.82 0.012 0.17 0.93 0.014 0.18 0.95
-- 0.28 -- -- 0.18 -- -- 0.19 --

Mean of this Subset: 
Mean of Full Set: 

RC OMF Buildings

4

8

12

RC SMF Buildings 1967-era RC Frame Bldgs.

2
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Figure 1. Comparison of an observed spectrum from a Loma Prieta 

motion with spectra predicted by Boore, Joyner, and Fumal (1997); after 
Haselton and Baker (2006). 
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Figure 2. Comparison of spectral shapes of ground motion sets selected 

with and without considering ε.  After Haselton and Baker, 2006. 
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Figure 3.  Boore et al. (1997) ground motion predictions for the 

characteristic event, predicted lognormal distribution at T = 1.0 second, 
and spectral accelerations for the 2% in 50 year and other hazard levels. 
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Figure 4.  Predicted 0ε  values from dissagregation of ground motion 

hazard, for the Western United States.  The values are for a 1.0 second 
period and the 2% in 50 year motion.  After Harmsen et al. 2002. 

 

 
Figure 5.  Mean predicted 0ε  values from dissagregation of ground 

motion hazard, for the Eastern United States.  The values are for (a) 1.0 
second and (b) 0.2 second periods and the 2% in 50 year motion.  After 

Harmsen et al. 2002. 
 

(b) (a) 
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Figure 6.  Predicted collapse capacity distribution for the example eight 
story reinforced concrete frame, computed using the Positive ε Ground 

Motion Set. 
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Figure 7.  Comparison of mean spectra for the General Set and Positive ε 

Set of ground motion. 
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Figure 8.  Relationship between collapse capacity (in terms of spectral 
acceleration) and ε for each ground motion record (computed using 
Abrahamson and Silva (1997)), including linear regression relating 

LN[Sa,col(T1)] to ε(T1). 
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Figure 9.  Comparison of collapse capacity distributions predicted using 

the two methods, where for Method T2 results are shown before and 
after the adjustment to the target 0ε (T1).  
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Figure 10.  Relationship between spectral acceleration and ε, from Figure 
8, but also including the collapse results predicted when directly using the 

Positive ε Set of ground motions. 
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Figure 11.  Relationship between (a) β1 and building deformation capacity 

(RDRult), and (b) β1 and number of stories. 
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Figure 12.  Ratio of observed/predicted β1, plotted against (a) building 
deformation capacity (RDRult), and (b) number of stories. 
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Figure 13.  Static pushover curve for an example 4-story RC SMF 

building (ID 1008). 
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Figure 14.  Mean ε values for the full and reduced versions of General Set 

of ground motions [ 1 ,records(T )ε ]. 
 

 


