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Summary

Recovery-based design links building-level engineering and broader community
resilience objectives. However, the relationship between above-code engineering
improvements and recovery performance is highly nonlinear and varies on a building-
and site-specific basis, presenting a challenge to both individual owners and code

developers. In addition, downtime simulations are computationally expensive and
hinder exploration of the full design space. In this paper, we present an optimization
framework to identify optimal above-code design improvements to achieve building-
specific recovery objectives. We supplement the optimization with a workflow to
develop surrogate models that (i) rapidly estimate recovery performance under a
range of user-defined improvements, and (ii) enable complex and informative opti-
mization techniques that can be repeated for different stakeholder priorities. We
explore the implementation of the framework using a case study office building,
with a 50th percentile baseline functional recovery time of 155 days at the 475-year
ground-motion return period. To optimally achieve a target recovery time of 21 days,
we find that nonstructural component enhancements are required, and that increasing
structural strength (through increase of the importance factor) can be detrimental.
However, for less ambitious target recovery times, we find that the use of larger
importance factors eliminates the need for nonstructural component improvements.
Such results demonstrate that the relative efficacy of a given recovery-based design
strategy will depend strongly on the design criteria set by the user.
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1 INTRODUCTION

A study by the Federal Emergency Management Agency (FEMA)1 found that 20-40% of modern code-conforming buildings
would be unfit for re-occupancy following a major earthquake (taking months or years to repair) and 15-20% would be rendered
irreparable. Functional recovery has been proposed as a performance objective to address the missing link between current design
provisions and community resilience goals in the United States2,3. Buildings designed for functional recovery are expected to
recover their basic, tenant-specific functions in target time 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 for defined seismic hazard levels. In a 2021 report to Congress4,
a committee of experts recommended the development of a national, consensus-based policy that would determine target times
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and hazard levels for various classes of buildings. This shift, coupled with the emergence of enabling tools, has since led to
numerous early adoptions of recovery-based design by individual owners5,6,7,8.

While these are critical steps toward widespread implementation, and eventually, resilience-based engineering provisions, lit-
tle research has been done to (i) inform the selection of recovery-based design criteria for particular occupancy types and (ii)
systematically identify effective engineering strategies to achieve them. Generalizing (ii) is challenging since post-earthquake
recovery performance depends on the building geometry, structural system, and site-specific conditions. Furthermore, the
relationship between engineering decisions and recovery performance is highly nonlinear. Increasing structural strength, for
example, may reduce damage to displacement-sensitive components, but amplify floor accelerations, and hence, increase dam-
age to acceleration-sensitive components. Optimization algorithms have the potential to assist in determining effective design
strategies. Such studies could explore how solutions (which satisfy design criteria such as 𝑇𝑡𝑎𝑟𝑔𝑒𝑡) can be configured to achieve
stakeholder priorities such as minimizing cost or number of above-code modifications. Similarly, optimization studies could
quantify the implications of the recovery-based policy objectives across a wide variety of building archetypes.

Here the recovery performance of individual buildings is evaluated using performance-based earthquake engineering9 (PBEE)
procedures, typically performed in two stages. First, a damage and loss assessment is performed using the FEMA P-58 methodol-
ogy 10, which provides realizations of component- and building-level repair times. Second, to perform more refined simulations
of recovery sequences than FEMA P-58 provides, the damage and loss assessment results are post-processed using a downtime
assessment methodology e.g., 11,12,13,14. This is done to produce more realistic repair schedules, and impose appropriate imped-
ing factors, such as inspection, financing, design, and contractor mobilization15,14. In this paper, we use the term "PBEE-based"
to refer to performance assessment methodologies that use the FEMA P-58 method as well as a refined downtime assessment
methodology. This combination of analyses was used in the example buildings mentioned above5,6,7,8 and is quickly becoming
the preferred benchmark for recovery-based design.

Several studies have optimized building designs within the context of PBEE. Rejas et al.16 and Saadat et al.17 performed multi-
objective, risk-based design optimization using the original PBEE methodology. Both cases considered structural enhancements
(in the form of section sizing) as the primary form of design enhancement. Steneker et al.18,19 expanded the scope of enhancement
to include both structural and nonstructural upgrades. One common obstacle across these studies is the high computational cost
associated with evaluating building performance through PBEE-based methods, which imposes issues on scalability. Burton et.
al20 demonstrated that surrogate models are effective at reducing this issue. Their study implemented a computationally efficient
multi-objective optimization, considering the influence of rocking steel braced frame parameters on up-front cost, economic
losses, and environmental impacts. None of these optimization studies, however, leveraged the advanced downtime assessment
procedures that build on FEMA P-58.

The main objective of our research, therefore, is to develop a recovery-based optimization framework that is high-fidelity
and computationally efficient. It is high-fidelity in that it leverages downtime simulations to generate realistic repair sequences
that quantify component- and system-level influences on damage and recovery time. In addition, the framework accommodates
structural, nonstructural, recovery planning, and utility mitigation actions that may reduce downtime, as opposed to constraining
improvements in only one or two categories. To achieve computational efficiency, we employ machine learning methods to
estimate recovery times under parameterized building improvements. The resulting framework is flexible enough to enable
optimization for early-stage conceptual design by individual owners, while remaining sufficiently efficient to perform batch
optimization for the purposes of researching recovery-based policy decisions.

In the first half of this paper, we present the proposed framework (Section 2), along with the procedure to develop surrogate
models for recovery performance evaluation (Section 3). These two sections describe the inputs and modeling considerations
needed to perform an optimization using surrogate models. In the second half of the paper, we apply these procedures to the
early-stage conceptual design of a new code-conforming office building in Oakland, California (Section 4). As a part of this case
study, we perform the optimization for a single design criterion, then repeat across a continuum of target recovery times (through
batch optimization) to demonstrate the utility of surrogate modeling. Finally, we present results and limitations, followed by
conclusions of the paper (Section 5).
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2 AN OPTIMIZATION FRAMEWORK TO SUPPORT RECOVERY-BASED DESIGN

In this section, we describe the overall framework within the context of early-stage conceptual design of new buildings. Each
stage of the framework is assigned a corresponding subsection that provides a generalized overview and important consid-
erations. We will discuss additional details relevant to implementation during the case study (Section 4). The framework is
illustrated in Figure 1, and can be split into two main parts:

I Recovery modeling and scoping of design modifications (Stages 1, 2, and 3): these stages are used to prepare all
necessary recovery modeling inputs for the building of interest, set the design criteria, and select the scope and design space
of above-code enhancements. The gap between code-delivered performance and the target recovery time is quantified.

II Optimization of design modifications (Stages 4 and 5): these stages set the optimization objectives and use them to
guide the elimination of the gap identified in Part I.

To reduce the computational barrier associated with performing the optimization at scale, we propose machine learning methods
to develop surrogate models. The resulting models are used in place of simulation-based procedures during Part II.

The five stages of the framework are as follows: (1) A site-specific design is performed in accordance with current code
objectives, followed by a baseline recovery performance assessment. The goal of the baseline assessment is to quantify the
recovery performance achieved when no above-code design modifications are made. Recovery performance is evaluated by first
applying a probabilistic damage and loss assessment to obtain component- level damage and repair time metrics. These results
are then used as inputs to a downtime assessment, which uses repair sequence logic to estimate the functional recovery time,
considering various impeding factors. (2) Recovery-based design criteria are set to define the target recovery time, hazard level
of interest, and acceptability threshold. The selected target time is used to calculate the recovery gap: the difference between
the baseline functional recovery and the target functional recovery time. (3) The recovery-based design strategy and scope of
design modifications are selected with the objective of closing the recovery gap. In some cases, the selected modifications will
be unable to satisfy the design criteria set in (2), and will prevent optimization convergence. For this reason, (4) a feasibility
check is performed to ensure that the selected strategy is capable of achieving the target time under the design criteria. If not,
(3) is repeated as necessary. Finally, (5) optimization is performed to isolate solutions within the design space that satisfy design
criteria. Optimality is defined using an objective function that reflects stakeholder-specific priorities. These steps are defined in
further detail in the following subsections.

2.1 Code-based design and baseline performance assessment
The first step of the proposed framework is to determine baseline recovery metrics that reflect as-is building performance with
no improvement. A baseline recovery performance assessment is conducted using PBEE-based approaches, which require three
user inputs: (i) characterization of earthquake demands (e.g., ensemble of ground motions that reflect the site-specific hazard), (ii)
an analytical structural model that captures structural response when subject to ground shaking, and (iii) a building performance
model, which summarizes building assets and their post-damage consequences (Figure 2). We describe each of these inputs in
greater detail below.

• Characterization of earthquake demands: earthquake demands are characterized by a suite of site-specific ground
motions at the intensity level of interest.

• Structural model: an analytical model captures structural response when subjected to the selected ground motions. Engi-
neering demands parameters (EDPs), namely, story drift ratio (SDR) and peak floor acceleration (PFA), are recorded at
each level of the building by performing nonlinear response history analysis (NLRHA). EDPs are used to map demands
– generated by the ground motion hazard – to component-level damage.

• Performance model: the performance model summarizes assets at risk to earthquake damage. In addition to building
attributes, the performance model should contain a component ensemble, with asset-specific locations, quantities, vul-
nerability functions, and consequence functions. Ensembles typically contain a combination of structural components,
nonstructural components, and contents.
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FIGURE 1 Major steps in the proposed framework, from code-based design to recovery-based optimization.

Each of the user-provided inputs is propagated through a downtime assessment. We illustrate a typical simulation in Figure 2.
The final output from this step is a set of building recovery realizations, in terms of functional recovery time. Summary statistics
from this set (e.g., 50th and 90th percentile) are used to report the results of the baseline assessment.

2.2 Define recovery-based design criteria
In the second stage of the framework, the recovery-based design criteria are defined. These criteria serve as the target perfor-
mance objective of the design, and during optimization, are used to assess the validity of a given solution. Here, the objective
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FIGURE 2 Overview of a typical downtime simulation used throughout the framework. User inputs are propagated through a
damage and loss assessment, which generates component-level damage and repair metrics. These results are then used as inputs
to the downtime assessment.

of recovery-based design is to limit the probability of exceeding a particular target time, subject to a seismic intensity level of
interest3:

𝑃 (𝑇𝐹𝑅 > 𝑇𝑡𝑎𝑟𝑔𝑒𝑡𝐷𝐹𝑅) < 𝑌% (1)

where: 𝑇𝐹𝑅 = functional recovery time
𝑇𝑡𝑎𝑟𝑔𝑒𝑡 = target functional recovery time
𝑌 = threshold probability of exceedance
𝐷𝐹𝑅 = selected hazard level for recovery-based design

The design criteria in Equation 1 should be selected to reflect tenant, owner, or community goals when recovery-based design
is being performed on a voluntary basis. Within the context of national policy, on the other hand, these will likely be decided
by consensus.

Note that the selection of 𝑌 will determine the 𝑝-percentile functional recovery time, 𝑇𝐹𝑅,𝑝, that is compared directly with
𝑇𝑡𝑎𝑟𝑔𝑒𝑡. For example, if 𝑌 is set to 10% such that 𝑃 (𝑇𝐹𝑅 > 𝑇𝑡𝑎𝑟𝑔𝑒𝑡𝐷𝐹𝑅) < 10%, then the 𝑇𝐹𝑅,𝑝 would be set to the 90th
percentile functional recovery time when comparing against the target time. During the optimization step, all solutions that yield
𝑇𝐹𝑅,𝑝 > 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 will be deemed non-compliant with the design criteria. A key output from this stage is the recovery gap, defined
as the difference between the baseline 𝑇𝐹𝑅,𝑝 and 𝑇𝑡𝑎𝑟𝑔𝑒𝑡. The objective of the framework is to identify optimal design solutions
that eliminate this gap.

2.3 Selection of recovery-based design strategy and definition of design space
The third stage is dedicated to defining a recovery-based design strategy, along with the corresponding variables and design
space. We define a design strategy as the set of potential building enhancements. Enhancements include, but are not limited
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to, structural improvements, nonstructural improvements, recovery planning, and utility mitigation3. When numerous viable
recovery-based design strategies are under consideration, the framework can be used to rapidly compare optimality in each case.

Structural improvements could include modifying the importance factor 𝐼𝑒, modifying drift limits, and choice of the lateral-
force-resisting system. Nonstructural component improvements could include modifying, hardening, relocating, or eliminating
components. Recovery planning encompasses actions that accelerate re-occupancy and recovery, such repair services on retainer,
pre-defined permit applications, or business continuity plans. Utility mitigation actions include backup and substitution of one
or more building utilities to minimize lifeline-induced downtime.

For each enhancement considered in the analysis, a design variable (and a corresponding design space) must be defined. Each
enhancement involves a single design variable that is defined on a discrete or continuous scale. Design variables are organized
in an array X that summarizes the entire design strategy, such that:

𝐗 =

⎡
⎢
⎢
⎢
⎢⎣

𝐗𝐒
𝐗𝐍𝐒
𝐗𝐑𝐞𝐜
𝐗𝐔𝐭𝐢𝐥

⎤
⎥
⎥
⎥
⎥⎦

(2)

where: 𝐗𝐒 = array of structural modification variables
𝐗𝐍𝐒 = array of nonstructural modification variables
𝐗𝐑𝐞𝐜 = array of recovery planning variables
𝐗𝐔𝐭𝐢𝐥 = array of utility mitigation variables

Next, enhancement resolution – whether each variable will be imposed on a global basis (across the entire building) or on a
localized basis (a specific floor, tenant unit, etc.) – is selected, and will further influence the number of variables in the problem.
For a 3-story building, for example, modeling suspended ceiling improvements on a floor-level basis for a would require three
separate variables. Finally, for each variable, upper and lower bounds are defined. Ideally, these bounds should be based on
empirical/laboratory data that reflect the physical extents of possible improvement. The design variables and design space are
later used in Stage 5, as constraints during the optimization.

2.4 Feasibility assessment
At Stage 3, it is not yet known whether the selected recovery-based design strategy is able to eliminate the recovery gap identified
in Stage 2. Therefore, in Stage 4, a feasibility check is performed to ensure that at least one solution in the design space meets
the target time. If no solution exists, Stage 3 will be repeated as necessary, as illustrated in Figure 1.

The check is performed by assessing 𝑇𝐹𝑅,𝑝 under the influence of maximal enhancement using the proposed strategy. All
design variables in X should be considered simultaneously. Here, maximal enhancement refers to the recovery-based design
strategy defined in Stage 3, evaluated at values that yield maximal 𝑇𝐹𝑅,𝑝 improvement. For example, if the recovery-based design
strategy consists solely of nonstructural component hardening, one âĂĲstress testâĂİ could be to assess 𝑇𝐹𝑅,𝑝 under the influence
of maximum nonstructural component capacity improvements for all components in the building. For enhancements where the
maximal improvement is not always clear, (e.g., in the case of lateral system selection) more extensive checks may be required
to determine which improvements yield the greatest reduction in downtime. The assessment is performed by first recording the
(i) p-percentile functional recovery time achieved during the baseline assessment, and (ii) the p-percentile functional recovery
time achieved under maximal enhancement.

If (ii) is lower than 𝑇𝑡𝑎𝑟𝑔𝑒𝑡, then some combination of enhancements will meet the design criteria set in Stage 2, and the opti-
mization will converge. If (ii) is higher than 𝑇𝑡𝑎𝑟𝑔𝑒𝑡, then it is impossible to achieve the target time despite maximal enhancement,
and the optimization will not converge. In this case, Stage 3 of the framework should be repeated. Once the feasibility assess-
ment demonstrates that a viable solution exists, the optimization procedure in next stage will locate an optimal solution within
the defined design space.
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2.5 Optimization
In the final stage of the framework, an optimal suite of improvements for the building will be isolated using the strategy and
design space defined in Stage 3. To perform the optimization, an objective function 𝑓 (𝐗) must be defined, and should consider
stakeholder-specific objectives, which could include number of modifications, upfront cost of enhancement, construction days
added, etc. By doing so, the above-code enhancements that originate from this analysis will effectively deliver the performance
objective in Stage 2 within the context of owner and tenant priorities. It is important to note, however, that the pre-requisite data
is required when considering certain stakeholder priorities (e.g., upfront cost).

The objective function 𝑓 (𝐗) is evaluated under the parameterized design improvements in 𝐗, which should be formulated
to impose (i) a constraint on the 𝑇𝑡𝑎𝑟𝑔𝑒𝑡, and (ii) constraints on the design variables using the upper and lower bounds defined
in Stage 3 . Other design criteria (e.g., 𝑌 , 𝐷𝐹𝑅) are satisfied implicitly during each evaluation of the objective function, since
𝑓 (𝐗) involves the evaluation of the 𝑝-percentile functional recovery time, which is computed at the 𝐷𝐹𝑅 hazard level. The main
output of the framework is an updated design array 𝐗∗ that minimizes the objective function (Equation 3) subject to constraints.

𝐗∗ = argmin(𝑓 (𝐗)) (3)
with the constraints that: 1) 𝑇𝐹𝑅,𝑝 ≤ 𝑇𝑡𝑎𝑟𝑔𝑒𝑡, and 2) the design strategy is in the design space.

In general, the evaluation of the objective function can be divided into three steps (Figure 3):

1. Select design variables: Improvements defined in Stage 3 are organized in an array 𝐗 of design variables, used to guide
the necessary modifications to the user inputs for the subsequent downtime assessment.

2. Calculate functional recovery time: The downtime analysis is run using updated inputs, generating an ensemble of
recovery realizations. The 𝑝-percentile functional recovery time, 𝑇𝐹𝑅,𝑝 is extracted and used in the evaluation of the
objective function.

3. Evaluate objective function: If 𝑇𝐹𝑅,𝑝 ≤ 𝑇𝑡𝑎𝑟𝑔𝑒𝑡, 𝐗 is considered a viable solution, and the value of the objective function
is recorded. Otherwise, 𝐗 is discarded, as it did not meet the design criteria set in Stage 2. The optimization is complete
when a solution yielding the optimal 𝑓 (𝐗) value is found.

From Figure 3a, we observe that evaluating the objective function using simulation-based approaches is computationally
expensive, since each evaluation involves an end-to-end downtime assessment. Furthermore, the downtime assessment may need
to be performed using a high number of realizations to ensure that the value of 𝑇𝐹𝑅,𝑝 is stable across runs, particularly when
impeding factors are considered in the analysis. In our experience, we find that a downtime assessment using 5000 to 100,000
FEMA P-58 realizations can take between 30s to 500s to run (our experiments are run locally, using a computer with 64GB
RAM and Apple M1 Max processor). It is necessary to reduce this computational expense since it hinders the framework’s
ability to be deployed at scale. For example, a user of this methodology may be interested in performing the optimization for
multiple target times, hazard levels, and building sites – expensive objective function evaluations would impose a significant
computational barrier on this process.

To address this challenge, the framework employs surrogate models to directly map the design variables X to the p-percentile
functional recovery time, 𝑇𝐹𝑅,𝑝 (Figure 3b). There are a number of decisions that need to be made when designing a surrogate
model to replace a traditional downtime assessment. We discuss these details in the next section.

The final consideration made during the optimization stage is the selection of the optimization algorithm. If simulation-
based methods (Figure 3a) are employed to evaluate the objective function, then gradient-free algorithms, such as those
within population-based methods, are most suitable. Population methods use a collection of points to explore the design space
(as opposed to a functional form), do not require gradient information (which is not available when using simulation-based
approaches), and are slow but generally easy to parallelize21. Examples of population-based methods include genetic algorithms,
differential evolution, and hybrid methods. It is also noteworthy that population-based methods are stochastic in nature, so mul-
tiple optimization runs can yield slightly different results, depending on the size of the population used. For this reason, extra
care must be taken to ensure the algorithm result is acceptably stable.

When a surrogate-based approach is employed (Figure 3b), function gradients can typically be computed, in which case
both gradient-based and gradient-free optimization algorithms are possible. Gradient-based methods tend to converge to a
solution faster, though can struggle in high-dimensional space and care needs to be taken to avoid converging to local min-
ima. Unlike population-based approaches, many gradient-based approaches are not stochastic, and therefore converge to stable
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optima under identical algorithm settings. Examples of gradient-based approaches include gradient descent, RMSprop22, and
Adam23. Whether a gradient-based or gradient-free algorithm is selected, the optimization should yield consistent results from
one analysis to the next, and be sufficiently powerful to locate the global optimum, likely in high-dimensional space.

3 DEVELOPING SURROGATE MODELS FOR RECOVERY TIME PERFORMANCE
ASSESSMENT

We propose the use of machine learning surrogate models to rapidly and accurately estimate functional recovery times, enabling
the scaled implementation of complex and informative optimization techniques. We summarize the process of developing these
surrogate models in this section, following the workflow illustrated in Figure 4. In some applications where numerous structural
enhancements are being considered, a second, auxiliary model may be required to account for changes made to the structural
response. In this section, we cover general strategies that can be applied in either case.

3.1 Define I-O and surrogate model architecture
In the first step of the workflow, the architecture of the surrogate model is defined. The input-output (I-O) of the model must
be developed for compatibility with the optimization problem defined in Stages 1 through 5 (i.e., the final surrogate model
should be able to directly replace the simulation-based approach illustrated in Figure 3a). First, we discuss outputs, followed by
user-defined inputs.
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The output of the developed surrogate model, 𝑇𝐹𝑅,𝑝, is a scalar value used to evaluate the recovery target constraint (i.e.,
to check whether a given design solution satisfies 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 set in Stage 2). While this output represents the recovery time at a
particular percentile, it is based on simulation data that spans the entire ensemble of results.

The user-defined input features play a significant role in both the development of the surrogate model (e.g., through training
and testing protocols) and optimization (e.g., through the evaluation of the objective function). Overall, the input feature vector
is developed in part by handpicking design variables from 𝐗 (defined in Stage 3). Due to structural-nonstructural interaction, it is
important to consider the trade-off between simplicity of the resulting surrogate model (e.g., mixing structural and nonstructural
variables) and generality (e.g., a surrogate model’s ability to be re-used under different circumstances).

It is possible to generalize a surrogate model to predict the functional recovery time at a range of structural response inten-
sities. One way of achieving this is by extending the input feature vector to include engineering demand parameters (EDPs).
In doing so, the surrogate model can be used to predict functional recovery time under both nonstructural improvements and
a range of structural response conditions. These conditions include varying seismic hazard levels, site locations, and structural
modifications.

When EDPs are used as input features, explicit variables that represent structural enhancements (e.g., 𝐼𝑒, drift limits) should
not appear in the same surrogate model. Any structural enhancement variables, in these cases, should either (i) appear as variables
to an auxiliary model that predicts a representative EDP profile or (ii) are accounted for implicitly through the use of EDPs (e.g.,
mapping drift limit changes to EDPs).

Case (i) is appropriate in situations where more than one structural enhancement is being considered at a time, or the design
space is large and continuous. These structural design variables would be used as inputs to an auxiliary surrogate model that
is used to predict EDPs (as opposed to recovery time). The resulting EDPs of this auxiliary model could then be plugged into
the main surrogate model that is parameterized by EDP inputs and any nonstructural component enhancements. Case (ii) is
more appropriate when a single structural design variable is being considered, and the design space is relatively small and
discrete (e.g., 𝐼𝑒 ∈ {1.00, 1.50, 2.00}). In this case, it is more appropriate to simulate an EDP profile associated with each option
independently. The resulting EDPs could then be plugged into the main surrogate model that is parameterized by EDP inputs
and any nonstructural component enhancements. No auxiliary model is needed.

If generality is not desired – and EDPs are not used as inputs to the surrogate model – then it is possible to include all structural
and nonstructural modifications in the same input feature vector. While this is a simpler implementation, an implication of this
decision is that the surrogate model would lose its ability to predict changes in recovery time at various seismic intensity levels
and sites since, training data would be required to use the building’s response generated by the structural design enhancements
under a single, site-specific intensity level.

3.2 Design of computer experiments (DoCE)
After the surrogate model architecture has been defined, the next step is to develop data for model training. This is typically
done by creating a sampling protocol, or design of computer experiments (DoCE), which aim to capture as much information
as possible about the relationships between the inputs and outputs24 defined in Section 3.1. Typical DoCE techniques include
one-at-a-time (OAT) analyses, space filling designs, random designs, and Latin hypercube sampling25. In general, the choice of
DoCE should be based on the number of variables in the input feature vector, size of the design space, and shape of the design
space.
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Once the training examples are assembled, they are randomly placed into three subsets: a training dataset, a validation dataset,
and a testing dataset. While the training and testing datasets are used for the purposes of model learning and model evaluation,
respectively, the validation set is dedicated to hyperparameter calibration, which is discussed in the next section.

3.3 Hyperparameter calibration
Developing a surrogate model is an iterative process, with numerous modeling decisions such as those described in the previous
two sections. The third step involves the selection of hyperparameters, which control the learning process of a surrogate model,
and hence, its ability to make accurate predictions. These parameters are selected after performing hyperparameter calibration
(also referred to as tuning), which evaluates how well the surrogate model performs across a variety of hyperparameter sets, and
locates optimal values. This is done using the validation set, and should be re-performed after making significant changes to the
modeling decisions in Sections 3.1 and 3.2. Common hyperparameter calibration methods include grid search, random search,
and gradient-based optimization.

3.4 Evaluation
Using the selected architecture and hyperparameters, the surrogate model is trained (using the training set) and evaluated for
accuracy (using the testing set). An evaluation metric must first be selected, such as the coefficient of determination (𝑅2), root
mean squared error (RMSE), or mean absolute error (MAE). At a minimum, the surrogate model accuracy should be evaluated
across all examples in the test set.

It is also recommended that the user evaluates the accuracy of relevant test set sub-intervals to ensure accuracy is reasonable
at particular output values of interest (e.g., accuracy for 30 < 𝑇𝐹𝑅,𝑝 < 60 days). Here, "reasonable" implies that the predicted
value of 𝑇𝐹𝑅,𝑝 is within a tolerable absolute mean error. Depending on the target time, this error (measured in days) may become
significant in comparison, which may diminish the utility of any downstream optimization output (e.g., if the optimization output
is actually providing designs that deliver one week of downtime when immediate functional recovery (<1 day) is desired).

These insights are valuable when the original dataset is imbalanced, and performance in one region does not necessarily
guarantee performance in another. If the evaluation metrics yield unsatisfactory results in one region or across the test set, the
DoCE can be revisited to better capture relationships between the inputs and outputs. In many cases, targeted sampling and/or
additional data can help to improve overall performance. We discuss the relationship between DoCE data needs and model
performance during the case study (Section 4.2).

4 ILLUSTRATIVE CASE STUDY

In this section, we describe the application of the framework to the early-stage conceptual design of a new, 3-story steel moment
resisting frame (SMRF) office building in Oakland, CA (Figure 5). Each level consists of 10,000 square feet of commercial
space, occupied by a single tenant (i.e., there are 3 tenants total across the building). As a proof-of-concept, the primary objective
of this application is to identify optimal structural and nonstructural improvements needed to achieve a 21-day 50th percentile
functional recovery time, at the 475-year seismic hazard level. In the process, we will explore how the optimal design changes
across different target recovery times. We facilitate all optimization analyses in this case study through the use of a calibrated
surrogate model.

In Section 4.1, we describe the implementation of each step of the framework to achieve the aforementioned objectives. In
Section 4.2, we describe the surrogate model architecture, calibration, and predictive performance. Finally, in Section 4.3, we
perform the optimization, present the results, and highlight the limitations.

4.1 Application of framework
Next, we apply the optimization framework to determine structural and nonstructural improvements for the 3-story SMRF office
building, performed in accordance with Section 2. Considered improvements for this case study are nonstructural component
strengthening and modifications to the importance factor, 𝐼𝑒. Structures designed with an importance factor 𝐼𝑒 > 1.00 typically
exhibit higher strength and experience reduced drifts at each story level. It is important to note, however, that reductions in story
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(a)
Building location

(b)
Floor plan

(c)
Elevation view

FIGURE 5 The location, floor plan, and elevation view of the three story office building used in the case study.

drift may lead to amplifications in floor acceleration, and have negative implications on nonstructural component performance.
Optimization is performed using a calibrated surrogate model that rapidly estimates 𝑇𝐹𝑅,𝑝 under these enhancements. We cover
the calibration of the surrogate model in Section 4.2. In the next five subsections, we describe each stage of the framework,
starting with the original design and corresponding baseline performance assessment.

4.1.1 Code-based design and baseline performance assessment
We begin this application by quantifying the recovery performance achieved through prescriptive requirements at the Oakland
site. We design the building in accordance with ASCE 7-1626 using the equivalent lateral force procedure (ELF). Section sizes
for both the gravity and lateral system are determined using Auto-SDA27, an end-to-end Python platform that automates the
seismic design and analysis of SMRFs. The ELF parameters used in the design are in Table 1.

TABLE 1 ASCE-7 ELF design parameters for the case study building.

ASCE-7 ELF design parameter Value

𝑆𝑠 1.559 g
𝑆1 0.614 g
Importance factor 𝐼𝑒 1.00
Risk Category II
Structural System SMRF
Site Class D
𝑅 8
𝐶𝑑 5.5
𝑇1 0.847s

To perform the baseline assessment (Section 2.1), we prepare each of the user-provided inputs highlighted in Figure 2 – the
ground motion ensemble, structural model, and performance model. Earthquake hazard at the Oakland site is characterized by a
suite of 40 selected and scaled ground motions28 matched to the uniform hazard spectrum (UHS) for the 475-year return period.
The analytical structural model is generated using Auto-SDA. Using the parameters and geometry in Table 1 and Figure 5, a
2-D frame model for the X- and Y-direction is generated in OpenSees29, characterized by code-conforming section sizes as well
as detailing for beams, columns, and connections.
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Finally, we assemble a performance model consisting of 41 components, which specifies quantities, locations, and key
attributes for each structural and nonstructural component in the building. Component quantities are determined in accor-
dance with the FEMA P-58 Normative Quantities30 when available, and prescribed using best judgment otherwise. Component
fragility functions are parameterized by a median capacity, 𝜃, and dispersion 𝛽 in accordance with the FEMA P-58 fragility
database. In cases where no default values of 𝜃 and 𝛽 are available, a value is assigned based on FEMA P-58 guidance. A list of
the components in the performance model is shown in Table 2.

Following the workflow in Figure 2 for the seismic hazard level considered, we perform a downtime assessment for the
code-conforming building using the prepared inputs. The damage and loss assessment is performed using NHERI-SimCenter’s
PELICUN program for FEMA P-58 assessment31. Component-level damage results for each realization are post-processed
using the Cook et al.11 method to generate a realistic repair schedule and simulated impeding factors. The final output from
the downtime assessment is an ensemble of functional recovery times. We present the 50th percentile results in Table 3 for an
analysis consisting of 10000 realizations. We consider impeding factors in the analyses, to reflect real-world conditions and aid
in the identification of enhancements that reduce their effects.

4.1.2 Define recovery-based design criteria
After benchmarking the at-code recovery performance, we move on to define the recovery-based design criteria that serve as the
target for the modified design. Design criteria 𝐷𝐹𝑅, 𝑇𝑡𝑎𝑟𝑔𝑒𝑡, and 𝑌 , are defined in accordance with the performance objective in
Equation 1. As mentioned in the introduction of Section 4, the building is being designed for recovery voluntarily, and hence,
the selection of each value is flexible. As a result, our decisions mainly serve as a proof-of-concept, and are subject to refinement
based on stakeholder needs. We describe these selections in detail below.

• Hazard level: 𝐷𝐹𝑅 is set to the 475-year return period.

• Target functional recovery time: 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 is set to 21 days, including impeding factors. From a policy-based perspective,
this value of 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 would place the building in the "weeks to months" functional recovery category4, which, at the hazard
level selected, is typically associated with critical business enterprises. This target time is relatively ambitious, and we
consider alternative values of 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 at the end of this section.

• Threshold probability of exceedance: 𝑌% is set to the 50th percentile. This decision allows us to compare the median
functional recovery time directly with 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 (i.e., the p-percentile recovery time is the 50th percentile recovery time).

Based on these decisions, the difference between the baseline 50th percentile functional recovery time and the target time is
155 - 21 = 134 days at the selected hazard level.

4.1.3 Selection of recovery-based design strategy and definition of design space
After setting the design criteria and computing the recovery gap, we now define the recovery-based design strategy that will be
used to eliminate this gap. For the case study building, our selected set of enhancements include both structural and nonstructural
improvements to the original design. Recovery planning and utility mitigation options are not considered. We discuss each of
the considered design enhancements in more detail here, along with their placement in 𝐗, as defined in Equation 2.

For this case study demonstration, we limit the scope of structural improvements to modifying the importance factor 𝐼𝑒, which
is used to increase seismic design forces and, in effect, reduce inelastic demands. As a result, the structural improvement array
𝐗𝐒 contains 𝐼𝑒 as its sole variable. We set the design space for this enhancement to 𝐼𝑒 ∈ {1.00, 1.50, 2.00}. We also note that in
this example, the structural system has been pre-selected, to simplify the presentation of results. In many cases, the selection of
the structural system is an important recovery-based design modification, and could be considered in the same way that the 𝐼𝑒
choices have been here.

We assume that each nonstructural component can be directly strengthened (i.e., achieve higher median capacity 𝜃 across
all damage states). We modify each nonstructural component fragility function by applying a strengthening factor 𝑥𝑖, which
we assume varies continuously from 𝑥𝑖 = 1.00 (no change) to 𝑥𝑖 = 3.00 (𝜃 is tripled across all damage states). The fragility
functions of each nonstructural component are modified by multiplying the original median capacity (as determined by the
FEMA P-58 fragility database) by 𝑥𝑖 (Equation 4). We organize all nonstructural enhancements 𝑥𝑖 in the array 𝐗𝐍𝐒 (Equation
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TABLE 2 Summary of FEMA P-58 performance model used in the case study.

FEMA P-58
component ID

System Name Unit Location

B1031.001 Structural Bolted shear tab gravity connections ea all
B1031.011a Structural Steel Column Base Plates ea 1
B1031.021a Structural Welded column splices ea 2
B1035.001 Structural Post-Northridge RBS connection: single beam side ea all
B1035.011 Structural Post-Northridge RBS connection: double beam side ea all
B2011.201a Exterior Precast Concrete Panels - in plane deformation ft all
B2011.201b Exterior Precast Concrete Panels - out of plane deformation ft all
B2022.002 Exterior Glass Curtain Walls ft2 all
C1011.001b Interior Partial-height Gypusm with metal studs ft all
C3011.001b Interior Partial-height Gypusm + wallpaper ft all
C2011.001b Stairs Stairs ea all
C3027.002 Interior Raised access flooring ft2 all
C3032.003a Interior Suspended Ceiling I ft2 all
C3032.003b Interior Suspended Ceiling II ft2 all
C3032.003c Interior Suspended Ceiling III ft2 all
C3032.003d Interior Suspended Ceiling IV ft2 all
C3034.002 Interior Independent Pendant Lighting ea all
D1014.011 Elevators Traction Elevator ea 1
D2021.013a Plumbing Potable Water Piping Branches ft all
D2021.013b Plumbing Potable Water Piping Branches Braces ft all
D2021.023a Plumbing Potable Water Piping Mains ft all
D2021.023b Plumbing Potable Water Piping Mains Braces ft all
D2031.023a Plumbing Sanitary Waste Piping ft all
D2031.023b Plumbing Sanitary Waste Piping Braces ft all
D2051.023a HVAC HVAC Cooling Piping ft all
D2051.023b HVAC HVAC Cooling Piping Braces ft all
D3031.013c HVAC Chiller ea R
D3031.022c HVAC Cooling Tower ea R
D3041.001c HVAC HVAC In-line fans ea all
D3041.012c HVAC HVAC Duct Mains ft all
D3041.011c HVAC HVAC Duct Branches ft all
D3041.032c HVAC HVAC Duct Drops ea all
D3041.103c HVAC HVAC Fan ea R
D3052.013c HVAC HVAC Air Handling Unit ea R
D3067.012c HVAC HVAC Control Panel ea 1
D4011.023a Fire Fire sprinkler Piping ft all
D4011.053a Fire Fire sprinkler Drops ea all
D5011.013c Electrical Transformer ea 1
D5012.013d Electrical Motor Control Center ea 1
D5012.023c Electrical Low Voltage Switchgear ea 1
D5012.033c Electrical Distribution Channel ea all

5). Improvements to nonstructural components are applied on a global basis (i.e., components across all locations in the building
are hardened equally.)

𝜃𝐷𝑆,𝑗 = 𝑥𝑖 × 𝜃𝐷𝑆,𝑗 (4)
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TABLE 3 50th percentile functional recovery time for the code-conforming office building, reported with and without impeding
factors.

50th percentile functional recovery time

repairs only 35 days
repairs + impeding factors 155 days

where: 𝜃𝐷𝑆,𝑗 = updated median capacity for damage state 𝑗, post-strengthening
𝑥𝑖 = strengthening factor applied to all damage states of component 𝑖
𝜃𝐷𝑆,𝑗 = original median capacity for damage state 𝑗

and

𝐗𝐍𝐒 =

⎡
⎢
⎢
⎢
⎢⎣

𝑥1
𝑥2
⋮
𝑥𝑁

⎤
⎥
⎥
⎥
⎥⎦

(5)

where 𝑁 is the number of nonstructural component types.
The design space of each 𝑥𝑖 in this example is meant to serve as a proof of concept only. The actual design space would likely

vary from component to component, and would be limited by physical limits. Furthermore, scaling each component damage
state by the same 𝑥𝑖 value may not be realistic. In total, 36 nonstructural components (of the 41 components in Table 2) will be
included in the scope of this enhancement. The first five are structural components, so they will be omitted.

4.1.4 Feasibility assessment
Next, we perform the feasibility assessment on our selected strategy, by checking that 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 is met (i.e., the recovery gap has
been eliminated) under the maximal enhancement allowed for our selected scope in (3), and under the remaining design criteria
(𝐷𝐹𝑅, 𝑌%) in (2). An important consideration is that increases in 𝐼𝑒 do not necessarily map to improvements in functional
recovery performance (due to the amplification of floor accelerations, which increase nonstructural damage). Therefore, we
decouple structural and nonstructural enhancements by performing three separate assessments, one at each 𝐼𝑒. For nonstructural
components, maximal enhancement is achieved by setting all 𝑥𝑖 to 3.00 (i.e., the upper bound defined in the design space), since
there is a direct relationship between increasing 𝑥𝑖 and reducing downtime.

We perform the assessment by first recording the (i) 50th percentile functional recovery time achieved during the base-
line assessment, and (ii) the 50th percentile functional recovery time achieved under maximal enhancement. We perform the
assessment for all 𝐼𝑒 ∈ {1.00, 1.50, 2.00}, and find that an acceptable solution exists for each case.

4.1.5 Optimization
Following the successful feasibility assessment, we perform the optimization stage for the case study building, using the design
space and design criteria set in Sections 4.1.2, 4.1.3, respectively.

We judge the efficacy of individual design solutions using an objective function 𝑓 (𝐗) (Equation 6) that measures aggregate
nonstructural component improvements made to the original building. Here, 𝑁 is equal to the number of nonstructural com-
ponents in the performance model (Table 2). Setting up the objective function in this form (i) allows us to identify the most
important nonstructural components that are critical to the recovery process (i.e., equal weight is placed on each component)
and (ii) requires no additional data regarding costs of upgrades.

𝑓 (𝐗) = 1
𝑁


𝑥𝑖∈𝐗𝐍𝐒

𝑥𝑖 (6)

s.t.:
𝑇𝐹𝑅,50 ≤ 𝑇𝑡𝑎𝑟𝑔𝑒𝑡

𝐼𝑒 ∈ {1.00, 1.50, 2.00}
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𝑥𝑖 ∈ [1.00, 3.00] ∀ 𝑥𝑖 ∈ 𝐗𝐍𝐒

This simplified proof-of-concept function would be modified in a real-world application to account for the costs of upgrad-
ing individual components. A cost-weighted objective function would in general produce different optimal solutions, but this
function utilizes the same computational workflow and illustrates the type of insights that this approach can produce.

However, this simplified objective function cannot mix structural and nonstructural enhancements (e.g., 𝐼𝑒 and x) since there
is no common unit of measure. For this reason, 𝑓 (𝐗) does not include 𝐼𝑒 in the objective function, and hence, we perform
independent optimizations using each 𝐼𝑒 ∈ {1.00, 1.50, 2.00}. As a result, optimality is based on nonstructural improvements,
but compared across the structural improvement design space.

Next, we select the algorithm to perform all subsequent analyses. We employ real-valued genetic algorithms32, since
population-based methods perform well in high-dimensional space, and are compatible with both surrogate- and simulation-
based approaches (Figure 3), supporting comparative studies.

As mentioned in Section 2.5, the direct evaluation of the objective function using simulation-based procedures (Figure 3) is
computationally expensive, and therefore limits our ability to explore optima across 𝐼𝑒 and alternative recovery time targets. For
this reason, we evaluate the objective function 𝑓 (𝐗) using a surrogate model, developed in accordance with Section 3, whereby
design variables 𝐗 are directly mapped over to 𝑇𝐹𝑅,50 (Figure 3b). The input feature vector contains all nonstructural component
improvements in 𝐗𝐍𝐒 (Equation 5), in addition to a set of EDPs that capture changes made to 𝐼𝑒. We describe the architecture,
development, and efficacy of the surrogate model in the next section.

4.2 Development of surrogate model used in case study
In this section, we describe the development of the surrogate model used to perform the optimization in Section 4.1, following
each step of the workflow presented in Section 3. We start with an overview of the surrogate model architecture, then describe
the sampling protocol used to curate the dataset needed for training and testing. In the process, we study the relationship between
data needs and model performance, and discuss strategies to reduce the number of examples required for training. Finally, we
present the hyperparameters used to calibrate the final model, along with evaluation metrics that assess prediction performance.

We would like to emphasize that all decisions in the subsequent sections take place prior to running the analysis in Section
4.1.5.

4.2.1 Define I-O and surrogate model architecture
We define the input and output of the surrogate model based on the scope of enhancements for the case study building, defined
in Section 4.1.3. These improvements, encoded in the design vector 𝐗, include both structural and nonstructural modifications
in the form of 𝐼𝑒 and 𝑥𝑖, respectively. The objective of our surrogate model is to map the design variables in 𝐗 directly to the
50th percentile functional recovery time to be consistent with the design criteria set in Section 4.1.2.

As highlighted in Section 3.1, the input feature vector of the surrogate model is influenced by structural-nonstructural interac-
tion, and whether we wish to maintain model generality. In our case study, generality is a high priority since we are interested in
rerunning the surrogate model for a range of structural response intensities, as opposed to training a new model for each 𝐼𝑒 vari-
ant (i.e., modifications to 𝐼𝑒 would influence the response of the building). Therefore, we account for structural enhancements
implicitly through the use of EDPs. The final surrogate model input feature vector is a 43×1 array consisting of 36 nonstructural
component enhancements (Table 2), 3 story drift ratios (SDRs), and 4 peak floor accelerations (PFAs). The seven SDR and PFA
values collectively make up the EDP values for the building. For the case study building, we use these inputs to evaluate the
structural response (through EDPs obtained from nonlinear analysis) for each 𝐼𝑒 value considered at the 475-year return period.

The output of the surrogate model is the (scalar) 50th percentile functional recovery time, 𝑇𝐹𝑅,50. Given the highly nonlinear
relationship between these inputs and recovery performance, we use a deep neural network to form a statistical relationship
between the inputs and outputs. The final surrogate model architecture is illustrated in Figure 6.

4.2.2 Design of computer experiments (DoCE)
Next, we define the DoCE, or sampling protocol, to generate a set of training examples. The objective of the DoCE is to capture
as much information between the input feature vector and 𝑇𝐹𝑅,50 as possible. Our proposed method generates training examples
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FIGURE 6 Surrogate model architecture, using a deep neural network.

using the combination of two sampling approaches: (1) a space-filling (random) approach and (2) a hand-selected approach. We
handle EDP and 𝐗𝐍𝐒 differently. We describe each of these strategies in more detail.

• Space-filling (random) sampling: this sampling approach covers the input domain of design improvements uniformly,
and with approximately constant sampling density. 𝐗𝐍𝐒 values are drawn from a uniform random distribution, using
the upper and lower bounds defined in Section 4.1.3. EDP values, however, are sampled from a multivariate lognormal
distribution, calibrated (using FEMA P-58 procedures) based on results from several hundred sets of EDPs generated
via nonlinear dynamic analysis of the building. This is done since the domain is large, and there are known regions of
greater interest (e.g., some combinations of EDPs are highly unlikely). This resulting distribution accounts for EDPs
across various seismic intensity levels of interest and structural configurations (𝐼𝑒). Correlations across all variables, and
across the height of the building are maintained.

• Hand-selected sampling: here, 𝐗𝐍𝐒 and EDP are selected to teach the surrogate model about important lower-order
interactions that are statistically difficult to achieve using random sampling. Since functionality in Cook et al.11 is assessed
using a fault-tree method, interactions between specific nonstructural component improvements are important to capture.
In many cases, the recovery timeline of the building can only be improved under the influence of a particular combination
of nonstructural improvements. The sampling protocols used as a part of this strategy are summarized in Table A1. In
each case, the protocol attempts to provide information that will accelerate surrogate model learning when compared to
solely using space-filling sampling.

Once the DoCE is complete, we generate each training example using a simulation-based approach (Figure 3a, steps 1-2)
whereby the 𝐗𝐍𝐒 and EDP values in the input feature vector are used as inputs to a full downtime assessment (FEMA P-58,
followed by Cook et al.). We leverage 75,000 realizations when generating each training example of 𝑇𝐹𝑅,50 to limit the absolute
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run-to-run dispersion to 1 day. Fewer realizations may be sufficient depending on the hazard level of interest, and the impeding
factor distributions that are used in the downtime assessment.

Developing a training set can be a computationally expensive task on its own. However, the dataset will only be generated
once, so gains in computational efficiency are unlocked for all subsequent optimization analyses, as demonstrated in Section 4.3.
Furthermore, parallelizing this process across multiple CPUs (locally or via high-performance computing) can greatly reduce
computational times.

Computational cost can be further reduced by carefully selecting (i) the number of training examples, and (ii) the ratio of
random-to-hand selected cases in the training set. We demonstrate this by re-training the surrogate model on an increasingly large
pool of training examples (ranging from 10,000 to 200,000 examples), across sets that contain smaller and larger proportions of
hand-selected examples, ranging from 0 (no hand-selected, all random) to 0.5 (half hand-selected, half random). After we train
each surrogate model, we evaluate predictive performance using the coefficient of determination, 𝑅2 for: (1) the entire test set,
(2) a subset of the test set where 𝑇𝐹𝑅,50 < 30 days. We show results from this analysis in Figure 7.
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FIGURE 7 Assessing the predictive performance of the surrogate model for varying numbers of training examples and
proportions of hand-selected cases. We report 𝑅2 for (a) all examples in the test set, (b) examples where 𝑇𝐹𝑅,50 < 30 days.

Figure 7 shows that the performance of the surrogate model is high (𝑅2 ≥ 0.99) when evaluated over the entire test set,
even when data is limited. If we focus on the prediction performance for very low target times (𝑇𝐹𝑅,50 < 30 days), however,
significantly more training data is required to order to maintain a high coefficient of determination. This demonstrates that,
depending on the design criteria (e.g., target times of interest) set in Stage 2 of the framework, more or fewer data may be needed
to develop the surrogate model.

Furthermore, Figure 7 demonstrates that leveraging hand selected examples for 10% to 50% of the training set improves
performance. The performance gains are most evident when the availability of training data is low, and for very low target times
(𝑇𝐹𝑅,50 < 30 days). At some point – beyond 200,000 examples – the benefit of including hand-selecting cases diminishes.
Nonetheless, it is still recommended that some hand-selected cases are included as part of the sampling protocol. Doing so
ensures that 𝑅2 also reflects examples that test lower-order interactions between components and systems, as opposed to a purely
randomized set. A trained model using only random data (no hand selected cases) requires substantially more data in order to
capture lower-order effects (performance on hand-selected cases), particularly across 𝑇𝐹𝑅,50 < 30 (Figure 7b) examples.

Overall, we observe that maximum performance can be achieved when anywhere between 30% to 50% of the training set
consists of hand-selected cases. In our final surrogate model, we leverage a one-third to two-thirds split between hand selected
and random examples, respectively. Since we intend to perform the optimization for target times as low as 7 days (Figure 10),
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additional data is necessary to maintain accuracy of 𝑇𝐹𝑅,50 at or above 𝑅2 > 0.90. In total, we use 400,000 examples to calibrate
our model and randomly distribute this final set into a training, validation, and testing set using a 80-10-10 split.

4.2.3 Hyperparameter calibration
Using the validation set developed in the previous step, we now tune the surrogate model to locate optimal hyperparameters.
These hyperparameters include the number of layers, number of hidden units, and activation function. The optimal set of hyper-
parameters are influenced by the architecture and dataset defined in Sections 4.2.1 and 4.2.2, respectively, and can significantly
improve the surrogate model’s predictive performance. We perform the optimization using grid search, and tabulate the results
in Table 4.

TABLE 4 Hyperparameters selected to calibrate the neural network.

Hyperparameter Value

Number of layers 4
L2 Regularization term 0.005
Number of hidden units 150
Optimization algorithm Adam
Activation function ReLU

4.2.4 Evaluation
Using the architecture, dataset, and hyperparameters defined in the previous steps, we evaluate the surrogate model for accuracy
by calculating the coefficient of determination and the mean error on the test set (Figure 8). The mean error across the 𝑇𝐹𝑅,50
space is calculated using a 7-day moving average.

FIGURE 8 Distribution of 𝑇𝐹𝑅,50 labels in the training set (left). Predictive performance of the final calibrated surrogate model,
in terms of 𝑅2 (middle) and a moving mean error, based on a seven-day window for averaging (right).

Since we use the surrogate model solely for the purposes of replacing the simulation-based downtime assessment (e.g., inter-
polation as opposed to extrapolation), high values of 𝑅2 are desired. We find that, generally, 𝑅2 > 0.999 across the test set.
We also find that the surrogate model is able to replicate the 𝑇𝐹𝑅,50 predictions with relatively low absolute error. During our
experiments, the moving mean error never exceeds two days across the recovery time space. This result demonstrates that our
optima in Section 4.1.5 are generated to a high degree of accuracy. We find that leveraging a surrogate model in place of tradi-
tional, simulation-based approaches to perform a single evaluation of 𝑇𝐹𝑅,50 improves average computational times from 300s
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to 0.0002s, respectively, on on a computer with 64GB RAM and Apple M1 Max processor. Note that this comparison does not
include the time required to develop the surrogate model. Simulation-based evaluations of 𝑇𝐹𝑅,50 are generated using 75,000
downtime realizations using the approach illustrated in Figure 2. Overall, this amounts to a computational time improvement of
1,500,000 times.

4.3 Results
In this section, we present the results of the optimization for the case study building, using the setup and surrogate model defined
in Sections 4.1, and 4.2, respectively. All results leverage the objective function and optimization algorithm defined in Stage
5 of the framework (Section 4.1.5). To illustrate the output from the optimization, we first present the results considering no
structural improvement (𝐼𝑒 = 1.00). We then repeat this analysis across the structural improvement space to identify broader
trends. We perform the optimization for a range of 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 values, since performance targets may vary and the efficient surrogate
model enables rapid re-runs, but focus extra discussion on the 21 day target defined in Stage 2 of the framework. Finally, we
discuss the results and limitations of our analysis.

4.3.1 Optimization considering non-structural modifications
We perform the optimization using the design criteria set in Section 4.1.2, for 𝐼𝑒 = 1.00 (no structural modification over the
original design) across an ensemble of target times, ranging from 7 to 180 days, including impeding factors (Figure 9). For our
original target time of 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 = 21 days at the 475-year return period, the recovery gap can be eliminated by modifying only
10 of the 36 nonstructural components; 7 of the 10 components involve a nonstructural enhancement of 50% or greater. The
components requiring the most significant modifications are stairs (SDR-sensitive), glass curtain walls (SDR-sensitive), the air
handling unit (PFA-sensitive), and precast concrete panels (SDR-sensitive).

Figure 9 also depicts how the optimum solution changes across a range of recovery time targets. Notably, the number of
modified components depends on the recovery target time: only 3-4 components are necessary to achieve recovery targets
between 60 and 180 days. For target times lower than 60 days, however, an increasing number of components are required to
deliver the recovery performance (up to 20 in the case of 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 = 7 days). Underlying this observation is each component’s
relative contribution to downtime, and hence, its ability to reduce the repair schedule and impeding factors.

Relative importance can also be understood by observing the order in which certain components appear in the solution (starting
from baseline recovery performance and lowering 𝑇𝑡𝑎𝑟𝑔𝑒𝑡). We observe that the first four components to appear are stairs, glass
curtain walls, suspended ceiling type IV, and precast concrete panels. In addition, we find that while optimal nonstructural
enhancements (in terms of 𝑥𝑖) increase monotonically for some components as the target time decreases (e.g., stairs, glass curtain
walls), other component enhancements appear initially but then saturate (e.g., ceiling type IV, which never exceeds 𝑥𝑖 > 1.3
across the spectrum of target times). This suggests that for some components, there is a strong potential to reduce downtime
once strengthened, but this potential saturates as the target becomes increasingly ambitious.

4.3.2 Optimization considering structural and non-structural modifications
We next enhance the analysis by performing the optimization for 𝐼𝑒 ∈ {1.00, 1.50, 2.00}, using the design criteria set in Stage
2 (Section 4.1.2). To understand efficacy trends for structural modifications, we repeat the optimization for target times ranging
from 7 to 180 days. The results and key trends are presented in Figure 10, where the objective function values are plotted across
the range of target times considered. Recall that the objective function value 𝑓 (X) measures the average capacity increase across
the ensemble of nonstructural components.

We observe that near the baseline performance of 155 days, 𝑓 (𝐗) is equal to 1, indicating that no improvements are needed
to achieve the target. At point (c), where 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 = 120 days, however, we find that if no structural modifications are made, the
objective function rises above 1, and hence, the optimum solution requires some nonstructural improvements (Figure 10c). For
higher values of 𝐼𝑒, the resulting objective function values remain at one (i.e., no nonstructural improvements are necessary).
This observation, where higher 𝐼𝑒 values maintain lower 𝑓 (𝐗) values, is observed from 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 = 180 days to 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 = 40 days.

At roughly 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 = 35 days, however, we notice an inversion in this trend, whereby higher 𝐼𝑒 values perform worse, with
𝐼𝑒 = 2.00 optima requiring more nonstructural improvements on average than either 𝐼𝑒 = 1.50 or 𝐼𝑒 = 1.00. The optima at point
(b), taken at our original 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 value of 21 days, provides some insight behind this shift. While the optimal solution for our
design with no structural modifications (using 𝐼𝑒 = 1.00) contains substantial improvements to SDR-sensitive components and
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FIGURE 9 Optimal set of nonstructural component enhancements 𝑥𝑖 for the case study building (𝐼𝑒 = 1.00). Here, 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 ranges
from 7 days to 180 days, including impeding factors, at 𝐷𝐹𝑅 = 475 years and 𝑌 = 50%. Each set of optima represents the best
of 𝑛 = 20 successive runs using the genetic algorithm.

a few PFA-sensitive components, the acceleration amplifications incurred by 𝐼𝑒 = 1.50 and 𝐼𝑒 = 2.00 necessitate more exten-
sive strengthening to PFA-sensitive components, that outweigh the reduction in enhancement required for the SDR-sensitive
components. From these results, we can deduce that at point (b), increasing 𝐼𝑒 has a beneficial effect on SDR-sensitive compo-
nents (in the form of lower 𝑥𝑖) until 𝐼𝑒 = 1.50, at which point, the effects saturate. However, increasing 𝐼𝑒 has a negative effect
on PFA-sensitive components (in the form of higher 𝑥𝑖) across the entire 𝐼𝑒 space.

We draw several conclusions from these results. First, the efficacy of structural modifications is contingent on the value of
𝑇𝑡𝑎𝑟𝑔𝑒𝑡 set in Stage 2. For this case study, at higher 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 values, increases in 𝐼𝑒 yield lower objective function values, and hence,
require fewer nonstructural modifications. At the lowest target times, however, this observation is reversed, and lower values
of 𝐼𝑒 outperform. Second, regardless of 𝐼𝑒, optimal nonstructural component enhancement schemes at the lowest target times
require substantial improvements to both SDR-sensitive components (e.g., stairs, curtain walls) and PFA-sensitive components
(e.g., HVAC fan, duct drops, air handling unit). At higher recovery targets (> 120 days), however, using an 𝐼𝑒 of 1.50 or greater
eliminates the need to strengthen nonstructural components altogether.

4.3.3 Limitations
Our case study serves as a proof-of concept to exercise the framework and demonstrate its feasibility, and is subject to a few
limitations. First, the Equation 6 objective function (and resulting optima), is based exclusively on relative importance to recov-
ery without consideration of the differential costs of enhancing various nonstructural components. In addition, we constrain the
design space for all nonstructural components using a lower and upper bound of 1.00 (no change) and 3.00 (triple the median
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FIGURE 10 Optimal objective function values (a) for the case study SMRF (𝐼𝑒 = 1.00, 1.50, 2.00). Here, 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 ranges from 7
days to 180 days, including impeding factors, at 𝐷𝐹𝑅 = 475 years and 𝑌 = 50%. Optimal nonstructural enhancements 𝑥𝑖 are
shown at two points: 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 = 21 days (b) and 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 = 120 days (c). Each set of optima represents the best of 𝑛 = 20 successive
runs using the genetic algorithm.
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capacity for all damage states), respectively. For real-world analyses, the upper bound will need to be modified for each compo-
nent to reflect physical limits of improvement. The improvement values may also be discrete rather than continuous, reflecting
discrete options for component specifications.

Furthermore, the surrogate model’s input feature vector, as defined in Figure 6, contains only a single set of EDPs. This
implies that any downtime estimates are conditioned on the user-provided EDP (i.e., there is uncertainty in the modeling but
not the response), and it is up to the user to consider uncertainty by evaluating 𝑇𝐹𝑅,50 (using the surrogate model) across a suite
of EDP sets. For simplicity, we perform all optimization in this section using a single, representative set of EDPs (the median
set across 40 nonlinear analyses).

It is important to note, however, that these limitations are specific to the application presented in this section, as opposed to the
general methodology. Overall, the case study conveys the depth and breadth of the framework outputs that are enabled through
surrogate modeling approaches. In a real-world application, additional data on design constraints and costs of enhancements can
be used to modify the objective function and optimization constraints, without requiring other changes to the analysis workflow.

5 CONCLUSIONS

This study proposed a framework to identify optimal design improvements to achieve building-specific recovery time objectives.
The framework was partly enabled by a workflow to develop surrogate models that (i) rapidly estimate functional recovery
performance under a range of user-defined improvements, and (ii) enable complex and informative optimization techniques for
a range of stakeholder priorities.

The proposed optimization framework consists of five stages, beginning with a site-specific design in accordance with current
code objectives, followed by a baseline assessment that quantifies the "at-code" recovery performance. Recovery-based design
criteria are then set to define the target recovery time, hazard level, and acceptability threshold. In the process, the recovery
gap, defined as the the difference between the baseline functional recovery and target functional recovery time, is computed.
Next, the recovery-based design strategy and design space is defined, with the objective of achieving the target (i.e., closing the
recovery gap). If the considered enhancements, under maximal enhancement, yield acceptable recovery performance, then the
optimization is performed to identify the optimal solution in the design space that satisfies the user-defined design criteria.

A number of conclusions were made from the case study, which applied the framework to the early-stage conceptual design
of a new low-rise office building. Leveraging a surrogate model in place of traditional, simulation-based approaches improved
computational times (e.g., of computing 𝑇𝐹𝑅,50 under parameterized design variables) by an order of over 1,500,000 times on
a local computer. Results from repeating the optimization for different values of 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 revealed trends that would otherwise
be difficult to extract from a single analysis. These trends include the influence of the selected design criteria (in the form of
𝑇𝑡𝑎𝑟𝑔𝑒𝑡) on the efficacy of structural modifications. In addition, we found that at the 475-year hazard level, (and in the absence of
structural modifications) only four of the 36 nonstructural components required strengthening to halve the original 50th percentile
functional recovery time. Such insights can support recovery-based design of individual projects, along with the development
of general, prescriptive requirements as a function of downtime targets.

While most of the computational cost savings are made during the execution of the surrogate model, the case study also
demonstrated that using hand-selected examples for 10% - 50% of the training set significantly reduced the required number
of training examples, and hence, has the potential to reduce the computational cost of generating training data. Furthermore,
the number of training examples also depended on the target time of interest – for the case study, achieving high predictive
performance for low target times (𝑇𝐹𝑅,50 < 30 days) required additional data.

Finally, the case study demonstrated that the proposed optimization framework is flexible and can accommodate various
design modifications and design criteria. While our case study leveraged nonstructural and structural modifications through the
use of 𝑥𝑖 and 𝐼𝑒, respectively, these serve as a proof of concept and can be extended to consider additional engineering decisions.
Since the efficacy of different engineering modifications will vary on a building- and site-specific basis, such flexibility will help
enable the exploration of optimal solutions across different buildings.
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APPENDIX

A CASE STUDY SURROGATE MODELLING

A.1 Hand-selected sampling protocols
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TABLE A1 Sampling protocols used as part of the hand-selected DoCE strategy.

Sampling protocol name Sampling
protocol size

EDP sampling 𝑥𝑖 sampling

Baseline Varies Random* All 𝑥𝑖 held at 1.00 (no modification)
One component at a time Fixed Incrementally

increased by
decile**

OAT analysis: 𝑥𝑖 incrementally increased by 10% from
𝑥𝑖 ∈ [1.00, 3.00]. All other values held at 1.00 (no
modification)

One component at a time
(inverse)

Fixed Incrementally
increased by

decile**

OAT analysis: 𝑥𝑖 incrementally increased by 10% from
𝑥𝑖 ∈ [1.00, 3.00]. All other values held at 3.00
(maximum modification)

One system at a time Fixed Incrementally
increased by

decile**

OAT analysis: all components within specific system
have their 𝑥𝑖 values incrementally increased by 10%
from 𝑥𝑖 ∈ [1.00, 3.00]. All other system components
held at 1.00 (no modification)

One system at a time
(inverse)

Fixed Incrementally
increased by

decile**

OAT analysis: all components within specific system
have their 𝑥𝑖 values incrementally increased by 10%
from 𝑥𝑖 ∈ [1.00, 3.00]. All other system components
held at 3.00 (maxmium modification)

Uniform scaling Fixed Incrementally
increased by
percentile**

All 𝑥𝑖 simultaneously increased. All values
incrementally increased by 10% from 𝑥𝑖 ∈ [1.00, 3.00].

Random EDP, Random
within-system

Varies Random* Uniform random sampling of 𝑥𝑖 ∈ [1.00, 3.00], for
components within specific system. All other system
components held at 1.00 (no modification)

Random EDP, Random
within-system (inverse)

Varies Random* Uniform random sampling of 𝑥𝑖 ∈ [1.00, 3.00], for
components within specific system. All other system
components held at 3.00 (max modification)

Random EDP, Random
within-system,
low-modifications

Varies Random* Uniform random sampling of 𝑥𝑖 ∈ [1.00, 1.50], for
components within specific system. All other system
components held at 1.00 (no modification)

Random EDP, Random
within-system,
low-modifications (inverse)

Varies Random* Uniform random sampling of 𝑥𝑖 ∈ [1.00, 1.50], for
components within specific system. All other system
components held at 3.00 (max modification)

*Set of examples randomly sampled from multivariate lognormal.

**Set of examples randomly sampled from multivariate lognormal. Sorted. Percentiles and deciles computed by ranking resulting EDP set by 𝑃𝐹𝐴0.
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