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ABSTRACT
The Adaptive Regional Input-Output (ARIO) model is popular for quantifying indirect economic losses,

which stem from business and supply chain interruption. However, refining this model to study new contexts
is challenging in its basic form due to low-resolution modeling of behavioral parameters and temporally
static reconstruction rates. This paper presents a refined ARIO, or R-ARIO model that incorporates dynamic
reconstruction rates, sector-level modeling of behavioral parameters, and explicit modeling of housing losses
separately from productive capital losses. We perform a global variance-based sensitivity analysis to identify
the most influential parameters on predicted indirect loss from the R-ARIO model. A case study application
to the 2016 Kumamoto Earthquake Sequence isolates trends in housing and economic recovery, capturing
temporal differences in reconstruction demand and uncertainty across economic indicators.

INTRODUCTION
Indirect losses stemming from the disruptions in production and supply chains make up a substantial

portion of post-disaster loss. The 1994 Northridge Earthquake, 2008 Wenchuan Earthquake, and 2011
Tohoku Earthquake generated 7.3, 124, and 211 billion U.S. dollars of indirect loss, respectively (Petak
and Elahi 2000; Wu et al. 2012; MacKenzie et al. 2012). These losses, amounting to 17%, 35%, and 37%
of the events’ total post-disaster losses, illustrate that exclusive prediction of direct losses can significantly
underestimate post-disaster impacts.

Several macroeconomic modeling tools, predominantly Computable general equilibrium (CGE) models,
Input-output (I-O) models, and their extensions, have been developed to quantify post-disaster indirect loss
across sectors in a regional economy (Botzen et al. 2019; Okuyama 2022). CGE models have been used to
simulate post-disaster impacts by estimating how shocks to the supply and demand of goods and services
affect interactions between different agents of an economy, including households, firms, and government
(Rose and Liao 2005). They account for price adjustments, business adaptation behaviors, economies of
scale, and nonlinear impact functions. Without refinement, CGE models tend to overestimate resilient
response in the short run by assuming rational behavior of the market and allowing for substitution of
commodities (Rose and Liao 2005; Okuyama 2007; Botzen et al. 2019). To address these limitations, recent
developments in CGE modeling, such as time-varying CGE models (Rose and Guha 2004) and the dynamic
equilibrium seeking (DES) model (McDonald and McDonald 2020), provide more accurate representations
of short-term economic responses to disasters. Despite these improvements, CGE models often require
extensive data and calibration, which can limit their practical application among emergency management
practitioners (Okuyama 2022).

I-O models have been used for indirect loss prediction due to their simplicity, relatively low data
requirements, and capacity to capture inter-sectoral dependencies (Botzen et al. 2019). These models leverage
input-output tables that characterize production inputs and outputs of each sector. However, limitations of
basic I-O models include fixed production coefficients, overlooked supply constraints, the absence of price
adjustments, failure to account for business adaptation, and the assumption of constant linear relationships
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between inputs and outputs (Koks et al. 2016; Galbusera and Giannopoulos 2018). As a result, I-O models
tend to overestimate disaster impacts (Galbusera and Giannopoulos 2018; Hallegatte 2014).

The Adaptive Regional Input-Output model (ARIO) extends the basic I-O model to address some of its
limitations by incorporating changes in productive capacity due to productive capital losses and adaptive
behaviors by individual sectors (Hallegatte 2008). Examples of adaptive behaviors include overproduction,
which can be achieved through production recapture (e.g., overtime or extra shifts to compensate for lost
production), or resource isolation (e.g., modifying operations to run without typical inputs). Both tactics
have been highly effective in various post-disaster contexts (Wein and Rose 2011; Haywired 2019; Wei et al.
2020). The ARIO model has since been improved in Hallegatte (2014) to explicitly model inventories and
production bottlenecking. Due to its ability to account for supply-side shocks and sectoral adaptations during
recovery, the ARIO model has been widely applied in short-term disaster impact analyses, particularly in
the period before the economy transitions to a new production pattern (Okuyama 2022; Guan et al. 2020).
Initially used to assess economic recovery following Hurricane Katrina, the ARIO model has since been
applied to analyze the impacts of many other hazards, including climate change, earthquake, wildfire, and
flood impacts (Ranger et al. 2011; Zhang et al. 2017; Markhvida et al. 2020; Wang et al. 2021; Liu et al.
2023).

This paper refines the ARIO model to address several limitations in the ARIO model itself and other
macroeconomic models for assessing indirect losses. First, few macroeconomic models account for the
interactions between physical reconstruction (i.e., time it takes to repair a building or infrastructure con-
sidering its damage level) and economic activities and constraints during recovery, and those that do often
simplify these dynamics. The ARIO model assumes a constant, temporally static reconstruction rate for each
sector, leading to identical reconstruction demands across all time steps until all productive capital has been
reconstructed. While this rate can be modified, it cannot capture differences across sectors or time. This
limitation can misrepresent the evolving demands on the economy during different phases of recovery and
lead to inaccurate estimates of sector-specific recovery trajectories.

Second, similar to other I-O models, the ARIO model does not have an explicit mechanism for handling
housing losses, which often comprise a substantial portion of the total direct loss. Previous studies have
assigned all housing reconstruction demand to the real estate sector (Hallegatte 2014; Markhvida and Baker
2023). This workaround captures housing-related reconstruction demands but distorts economic recovery
for the real estate sector because it implies that housing is part of the productive capital of that sector. The
extent of distortion will vary depending on the amount of damaged housing and productive capital in the real
estate sector. Furthermore, this simplification limits the model’s ability to evaluate the impact of housing
recovery on economic resilience and vice versa, which is crucial for assessing the effectiveness of disaster
risk reduction programs.

Finally, the ARIO model characterizes post-disaster inventory, overproduction, and heterogeneity through
economy-wide behavioral parameters. These parameters capture the adaptability of the economy after a
disaster and offer flexibility for modelers to tailor economic behavior to the specific characteristics of a
study region. However, these parameters are modeled at an economy-level resolution. One consequence of
low-resolution modeling is that a single change to one parameter must be applied to all sectors, regardless
of inter-sector differences. Modelers wishing to select these parameters for new study regions must use
a "one-size-fits-all" approach. As a result, several studies (e.g. Ranger et al. 2011; Zhang et al. 2017;
Wang et al. 2018; Markhvida and Baker 2023) simply adopt the parameters used to model post-Katrina
recovery introduced in Hallegatte (2008) or Hallegatte (2014), despite transferring them to a non-Katrina
context. The effect of supplier disruption has been shown to vary by sector, where suppliers who produce
differentiated goods, have a high level of research and development, or own patents cause greater disruption
(Barrot and Sauvagnat 2016). Furthermore, low-resolution modeling makes it more difficult to refine specific
parameters since empirical evidence often exists at the sector or sector-category level, and it is not clear from
sensitivity analyses which sectors contribute the most to the variance in the predicted ARIO output. Due to
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these challenges, past studies have not been able to perform sector-level sensitivity analyses or uncertainty
quantification.

To address the abovementioned issues, this paper proposes the R-ARIO model to simulate post-disaster
economic recovery. The R-ARIO model improves on previous iterations of the ARIO model by introducing
(i) dynamic reconstruction rates based on sector-specific reconstruction time curves, (ii) explicit modeling
of housing losses separate from productive capital losses, and (iii) sector-level modeling and uncertainty
quantification of behavioral parameters. In addition, we propose the use of global sensitivity analyses
to identify the most important behavioral parameters for further refinement. The R-ARIO model and the
accompanying sensitivity analysis approach are demonstrated in a case study that explores economic recovery
following the 2016 Kumamoto Earthquake. As part of the case study, we explore the influence of each model
enhancement on the predicted indirect loss and illustrate how global sensitivity analyses can be used to
prioritize future refinement of behavioral parameters.

THE R-ARIO MODEL
This section provides an overview of the R-ARIO model and describes its inputs, outputs, and architecture.

Subsections describe each model improvement in greater detail.
The R-ARIO model extends the work by Hallegatte (2014) in three ways:

1. Reconstruction demand is modeled dynamically throughout the recovery period using time-dependent,
sector-specific reconstruction rates.

2. Housing losses are incorporated into the model explicitly and separately from productive capital
losses.

3. Behavioral parameter modeling is performed at the individual sector level to enable parameter
refinement that accounts for inter-sector differences and enables uncertainty quantification. We
propose a set of updated parameters that reflect these differences based on documented cases of
business adaptation.

Figure 1 illustrates the R-ARIO model workflow, which consists of three main steps.
First, a study region and disaster are defined for the analysis. Disasters are based on observed past events

or hypothetical events (e.g., using simulation-based scenarios). The disaster is used to determine the spatial
extent of the study and the amount of capital loss per sector resulting from the damage.

Next, input data specific to the regional economy (comprised of 𝑁𝑠 sectors) is assembled. The required
data falls into four categories: pre-disaster economic activity (e.g., value added, exports), monetary losses
due to direct damage, reconstruction time curves, and behavioral parameters. These are detailed in Table 1.

Sector-level data encompasses a series of "baseline" inputs used to quantify steady-state economic
activity. The first of these inputs is the local input-output (I-O) table, a matrix representing the flow of
goods and services exchanged between sectors in the defined economy, indicating how the outputs of one
sector become an input for others. This table is used to derive input-output ratios that control the amount of
inputs necessary to fulfill productive tasks. Next, value added and fixed assets are provided for each sector.
Value added represents each sector’s net contribution to the defined economy’s output. It is calculated as
the difference between a given sector’s total output and the value of intermediate inputs it consumes from
supplying sectors. Fixed assets represent the value of productive capital leveraged by each sector to produce
goods and services. Fixed assets are assumed to equal the total replacement value of buildings within a given
sector. Finally, exports, imports, and local demand are provided. Exports represent the value of goods and
services produced by each sector within the defined economy that are sold outside the study region. Imports
represent the value of goods and services produced by each sector outside the study region that are brought
into the defined economy. Local final demand refers to the total demand for goods and services by final
consumers.
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Fig. 1. General overview of the R-ARIO model workflow.

Sector-level reconstruction time curves are time-dependent functions representing the reconstruction
trajectory of damaged buildings within a specific sector. These inputs are used to determine sector-specific
reconstruction rates of productive capital as part of the first enhancement in this study. User-provided
reconstruction time curves only account for the time it takes to reconstruct buildings and do not include
indirect delays that impede the start of repairs or slow work due to a lack of needed inputs. We describe the
dynamic reconstruction rates below.

Sector-level direct losses are monetary losses directly attributed to damage from the disaster. These
inputs control the loss of productive capital and the approximate drop in productive capacity, at the onset of
the disaster for each sector.

Finally, sector-level behavioral parameters characterize adaptation and inventory mechanics of each
sector following the disaster. Like the ARIO model, the R-ARIO model considers five behavioral parameters
selected by the user to characterize the regional economy. These are discussed in greater detail later.

Running the R-ARIO model
At the beginning of each simulation, behavioral parameters are sampled from user-defined distributions

for uncertainty quantification purposes. Each simulation tracks economic recovery at discrete time steps
over a user-defined period. At each time step, a three-stage calculation (as shown in Figure 1) is performed
to estimate key economic metrics at the sector level.

Stage I: Simulate demand
Demand 𝐷𝑖 (𝑡) for each sector 𝑖 is computed at each time step (𝑡) as the sum of inventory orders, local

final demand, reconstruction demand due to damaged productive capital, and exports:

𝐷𝑖 (𝑡) =
∑︁
all 𝑗

𝑂 𝑗 ,𝑖 (𝑡) + 𝐶𝑖 (𝑡) + 𝑅𝑖 (𝑡) + 𝐸𝑖 (𝑡) (1)
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TABLE 1. Inputs to the R-ARIO model. Here, 𝑁𝑠 represents the number of sectors in the defined economy,
and (𝑁𝑠 + 1) represents the number of sectors, plus housing. 𝑁step refers to the length of the time domain
used as the x-axis of each recovery curve.

Input Category Size Units Differences in treat-
ment
(R-ARIO versus ARIO)

Local input-output
table

Sector-level
economic
data

𝑁𝑠 × 𝑁𝑠 Monetary value None

Value added Sector-level
economic
data

𝑁𝑠 × 1 Monetary value None

Exports Sector-level
economic
data

𝑁𝑠 × 1 Monetary value None

Imports Sector-level
economic
data

𝑁𝑠 × 1 Monetary value None

Local final demand Sector-level
economic
data

𝑁𝑠 × 1 Monetary value None

Direct losses Sector-level
direct losses

(𝑁𝑠 + 1) × 1 Monetary value None

Reconstruction
time curves

Sector-level
reconstruction
time curves

(𝑁𝑠 + 1) × 𝑁step Unitless
(Fraction of
damaged capital
reconstructed)

Used to determine
time-dependant recon-
struction time rates in
R-ARIO. Not used in the
ARIO model.

Behavioral parame-
ters

Sector-level
behavioral
parameters

𝑁𝑠 × 5 Varies by
parameter

Modeled at the sector-
level resolution in R-
ARIO. Modeled at the
economy-level in ARIO.

where:
𝑂 𝑗 ,𝑖 (𝑡) = Orders (intermediate consumption) from sector 𝑗 to sector 𝑖 at time 𝑡
𝐶𝑖 (𝑡) = Local final demand to sector 𝑖 at time 𝑡
𝑅𝑖 (𝑡) = Reconstruction demand for sector 𝑖 at time 𝑡
𝐸𝑖 (𝑡) = Exports of sector 𝑖 at time 𝑡

At each time step, demand 𝐷𝑖 (𝑡) is satisfied by two sources: production and imports. If these two
sources cannot fulfill demand, sectors begin proportionally rationing (using the ratio between production
and demand at the current time step) across 𝑂 𝑗 ,𝑖 (𝑡), 𝐶𝑖 (𝑡), 𝑅𝑖 (𝑡), and 𝐸𝑖 (𝑡).

A key component in the calculation of demand 𝐷𝑖 (𝑡) is reconstruction demand 𝑅𝑖 (𝑡). Fulfillment
of reconstruction demand drives the restoration of productive capital over time. 𝑅𝑖 (𝑡) is estimated using
Equation 2:
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𝑅𝑖 (𝑡) =
∑︁
all 𝑗

(𝑅𝐷𝑀 𝑗 ,𝑖 (𝑡) × rate 𝑗 (𝑡)) (2)

where:
𝑅𝐷𝑀𝑖, 𝑗 (𝑡) = Reconstruction demand from sector 𝑗 to sector 𝑖 at time 𝑡;

rate 𝑗 (𝑡) = Rate of reconstruction of sector 𝑗’s productive assets at time 𝑡

To take into account the time-dependent nature of reconstruction, the R-ARIO model introduces the term
rate 𝑗 (𝑡), which represents the rate of reconstruction at the current time step, described further below.
Stage II: Simulate production

In the absence of supply-side constraints, the production of sector 𝑖 would equal the demand for sector 𝑖
at each time step. However, the R-ARIO model constrains the estimated production in two ways. It is first
constrained by production capacity, 𝑃𝑐𝑎𝑝

𝑖
(𝑡), when productive capital is insufficient to meet demand (e.g., in

cases with significant direct damage to a sector). Production is also constrained by inventories. It is assumed
that if inventories are lower than their required levels, then production is reduced.

The final value of production, 𝑃𝑎
𝑖
(𝑡), accounts for both the production capacity and inventory constraints.

Computing the value of 𝑃𝑎
𝑖
(𝑡) follows three principal calculations. First, each sector’s required inventory

levels 𝑆𝑟
𝑗,𝑖
(𝑡) are computed. 𝑆𝑟

𝑗,𝑖
(𝑡) represents the amount of input 𝑗 necessary to meet the local production

level of sector 𝑖 over the duration of inventory 𝑗 , calculated as:

𝑆𝑟𝑗,𝑖 (𝑡) =


𝑛 𝑗 ×

(
𝑃
𝑐𝑎𝑝

𝑖
(𝑡) − 𝐼𝑖 (𝑡)

)
× 𝐴 𝑗 ,𝑖 (𝑡) if 𝐷𝑖 (𝑡) > 𝑃

𝑐𝑎𝑝

𝑖
(𝑡)

𝑛 𝑗 × 𝐷𝑖 (𝑡) ×
𝑃
𝑐𝑎𝑝

𝑖
(𝑡) − 𝐼𝑖 (𝑡)

𝑃
𝑐𝑎𝑝

𝑖
(𝑡)

× 𝐴 𝑗 ,𝑖 (𝑡) if 𝐷𝑖 (𝑡) ≤ 𝑃
𝑐𝑎𝑝

𝑖
(𝑡)

(3)

where:
𝑛 𝑗 = Target inventory level of supplying sector 𝑗 in days of demand

𝑃
𝑐𝑎𝑝

𝑖
(𝑡) = Production capacity of sector 𝑖 at time 𝑡

𝐼𝑖 (𝑡) = Imports of sector 𝑖 at time 𝑡
𝐴 𝑗 ,𝑖 = I-O table coefficients (required units of input from sector 𝑗 to produce unit of sector 𝑖)

Next, the maximum possible production of sector 𝑖, 𝑃𝑚𝑎𝑥
𝑗,𝑖

(𝑡), depends upon the actual inventory level of
input 𝑗 . If required inventory 𝑆𝑟

𝑗,𝑖
(𝑡) is not met, then the maximum possible production 𝑃𝑚𝑎𝑥

𝑗,𝑖
(𝑡) is reduced

proportionally, taking into consideration inventory substitution effects (heterogeneity):

𝑃𝑚𝑎𝑥
𝑗,𝑖 (𝑡) =



(
𝑃
𝑐𝑎𝑝

𝑖
(𝑡) − 𝐼𝑖 (𝑡)

)
× min

(
1,

𝑆 𝑗 ,𝑖 (𝑡)
𝜓 𝑗 × 𝑆 𝑗 ,𝑖 (𝑡)

)
+ 𝐼𝑖 (𝑡) if 𝐷𝑖 (𝑡) > 𝑃

𝑐𝑎𝑝

𝑖
(𝑡)

min

(
𝐷𝑖 (𝑡), 𝐷𝑖 (𝑡) ×

𝑃
𝑐𝑎𝑝

𝑖
(𝑡) − 𝐼𝑖 (𝑡)

𝑃
𝑐𝑎𝑝

𝑖
(𝑡)

× min
(
1,

𝑆 𝑗 ,𝑖 (𝑡)
𝜓 𝑗 × 𝑆 𝑗 ,𝑖 (𝑡)

)
+ 𝐼𝑖 (𝑡)

)
if 𝐷𝑖 (𝑡) ≤ 𝑃

𝑐𝑎𝑝

𝑖
(𝑡)

(4)

where:
𝑃𝑚𝑎𝑥

𝑗,𝑖
(𝑡) = Maximum production of sector 𝑗 to sector 𝑖

𝑆 𝑗 ,𝑖 (𝑡) = Actual inventory of input 𝑗 for sector 𝑖 at time 𝑡
𝑆𝑟 ( 𝑗 , 𝑖) (𝑡) = Required inventory of sector 𝑗 to sector 𝑖 at time 𝑡

𝜓 𝑗 = Production reduction parameter (heterogeneity) of sector 𝑗
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For each input sector 𝑗 , if the current inventory is greater than or equal to 𝑆𝑟
𝑗,𝑖
(𝑡), no sectoral constraints

are applied. On the other hand, if a given sector cannot meet the required inventory, then its production is
reduced using a ratio that considers heterogeneity in disaster losses and impacts. The top and bottom terms
in Equation 4 account for the case in which the production capacity of sector 𝑖 is insufficient and sufficient
to fulfill demand, respectively.

Finally, the actual production 𝑃𝑎
𝑖
(𝑡) is taken as the minimum of all sectoral constraints:

𝑃𝑎
𝑖 (𝑡) = min

(
𝑃𝑚𝑎𝑥

𝑗,𝑖 (𝑡), for all 𝑗
)

(5)

Stage III: Update supply and key economic metrics
Demand and production are then used to update supply and calculate key economic metrics such as value

added, which is calculated as production minus intermediate production and imports:

𝑉𝐴𝑖 (𝑡) = 𝑃𝑎
𝑖 (𝑡) − 𝐼𝑖 (𝑡) −

∑︁
all 𝑗

𝐴 𝑗 ,𝑖 × 𝑃𝑎
𝑖 (𝑡) (6)

where:
𝑉𝐴𝑖 (𝑡) = Value added of sector 𝑖 at time 𝑡

𝐼𝑖 (𝑡) = Imports to sector 𝑖 at time 𝑡
𝐴 𝑗 ,𝑖 = Coefficients of the I-O table

By repeating the calculations in Stages I through III across all sectors, value added, production, and
unsatisfied demand can be tracked over time to produce economic recovery curves. Uncertainty across
different economic metrics can be captured by rerunning the R-ARIO model using different behavioral
parameter samplings. The resulting recovery curve ensembles for each sector, which consider uncertainty in
the assumed behavioral parameters, are the final output of the R-ARIO model.

The following three sections cover the implementation of three R-ARIO enhancements in greater detail.

Dynamic reconstruction rate
Reconstruction demand plays a significant role in the economic recovery process, since it is a critical

component of sector-specific demand 𝐷𝑖 (𝑡), and drives the restoration of productive capital (and hence,
production capacity) over time. Equation 2 indicates that the reconstruction demand is driven by the
assumed rate of reconstruction, rate 𝑗 (𝑡).

Past iterations of the ARIO model (Hallegatte 2008; Hallegatte 2014) assume a constant value of
rate 𝑗 (𝑡) for all timesteps. The original ARIO model assumed a constant half-year reconstruction time for
all sectors, and hence, a rate of 1

0.5 throughout the recovery process. Markhvida and Baker (2023) extended
this assumption to account for differences in reconstruction speed across sectors by using the time to 95%
reconstruction for sector 𝑗 (i.e., 𝜏𝑗 ,95), based on sector-specific reconstruction times. While this allows for
differing reconstruction processes for each sector, it still employs a constant reconstruction rate equivalent
to 1

𝜏 𝑗,95
across the recovery period for each sector.

To account for temporal variations in this rate, the R-ARIO model leverages a "dynamic" reconstruction
rate for each sector 𝑗 that is updated throughout a simulation based on reconstruction progress (Figure 2b).

For a given sector, the mapping between rate 𝑗 (𝑡) and the fraction of damaged productive capital recon-
structed (Figure 2b) is derived using user-provided reconstruction time curves (Figure 2a). This is done by
taking the derivative of the reconstruction time curve with respect to time and then mapping it directly to the
fraction of damaged productive capital reconstructed.
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Fig. 2. In the R-ARIO model, the mapping between rate 𝑗 (𝑡) and reconstruction progress (right) is developed
using the user-provided reconstruction time curve for sector 𝑗 (left).

Explicit consideration of housing losses
Housing damage can produce a significant portion of post-disaster loss and reconstruction demand in an

impacted region. Previous applications of the ARIO model typically assigned this reconstruction demand
to the real estate sector (Hallegatte 2014; Markhvida and Baker 2023). While this approach accounts for
housing loss in the analysis, it treats their replacement costs as productive capital. Since the ARIO model
uses the ratio of loss to productive capital to estimate the initial drop in production, this approach can distort
economic recovery for the real estate sector and cause unintended upstream and downstream ripple effects.

Rather than assigning housing losses and productive capital to an individual sector, the improved R-ARIO
approach assigns housing losses to a distinct housing "sector." This sector only generates reconstruction
demands, and is assumed to hold no productive capital. The housing sector does not contribute to any
macroeconomic calculations of inputs, outputs, or production. As a result, these losses are accounted for in
the analysis without influencing the initial drop in production for non-housing sectors.

Sector-level behavioral parameter modeling
Finally, the R-ARIO model utilitzes sector-level behavioral parameter modeling to enable more gran-

ular refinement, uncertainty quantification, and global sensitivity analysis. Behavioral parameters, which
characterize sector-level adaptation and inventory mechanics, significantly influence the predicted economic
recovery and indirect loss. For example, past sensitivity analyses have shown that the choice of inventory
parameters 𝑛𝑠 and 𝜏𝑠 can move predicted changes in value added shortly after the disaster from moderate (<
20%) to economic collapse (100%) (Hallegatte 2014).

The R-ARIO model considers the same five ARIO behavioral parameters that control economic recovery
dynamics. Time to maximum overproduction (𝜏𝛼) introduces a temporal dimension, defining the duration
needed for the production system to adjust and reach peak overproduction capacity. Time of inventory
restoration (𝜏𝑠) quantifies the duration required to restore inventory levels to the predefined target after
a disruption. The maximum overproduction parameter (𝛼𝑚𝑎𝑥) defines the upper limit of overproduction
capacity in response to increased demand. Target inventory level (𝑛 𝑗) represents the temporal dimension
of inventory management, specifying the duration for which available inventory can support production.
Finally, the production reduction (or heterogeneity) parameter (𝜓) captures the response of businesses to
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disaster impacts, influencing the extent to which production is reduced when inventories are insufficient.
Past studies (e.g. Ranger et al. 2011; Zhang et al. 2017; Wang et al. 2018; Liu et al. 2023; Markhvida

and Baker 2023) assign identical parameter values for each sector in the economy, typically using the values
proposed by Hallegatte (2014) and indicated in Figure 3. An exception to this is for sectors with non-stockable
goods — in those cases, the target inventory level 𝑛 𝑗 is set to 3 days to account for the fact that many sectors
cannot store long-lasting inventories (e.g., utilities).

The R-ARIO model includes updated behavioral parameters split across seven major sector categories
(Figure 3). This proposed set retains some prior values and makes amendments where evidence is available.
Furthermore, we maintain treatment for "non-stockable" goods for utilities sectors (Hallegatte 2014), as
described earlier in this section. We use these parameters later as part of the case study.

For each category-parameter pair, we also define lower and upper bounds (denoted by the blue bars in
Figure 3) for use in uncertainty quantification and sensitivity studies. Hence, the parameter values selected
serve as the central values of their corresponding sampling distribution.
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Fig. 3. Proposed distributions of behavioral parameters for each of the defined sector categories, compared
against the default values in (Hallegatte 2014).
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Overproduction parameters
We refine overproduction parameters 𝜏𝛼 and 𝛼𝑚𝑎𝑥 (Figure 3a, Figure 3c). First, we reduce 𝜏𝛼 from 12

months to 6 months for Manufacturing and Beverages + Foods sectors, drawing insights from the accelerated
deployment of production recapture strategies following events like the 2016 Kumamoto Earthquake (S&P
Global 2016a; S&P Global 2016b; Maruya et al. 2017). We reduce 𝜏𝛼 from 12 months to 1 month for
Services sectors. Services typically carry little inventory compared to other sectors, and can adapt rapidly
due to high teleworking potential compared to non-services industries (OECD 2021). For Utilities sectors,
where responsiveness to consumer demand is critical, we reduce 𝜏𝛼 to 3 days to reflect agility in adjusting
production continuously to match demand, many times throughout the day (e.g., energy utilities). Finally,
we lower 𝛼𝑚𝑎𝑥 from 125% to 110% across all sectors to better align with empirical industrial productivity
indices (IIPs) following the 2011 Tohoku Earthquake (Kajitani et al. 2013; Ministry of Economy, Trade and
Industry (METI) 2018).

Inventory parameters
In most cases, we maintain the default values of inventory parameters 𝜏𝑠 and 𝑛𝑠 (Figure 3b, Figure 3d),

except for Utilities and Services sectors, where we reduce 𝜏𝑠 from 30 days to 3 days. This implies that Utility
sectors can rapidly replenish their inventories when productive capital remains undamaged. Similarly, for
Services sectors, we reduce 𝜏𝑠 from 30 days to 14 days to reflect rapid adaptability. Finally, we reduce 𝑛𝑠
from 90 days to 30 days for Services sectors, because Services sectors carry little inventory compared to
other sectors.

Heterogeneity parameter
Finally, we reduce the heterogeneity parameter 𝜓 from 0.8 to 0.7 for all sectors to reflect recent studies

of post-shock substitutional elasticity (Figure 3e). Fujiy et al. (2022) suggests that elasticities (the degree
to which consumers or producers can switch between different goods or services in response to changes in
prices or availability) are slightly higher (between 0.38 and 0.41) than previously reported in Atalay (2017).
Such an increase implies that production reductions (that arise when inventories are insufficient) are softened,
due to increased flexibility. As a result, 𝜓 should decrease to reflect increased input substitutability.

R-ARIO BEHAVIORAL PARAMETER SENSITIVITY ANALYSIS
In this section, we describe a Sobol sensitivity analysis (Saltelli et al. 2010) to quantify the influence of

R-ARIO behavioral parameters on the predicted indirect loss. We apply this approach for the parameters
assigned to the 𝑁𝑐𝑎𝑡 = 7 sector categories defined in Figure 3.

First, we select sampling bounds for the behavioral parameters based on the upper and lower bounds in
Figure 3. Sobol sampling is used to efficiently cover the sample space.

Next, we generate samples of the behavioral parameters. Each sample of parameters X(𝑘 ) is a 𝑁𝑐𝑎𝑡 × 5
matrix, accounting for the five types of behavioral parameters:

X(𝑘 ) =


𝜓
(𝑘 )
1 𝑛

(𝑘 )
𝑠,1 𝜏

(𝑘 )
𝑠,1 𝛼

(𝑘 )
𝑚𝑎𝑥,1 𝜏

(𝑘 )
𝛼,1

𝜓
(𝑘 )
2 𝑛

(𝑘 )
𝑠,2 𝜏

(𝑘 )
𝑠,2 𝛼

(𝑘 )
𝑚𝑎𝑥,2 𝜏

(𝑘 )
𝛼,2

...
...

...
...

...

𝜓
(𝑘 )
𝑁𝑐𝑎𝑡

𝑛
(𝑘 )
𝑠,𝑁𝑐𝑎𝑡

𝜏
(𝑘 )
𝑠,𝑁𝑐𝑎𝑡

𝛼
(𝑘 )
𝑚𝑎𝑥,𝑁𝑐𝑎𝑡

𝜏
(𝑘 )
𝛼,𝑁𝑐𝑎𝑡


(7)

where 𝑘 is an index indicating the sample number, ranging from 1 to 𝑁𝑠𝑖𝑚.
When using the proposed behavioral parameters introduced in the previous section, 𝑁𝑐𝑎𝑡 = 7, resulting

in a total of 35 variables in the sensitivity analysis. For sample 𝑘 , we run the R-ARIO model and record and
the 𝐿𝑜𝑠𝑠 (total indirect loss across the economy) .
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Using the ensemble of 𝑁𝑠𝑖𝑚 samples along with the recorded output, we estimate Sobol indices 𝑆1,𝑖 and
𝑆𝑇,𝑖 for each of the 𝑁𝑐𝑎𝑡 × 5 variables. Each index uses an 𝑖 subscript to denote one of the 35 variables in
the analysis (e.g., 𝛼𝑚𝑎𝑥 for the Manufacturing category).

𝑆1,𝑖 , the first-order Sobol index, measures the contribution in output variance associated with modifying
a variable in isolation:

𝑆1,𝑖 =
V𝑎𝑟 [EX∼𝑖 [𝐿𝑜𝑠𝑠 |𝑋𝑖]

V𝑎𝑟 [𝐿𝑜𝑠𝑠] (8)

where 𝑋𝑖 is R-ARIO behavioral parameter variable 𝑖 (associated with a specific parameter-category pair)
and X∼𝑖 denotes the set of all variables except 𝑋𝑖 .

𝑆𝑇,𝑖 , the total-order Sobol index, measures a variable’s first- and higher-order influence on predicting
the model output. Unlike 𝑆1,𝑖 , 𝑆𝑇,𝑖 measures higher (or total-order) influence that accounts for all levels of
interaction:

𝑆𝑇,𝑖 =
EX∼𝑖 [V𝑎𝑟𝑋𝑖

[𝐿𝑜𝑠𝑠 |X∼𝑖]]
V𝑎𝑟 [𝐿𝑜𝑠𝑠] (9)

The inequality 0 ≤ 𝑆1,𝑖 ≤ 𝑆𝑇,𝑖 ≤ 1 must hold for all cases, in addition to:∑︁
𝑖

𝑆1,𝑖 < 1 (10)

Finally, we use values of 𝑆1,𝑖 and 𝑆𝑇,𝑖 to rank each variable. Any variables that heavily influence indirect
losses will have high index values. Such variables should be prioritized for subsequent behavioral parameter
refinement efforts.

It is important to note that variables at the sector category level are used here and in the case study to
illustrate this method. Sector-level analyses can be obtained by expanding X(𝑘 ) to consider 𝑁𝑠 × 5 variables,
where 𝑁𝑠 is the number of sectors.

CASE STUDY: 2016 KUMAMOTO EARTHQUAKE
An analysis of the 2016 Kumamoto Earthquakes in Japan is used here to demonstrate the R-ARIO model,

identify key drivers of indirect loss, and compare predicted recovery times obtained from variants of the
model. We begin with an overview of the study region and disaster, followed by a summary of model inputs,
implementation, and analysis results. Finally, we discuss the application of a variance-based sensitivity
analysis on the selected behavioral parameters.
Overview of study region and disaster

Kumamoto, one of Japan’s 47 prefectures, is located on the southern island of Kyushu and is home to
1.3% of the country’s population. The prefecture’s capital, Kumamoto City, is a key economic hub and
is home to over 40% of the prefecture’s 1.7 million residents (Figure 4). In 2016, Kumamoto’s GDP was
approximately 6 trillion yen, accounting for just over 1% of Japan’s total GDP.

The Kumamoto Earthquake sequence occurred along the Futgawa-Hinahgu fault in the Kumamoto
prefecture, beginning with a 𝑀𝑤 6.2 foreshock on April 14th, followed by a 𝑀𝑤 7.0 mainshock two days
later. Multiple significant aftershocks in the following days caused additional destruction. Damage and
fatalities from the foreshock were concentrated in Mashiki Town, a small suburb north of the fault zone. The
mainshock exacerbated the damage in Mashiki and extended the radius of influence to nearby Kumamoto
City. Two hundred seventy-three confirmed casualties have been reported (Kumamoto Cabinet Office 2016).

Over 198,000 homes in the prefecture experienced some form of damage, with over 20% experiencing
collapse (Kumamoto Prefecture 2022). As a result, over 60% of losses reported by the Office of the Cabinet
stemmed from housing. Commerce and industrial assets sustained significant damages, causing cascading
supply chain disruption across Japan. Damage to buildings and infrastructure in the prefecture produced
losses of roughly 3.79 trillion yen as of September 14th, 2016 (Kumamoto Cabinet Office 2016).
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Fig. 4. Epicenters of major earthquakes (indicated by circles) and population density in the Kumamoto
Prefecture (indicated by shading), along with fault traces for the Futagawa-Hinagu fault zone.

Assemble inputs
Next, we describe the assembly of the necessary input data for the R-ARIO model (Table 1). This data

falls into four categories: pre-disaster economic data, monetary losses due to direct damage, repair time
curves, and ARIO behavioral parameters.

Pre-disaster economic data
We assemble the input-output table and key economic metrics (e.g., value added, total final demand,

exports, imports, and local demand) for Kumamoto from official prefectural data (Kumamoto Prefecture
2020) for the 2015 fiscal year. The input-output table, consisting of 37 productive sectors, is visually
represented in the electronic supplement, Figure S1. We compute sector-level fixed assets using replacement
costs provided by Sompo Inc. (Table S1).

Direct losses
We derive sector-specific direct losses by aggregating building-level claims data supplied by Sompo Inc

(Table S2). Total building damage losses across all sectors are 1.76 trillion Yen, and further details regarding
the treatment of losses can be found in the electronic supplement. We assume that 75% of reconstruction
demand from these losses are distributed to the construction sector, and the remaining 25% are distributed
to manufacturing sectors, consistent with past studies (e.g., Hallegatte 2008; Markhvida and Baker 2023)

Reconstruction time curves
Sector-specific reconstruction time curves are used to determine the rate of reconstruction at each time

step in the R-ARIO model. We develop each curve using building-level reconstruction times, which are
estimated using a proprietary model by Sompo Inc. These times are strictly limited to repairs and do not
include impediments to reconstruction progress. Upon converting building-level reconstruction data into
sector-level reconstruction trajectories, we observe that the time to 95% reconstruction is achieved within
six months. Trajectories for each sector are illustrated in the electronic supplement, Figure S2.
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Behavioral parameters
The proposed set of behavioral parameters in Figure 3 is employed for the case study. We tabulate

assigned sector categories for each of the 37 productive sectors in the electronic supplement, Table S3.
The impact of the refined set, relative to the default ARIO parameters introduced in Hallegatte (2014), is
described in the next section.

R-ARIO model results
In this section, we describe the R-ARIO-predicted post-earthquake indirect loss, value added dynamics,

and reconstruction over time at various resolutions. Next, we explore the influence of the R-ARIO model on
recovery time and quantify the influence of the proposed behavioral parameters on predicted indirect loss.

Post-earthquake economic loss and recovery at the economy-level
To examine the impact of the R-ARIO model refinements, we simulate regional economic recovery using

several variants of the model, as listed below:

• Dynamic Reconstruction + explicit Housing losses + Behavioral Parameter Refinement (DR+H+BPR):
this is the complete R-ARIO model proposed in this study.

• Dynamic Reconstruction + explicit Housing losses (DR+H): this is the R-ARIO model introduced
in this paper, but it uses the Hallegatte (2014) behavioral parameters rather than the proposed refined
sector-level behavioral parameters.

• Baseline: this is equivalent to the original ARIO model.

Indirect losses predicted by the DR+H+BPR model over the first 30 days amount to roughly 88 billion,
which is within reported estimates by the Cabinet Office during the same period (81 to 113 billion yen)
(Takeda and Inaba 2022). The DR+H and Baseline model predictions are also within this range, at 91
and 101 billion yen, respectively. Indirect loss estimates over an analysis period of five years following
the earthquake, aggregated at the economy level, are shown in Figures 5c-e for each case, along with the
associated post-earthquake dynamics in value added (Figure 5b), and productive capital recovery trajectory
(Figure 5a).

Figure 5a shows the predicted capital recovery, accounting for economic constraints that impede repairs
of productive capital. Recovery is rapid during the first year following the disaster. The DR+H and
DR+H+BPR models — which both incorporate dynamic reconstruction — follow very similar trajectories
and exhibit higher rates of recovery, particularly in the first few months. Across all three models, more
than 50% of damaged capital recovers within the first six months of the initial shock, and 95% recovers
within 2 years. Both the DR and DR+BPR models predict a shorter time to 95% recovery of 1.25 years,
compared to 1.60 years for the Baseline model. The dynamic reconstruction assumption can account for the
swift progress made during the first month of recovery (reconstruction time curves for Kumamoto sectors
generally exhibited rapid reconstruction initially), while the baseline model is forced to leverage a constant
reconstruction rate that cannot capture this progress.

Figure 5b depicts the recovery of value added. All three models predict an identical initial 19% drop in
prefectural value added. However, the recovery trajectories differ among the models. Value added recovers
rapidly in the first year, with the DR+H+BPR model returning to pre-disaster values the quickest at 0.7
years, followed by the DR+H model at 1.0 year, and finally the Baseline model at 1.5 years. Due to assumed
overproduction, value added continues to increase beyond the pre-disaster baseline. The median trajectories
peak at 2.03%, 2.00%, and 1.59% of pre-earthquake value added for the DR+H+BPR, Baseline, and DR+H
models, respectively. Beyond the peak, value added descends and eventually converges to pre-disaster values.
As observed with recovery times, DR+H+BPR peaks the quickest, followed by DR+H, and Baseline. Among
the three models, only the Baseline model exhibits a non-monotonic recovery due to supply-side constraints
that impede recovery around the six-month mark.
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Fig. 5. Results for each of the three models, based on a set of 1000 simulations and a 5-year recovery
window. Panels (a) and (b) represent the 50th percentile recovery trajectories of productive capital and value
added, respectively. The histograms in (c), (d), and (e) illustrate the indirect losses for different variants of
the R-ARIO model. Dashed lines indicate the 50th percentile value in each case.

Figures 5c-e illustrate the total predicted indirect loss over the analysis period. By integrating each
realization of value added across time, a corresponding realization of total indirect loss at the economy level
can be obtained. Among the three models, DR+H+BPR predicts the lowest median indirect loss over the
entire recovery period, at approximately 102 billion yen. In contrast, the DR+H and Baseline models, which
lack behavioral parameter refinement, predict substantially higher median indirect losses of 257 billion yen
and 581 billion yen, respectively. The higher losses predicted by the DR+H and Baseline are due in part to
longer 𝜏𝛼 values associated with the default ARIO behavioral parameter settings. Notably, the significant
median indirect loss predicted by the Baseline model is due to its much longer period of non-recovery
compared to the other two models. Overall, including behavioral parameter refinement reduces the predicted
median indirect loss over the recovery period by 155 billion yen when compared to the DR+H model (i.e.,
the difference between median losses in 5c and d).

Sector-level economic recovery
The results in Figure 5 can be disaggregated by sector to reveal recovery attributes not visible at the

aggregate economy level. For each sector, we extract building recovery, production capacity, production,
demand, and value added over time. Figure 6 shows Construction sector results to demonstrate relationships
between demand, production capacity, and value added over time. As part of this example, we examine the
single realization associated with the median indirect loss shown in Figure 5.

Figure 6a shows that capital is nearly reconstructed within two years of the disaster. This resembles the
economy-level productive capital recovery trajectory in Figure 5a.

Figure 6b shows trends in production and demand. Immediately following the disaster, demand for
the Construction sector dramatically increases. This sharp increase in demand is expected because 75%
of all reconstruction demand is assigned to the Construction sector. During this same period, the sector
loses over 20% of its pre-disaster production capacity, constraining production, and hence, ability to fulfill
demand. Production capacity is restored to its pre-disaster level 0.7 years after the disaster, but it still
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Fig. 6. Results for a single ARIO realization (associated with the 50th percentile indirect loss in Figure 5c)
for the Construction sector.

fails to meet demand and begins transitioning into overproduction. An extra capacity equivalent to 20% of
pre-disaster production is gradually added to the sector roughly 1.6 years after the disaster. Interestingly,
while capacity grows to meet elevated demand, actual production (light blue curve) cannot keep up and
production plateaus at roughly 5% over baseline production due to supply-side constraints. During this
plateaued period of production, demand is rapidly decaying and the Construction sector’s actual production
can fulfill all demand by year 2 (the orange and light blue curves merge). Demand returns to pre-earthquake
levels (along with production) shortly after. Production capacity, by comparison, is significantly slower to
return to baseline.

Figure 6c shows the amount of unsatisfied demand (the difference between the demand and production
curves in Figure 6b) over the entire recovery period. By the end of the year 2, the demand unsatisfied returns
to 0, indicating that all demand can be fulfilled by production beyond this point.

Finally, the value added trajectory (Figure 6d) quantifies the changes in value added over time, and is
used to calculate the indirect losses of the sector (through integration of trajectory over the entire recovery
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period). Value added takes the sharpest loss immediately following the disaster, decreasing by an amount
equivalent to over 20% of its pre-disaster value. Due to the rapid initiation of overproduction, value added
is restored to its pre-earthquake value added within 0.7 years of the initial drop. The time to recover value
added takes roughly 35% of the time to recover all physical capital shown in Figure 6a. This trend, whereby
sectors achieve quicker recovery of lost value added compared to recovery of damaged productive capital,
is observed for nearly all sectors in the Kumamoto economy. Value added peaks at roughly 0.8 years after
the earthquake, plateaus for an additional year, then gradually decreases to its pre-earthquake value before
year three. Other sector-specific trajectories, including uncertainty bounds, can be found in the electronic
supplement, Figures S4-S9.
Sector-level losses

We integrate sector-specific value added curves for each of the 37 sectors to quantify the absolute total
loss, and the losses as a fraction of the pre-earthquake value added, broken down by direct and indirect
sources. Results for each sector can be found in the electronic supplement, Figure S10. To simplify
presentation, we sum the sector-level 50th percentile indirect losses for each of the seven categories proposed
in Figure 3.
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Fig. 7. 50th percentile direct and indirect losses across the seven economic sector categories (plus housing)
in terms of absolute monetary value in trillion yen (left) and fraction of pre- disaster value added.

Figure 7 shows the direct and indirect losses per sector category, in absolute values and as a fraction
of the total value added across all sectors within a category. The 50th percentile indirect loss across the
economy (102 billion yen) is small relative to total losses (1.7 trillion yen). In absolute monetary terms,
the Services category incurs the greatest indirect loss across all categories, followed by the Beverages +
Food and Utilities categories. Interpreting these results within the context of the economic recovery yields
a number of insights.

The Construction category’s indirect loss (both in absolute terms and as a fraction of its pre-earthquake
value added) is relatively low compared to other categories. This relatively small loss stems from the
substantial gains due to overproduction (e.g., that of the kind observed in Figure 6b). Such overproduction
is expected, since the demand for reconstruction following the disaster is substantial. When integrating the
value added trajectory to obtain the indirect loss, the initial shock is barely significant enough to counteract
large gains from overproduction.

The Manufacturing category (e.g., iron + steel, production machinery, plastic products + rubber products
sectors) experiences a net gain in value added due to strong overproduction across several sectors, as 25% of
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the reconstruction demand goes to manufacturing sectors. Across a handful of Manufacturing sectors, the
gain from overproduction counteracts the initial drop in value added.

The Mining category (which consists solely of the mining sector) also experiences a net gain in value
added. This result is attributed to a gentle initial drop in value added, and a notably extended duration of
overproduction. The mining sector is implicitly critical to the reconstruction of economic capital, since it
is the primary supplier to the electricity, gas, and heat sector (within the utilities category), which supplies
a significant number of manufacturing sectors (per the I-O table in the electronic supplement). The Mining
category is among the few sectors to incur zero direct damage in the analysis inputs, which influences the
observed net gain.

Influence of ARIO model on recovery time
Previous sections illustrated how ARIO-predicted recovery in value added, production, and productive

capital can be disaggregated at the individual sector level. These sector-level trajectories can be used to
extract time-to-recovery statistics, such as the time to restore lost value added. Such measures can then be
used to compare recovery performance across sectors. Figure 8 provides a comparison of time-to-recovery
metrics for the seven sector categories, plus housing. All reported metrics are based on 50th percentile
recovery trajectories across an ensemble of 1000 simulations. Times represented at the sector category level
are estimated by averaging times across all sectors within a category.

For each sector, we extract the R-ARIO-predicted times to recover 95% of the lost value added, production,
and productive capital. Across most categories, the median value added is restored to pre-earthquake levels
within one year. The Manufacturing and Agriculture categories are the quickest and slowest to recover, at
0.5 and 1.2 years, respectively. Recovery of production is nearly identical to that of value added across
all categories. Times to recover value added and production for housing are set to zero in Figure 8, since
housing is not a productive sector.
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Fig. 8. R-ARIO-predicted time to recover 95% of lost production, R-ARIO-predicted time to recover 95%
of lost value added, R-ARIO-predicted time to recover 95% of damaged productive capital, and time to
reconstruct 95% of damaged capital based on user-provided reconstruction time curves. In all four cases,
sector category averages are shown.

The R-ARIO-predicted time to recover 95% of damaged productive capital accounts for supply and
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reconstruction constraints. Across all sector categories with damaged capital (i.e, not the Mining category),
Manufacturing sectors experience the swiftest recovery of productive assets on average, at roughly one year.

The reconstruction time data used to generate reconstruction time curves (and hence, the dynamic recon-
struction rates used in the R-ARIO model for individual sectors) is generated using a proprietary catastrophe
model by Sompo Inc. While these repair time curves are useful for enabling dynamic reconstruction rates,
they do not take into account supply chain disruptions, or the capacity of the construction sector to fulfill
post-disaster reconstruction demand. Past studies, such as Markhvida and Baker (2023), have demonstrated
that the resulting sector- and community-level repair times generated by similar models (e.g., HAZUS (Fed-
eral Emergency Management Agency (FEMA) 2020)) can be significantly lower than the recovery time
estimates made by the ARIO model.

Figure 8 compares R-ARIO-predicted productive capital recovery times and Sompo-provided recon-
struction times. The average time to repair 95% of damaged capital is 0.28 years, per Sompo-provided
reconstruction time data (which do not include supply or reconstruction delays). The R-ARIO model pre-
dicts significantly longer average recovery times, at 1.1 years. The longer estimate provided by the R-ARIO
model is consistent with documented reports of capital recovery, particularly housing. One year after the
Kumamoto Earthquake, thousands of households were still residing in temporary housing (Takeda and Inaba
2022).

ARIO model parameter sensitivity
Next, we perform a Sobol sensitivity analysis to understand the relative importance of sector-specific

behavioral parameters on the predicted indirect losses shown in Figure 5. We compute 𝑆1,𝑖 and 𝑆𝑇,𝑖 using
equations 8 and 9, respectively. The results, displayed in Figure 9, show several features of the analysis.
The behavioral parameter variables relating to inventory (particularly 𝑛𝑠) significantly influence the indirect
losses. While this finding is consistent with the ARIO sensitivity studies in Markhvida and Baker (2023)
and Hallegatte (2014), our results unveil new sector-specific insights.
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Fig. 9. (a) First-, and (b) total-order Sobol indices across the seven sector categories and behavioral
parameters, measured with respect to the R-ARIO-predicted indirect loss across the prefecture.

Figure 9a shows that not all category-specific behavioral parameter variables for 𝑛𝑠 exhibit the same
modeling importance. For example, the 𝑛𝑠 parameter variables for Manufacturing, Services, and Beverages
+ Food sectors are significantly more important than for those of other categories, and explain 20%, 14%,
and 13% of the total first-order variance of the indirect loss, respectively.
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When higher order effects are considered (Figure 9b), the importance of 𝑛𝑠 holds, and sector category
rankings based on 𝑆1,𝑖 hold true for 𝑆𝑇,𝑖 . Interestingly, inventory parameter 𝜏𝑠 and heterogeneity parameter
𝜓, which have near-zero first-order indices, have more significant 𝑆𝑇,𝑖 values. Similar to 𝑛𝑠, both 𝜏𝑠 and 𝜓

parameter settings for Manufacturing, Services, and Beverages + Food sectors have high importance. The
𝜏𝑠 parameters yield slightly higher 𝑆𝑇,𝑖 values than 𝜓 in most cases.

Across 35 variables in this analysis, the top 3 variables when ranked using first- and total-order indices
are associated with the 𝑛𝑠 behavioral parameter. Across all settings of 𝑛𝑠, the value assigned to Services
category is the most significant in both first- and total-order contexts. While this result motivated our careful
scrutiny of the 𝑛𝑠 parameter for the Services category, the results in this section suggest that priority for
future refinements should be considered for the Manufacturing and Beverages + Food categories as well.

CONCLUSIONS
This paper presented R-ARIO, a refined ARIO model to simulate post-disaster economic recovery. The

R-ARIO model incorporates (i) explicit modeling of housing losses separate from productive capital losses,
(ii) dynamic reconstruction rates based on sector-specific reconstruction time curves, and (iii) sector-level
modeling of behavioral parameters. We proposed a refined set of parameters across seven sector categories
that address inter-sector differences, in accordance with available empirical observations and recent studies
on post-disaster business adaptation. These parameters reflect inter-sector differences and can accommodate
context-specific changes based on new evidence. The enhancements aim to improve indirect loss estimation,
capture temporal differences in reconstruction demand, and enable uncertainty quantification, sensitivity
studies, and refinement at the sector level.

We applied the R-ARIO model to explore economic recovery following the 2016 Kumamoto Earthquake
in Japan. The R-ARIO model estimates aggregate indirect losses at 5.4% of the median total (direct +
indirect) loss, which amounts to 1.86 trillion yen. Indirect losses predicted by the R-ARIO model over the
first 30 days following the disaster align closely with the 81 to 113 billion yen range estimated by the Cabinet
Office. Over a longer five-year analysis period, the R-ARIO model predicts a median indirect loss of 102
billion yen. When sector-level behavioral parameter modeling is omitted (and older default parameters are
used in place of the proposed set) this loss more than doubles to 257 billion yen. The dynamic reconstruction
assumption is responsible for properly modeling the high rate of recovery within the first month following the
disaster, which previous constant reconstruction rate assumptions cannot capture. Furthermore, explicit and
separate modeling of housing losses prevents distortion of economic recovery caused by injecting significant
direct damage into the real estate sector.

We evaluated sector-level indirect loss estimates to unveil trends across specific sector categories. Overall,
the Services category generated the largest portion of indirect losses in absolute monetary terms, followed
by the Beverages + Food and Utilities categories. The Construction category incurs low indirect loss
(as a fraction of pre-earthquake value added) following the earthquake due to the compensating effect of
overproduction. On the other hand, the Manufacturing category and the Mining category both experience
net gains in value added, due to strong overproduction to support reconstruction that counteracts initial
sector-level shocks. In terms of recovery time, the value-added recovers within a year for most sectors, with
the Manufacturing category recovering the quickest (0.5 years on average) and Agriculture the slowest (1.2
years on average). The average time to recover lost production is nearly identical to the time to recover
value added for all productive sector categories. When comparing R-ARIO-predicted times to restore lost
productive capital with user-provided reconstruction time curves, we found that the R-ARIO model extends
the average time to 95% recovery of productive capital (across all sector categories) from 3.5 months to
13.5 months. The longer estimate provided by the R-ARIO model, which includes supply chain impacts that
impede repairs, is more consistent with documented reports of recovery, particularly housing.

Finally, we applied a global sensitivity analysis to evaluate the relative importance of specific behavioral
parameters in the Kumamoto case study. The inventory parameter 𝑛𝑠 for Manufacturing, Services and
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Beverages+Food categories explains 20%, 14%, and 13% of the total first-order variance in predicted indirect
losses, respectively. These trends hold for the total-order variance as well. While inventory parameters are
most important overall, there is significant variability in importance between categories. Therefore, efforts to
refine behavioral parameters should focus on the subset of variables with significant influence on indirect loss.
The results of the sensitivity study can be used to inform mitigation strategies at the sector level. Influential
behavioral parameters can be used to identify sector-specific interventions that target economy-level indirect
loss reduction.

It is important to note, however, that the results in this paper are subject to limitations associated with
the R-ARIO model. First, like other I-O models, the R-ARIO model assumes static productive capacity
and no input substitution, which is unlikely to be realistic over longer time horizons. Second, the model
assumes post-disaster recovery trajectories return to their pre-earthquake baselines, which also may not hold
over longer recovery periods. Finally, indirect loss estimates are influenced by the assumed reconstruction
demand distribution, which is a user-defined assumption. Future research should explore the influence of
labor constraints on reconstruction, particularly those attributed to housing losses, which are significant in
this case study. Further validation of the model beyond the initial 30-day indirect loss estimates comparison
to reported values is also necessary.

Despite the challenges inherent in refining macroeconomic models, the proposed R-ARIO model supports
the development of integrated disaster risk management policies in the following ways. First, it can inform the
design of disaster risk financing strategies by providing a more comprehensive understanding of both direct
and indirect losses across industries, allowing for a more accurate assessment of government and private
sector liabilities, as well as the impact on government revenue(World Bank 2021). Second, by capturing the
dynamic interplay between housing recovery and the economy, the R-ARIO model facilitates evaluations of
the indirect impact of housing risk reduction programs or recovery strategies on other industries and vice
versa. Lastly, the model offers a way to assess the broader benefits (both direct and indirect) of disaster
mitigation and risk reduction programs. This aligns with the "Triple Dividend" framework (Tanner et al.
2015) by highlighting not only the avoided losses but also co-benefits such as enhanced economic resilience.
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