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Abstract Assessment of seismic hazard using conventional probabilistic seismic
hazard analysis (PSHA) typically involves the assumption that the logarithmic spectral
acceleration values follow a normal distribution marginally. There are, however, a va-
riety of cases in which a vector of ground-motion intensity measures are considered
for seismic hazard analysis. In such cases, assumptions regarding the joint distribution
of the ground-motion intensity measures are required for analysis. In this article, sta-
tistical tests are used to examine the assumption of univariate normality of logarithmic
spectral acceleration values and to verify that vectors of logarithmic spectral accel-
eration values computed at different sites and/or different periods follow a multivariate
normal distribution. Multivariate normality of logarithmic spectral accelerations are
verified by testing the multivariate normality of interevent and intraevent residuals
obtained from ground-motion models.

The univariate normality tests indicate that both interevent and intraevent resid-
uals can be well represented by normal distributions marginally. No evidence is found
to support truncation of the normal distribution, as is sometimes done in PSHA. The
tests for multivariate normality show that interevent and intraevent residuals at a site,
computed at different periods, follow multivariate normal distributions. It is also seen
that spatially distributed intraevent residuals can be well represented by the multivari-
ate normal distribution. This study provides a sound statistical basis for assumptions
regarding the marginal and joint distribution of ground-motion parameters that must
be made for a variety of seismic hazard calculations.

Introduction

Spectral acceleration values of earthquake ground mo-
tions are widely used in seismic hazard analysis. Conven-
tional probabilistic seismic hazard analysis (PSHA) (e.g.,
Kramer, 1996) provides a framework for the probabilistic as-
sessment of a single ground-motion parameter (such as the
spectral acceleration computed at a single period). When im-
plementing PSHA, it is typically assumed that the spectral
acceleration follows a lognormal distribution marginally.
There are, however, cases in which knowledge about the
joint occurrence of several spectral acceleration values, cor-
responding to different periods, is required for hazard assess-
ment (Bazzurro and Cornell, 2002). Additionally, a single
earthquake can cause severe damage over a large area.
Hence, when assessing the impact of earthquakes on a port-
folio of structures or a spatially distributed infrastructure sys-
tem, it is necessary to study the joint occurrence of spectral
acceleration values at various sites in the region (Crowley
and Bommer, 2006). Moreover, the knowledge of a vector
of ground-motion intensity measures is useful in other prac-
tical applications that involve computation of the seismic re-
sponse of a structure dominated by more than one mode
(Shome and Cornell, 1999; Vamvatsikos and Cornell, 2005)
or that involve joint prediction of structural and nonstructural

seismic responses for loss estimation purposes, and it is
useful in prediction of multiple demand parameters such
as displacement and hysteric energy. In such cases, a vector
of intensity measures needs to be considered, and hence, it is
necessary to study the joint distribution of these intensity
measures in observed ground motions.

Various empirical ground-motion models have been
developed for estimating the response spectrum of a given
ground motion (e.g., Abrahamson and Silva, 2007; Boore
and Atkinson, 2007; Campbell and Bozorgnia, 2007; Chiou
and Youngs, 2007). A typical ground-motion model has
the form

ln�Y� � ln� �Y� � ε� η; (1)

where Y denotes the ground-motion parameter of interest
(e.g., Sa�T1�, the spectral acceleration at period T1); �Y de-
notes the predicted (by the ground-motion model) median
value of the ground-motion parameter (which depends on pa-
rameters such as magnitude, distance, period, and local soil
conditions); ε denotes the intraevent residual, which is a ran-
dom variable with zero mean and a standard deviation of σ;
and η denotes the interevent residual, which is a random vari-
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able with zero mean and a standard deviation of τ . The stan-
dard deviations, σ and τ , are estimated during the derivation
of the ground-motion model and are a function of the re-
sponse period and, in some models, are a function of earth-
quake magnitude and distance from the rupture. Normalized
intraevent residuals (~ε) are obtained by dividing ε by σ. Sim-
ilarly, η can be normalized using τ to obtain ~η.

The logarithmic spectral acceleration at a site due to an
earthquake is usually assumed to be well represented by the
normal distribution marginally (e.g., Kramer, 1996). Abra-
hamson (1988) performed rigorous statistical studies to ver-
ify the assumption that logarithmic peak ground acceleration
(PGA) values follow the normal distribution marginally. Such
rigorous studies have, however, not been performed on spec-
tral accelerations. Moreover, the assumption of normality
must be extended to the joint distribution of the logarithmic
spectral accelerations, when performing vector-valued seis-
mic hazard analysis (Bazzurro and Cornell, 2002; Baker and
Cornell, 2006). When multiple ground-motion parameters
are considered (for instance, Y1 and Y2), the ground-motion
model equations take the following form:

ln�Y1� � ln� �Y1� � ε1 � η1;

ln�Y2� � ln� �Y2� � ε2 � η2;
(2)

where �Y1 and �Y2 denote the predicted median values of the
ground-motion parameters, ε1 and ε2 denote the intraevent
residuals corresponding to the two parameters, and η1 and η2
denote the interevent residuals (η1 equals η2 if Y1 and Y2

denote Sa�T� at two sites during the same earthquake). If
Y1 and Y2 are spectral accelerations at two-closely spaced
sites or spectral accelerations at two different periods at the
same site, the residuals will not be independent (Baker and
Cornell, 2006; Baker and Jayaram, 2008). Thus, an assump-
tion of univariate normality does not necessarily imply joint
normality between the residuals. There is a paucity of re-
search work that examines the validity of assuming multi-
variate normality. This paper explores the validity of these
assumptions using statistical tests for univariate and multi-
variate normality and a large library of spectral acceleration
values from recorded ground motions.

The ground-motion model of Campbell and Bozorgnia
(2007) is used in this study to compute the parameters shown
in equations (1) and (2). The conclusions drawn from the
work, however, did not change when the Boore and Atkinson
(2007) ground-motion model was used as well. The spectral
acceleration definition typically used in the next generation
attenuation (NGA) ground-motion models is GMRotI50 (also
known as GMRotI). This is the fiftieth percentile of the set of
geometric means of spectral accelerations at a given period,
obtained by rotating the as-recorded orthogonal horizontal
motions through all possible nonredundant rotation angles
(Boore et al., 2006). The residuals used in this work are ob-
tained based on this definition of the spectral acceleration.

The data for the analysis are obtained from the Pacific
Earthquake Engineering Research (PEER) NGA database (see
the Data and Resources section). In order to exclude records
whose characteristics differ from those used by the ground-
motion modelers for data analysis, only records used by the
ground-motion model authors are considered in the tests for
normality.

Testing the Univariate Normality of Residuals

This section discusses tests performed on the assump-
tion that logarithmic spectral accelerations at a site due to a
given earthquake are well represented by the normal distri-
bution, marginally. A practical way to test the univariate nor-
mality of a data set is to inspect the normalQ-Q plot obtained
from the data set by plotting the quantiles of the data sample
against the corresponding quantiles of the theoretical normal
distribution (e.g., Johnson and Wichern, 2007).

The following steps are involved in the construction of a
normal Q-Q plot. Let x be a collection of n data values that
need to be tested for normality. The data set is ordered (sorted
in ascending order) to obtain �x�1�; x�2�;…; x�n�� (such that
x�1� ≤ x�2� ≤ � � � ≤ x�n�). When these sample quantiles x�k�
are distinct (which is a reasonable assumption for continu-
ously varying data), exactly k observations are less than
or equal to x�k�. The cumulative probabilities p�k� of each
x�k� can be computed as k

n. It has been shown, however, that
a continuity correction gives an improved p�k� estimate of
�k � 3=8�=�n� 1=4� (Johnson and Wichern, 2007), and
hence, this definition of p�k� is used in this work. The normal
Q-Q plot is obtained by plotting the ordered data samples
against the theoretical normal quantiles corresponding to
each of the probabilities p�k�. The theoretical normal quantile
corresponding to probability p�k� is obtained as Φ�1�p�k��,
whereΦ�1 denotes the inverse of the cumulative normal dis-
tribution with the mean and the variance equaling the sample
mean and the sample variance, respectively. If the data sam-
ple follows a normal distribution, the normal Q-Q plot will
form a straight line with a slope of 45°, passing through
the origin.

Results and Discussion

Normality tests are performed on intraevent and inter-
event residuals in order to verify the univariate normality
of logarithmic spectral accelerations at a site due to an earth-
quake. The intraevent and the interevent residuals provided
to us by the ground-motion model authors are used in the
normality tests.

Intraevent Residuals. This section discusses results of the
univariate standard normality tests performed on the nor-
malized intraevent residuals (~ε). As mentioned previously,
~ε values are obtained by dividing the intraevent residuals
(ε) by the standard deviations (σ) provided by the Campbell
and Bozorgnia (2007) model.
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Figure 1 shows the normal Q-Q plots of ~ε computed at
four different periods ranging between 0.5 and 10 sec, with
the theoretical quantiles derived from the standard normal
distribution (normal distribution with zero mean and unit
variance). Long periods such as 10 sec may not be used
in practice as often as short periods. These long periods
are considered in this work, however, in order to cover the
entire range of periods in which the ground-motion model
used is applicable. Also shown in the figures are 45° lines
passing though the origin. Deviation of the normal Q-Q plot
from the 45° line indicates deviation from standard normal-
ity. It can be seen from Figure 1 that the normal Q-Q plots
match reasonably well with the 45° lines in all four cases.
This indicates that ~ε can be considered to be univariate stan-
dard normal based on this data set. Note that while normality
of ~ε is assumed in PSHA, it is often assumed that the distribu-
tion is truncated. A typical decision would be to truncate the
distribution at ~ε � 2 or 3 and not allow any larger ~ε values
(Bommer and Abrahamson, 2006). The tail of the marginal
distribution needs to be studied in order to determine if this
truncation of the normal distribution is reasonable. Figure 1
shows that ~ε values larger than 2 are observed as often as

would be expected from a nontruncated distribution. With
the small data sets used, however, it is not possible to study
the tail distribution beyond ~ε � 3.

A technique to obtain a larger number of samples at the
tail of the distribution would be to pool the ~ε values com-
puted at different periods. The normalized residuals com-
puted at various periods are shown to follow a standard
normal distribution using the normal Q-Q plots in Figure 1.
Hence, it can be inferred that quantiles of the pooled data set
will match with the corresponding quantiles of a theoretical
standard normal distribution. The pooled set has a larger
number of data points in the tail, and hence, it is preferable
to study the tail properties using the pooled data set rather
than the individual data sets. Hence, 12,194 ~ε values com-
puted at 10 periods ranging from 0.5 to 10 sec are pooled
together. The histogram of the pooled data set is shown in
Figure 2 along with a scaled plot of the theoretical standard
normal distribution. The figure shows that the data are in ex-
cellent agreement with the standard normal distribution, as
expected based on the normal Q-Q plots shown in Figure 1.
The normal Q-Q plot for the pooled data set is shown in Fig-
ure 3. It can be seen that the quantiles from the observed data

Figure 1. The normal Q-Q plots of the normalized intraevent residuals at four different periods. (a) T � 0:5 sec (1560 samples);
(b) T � 1:0 sec (1548 samples); (c) T � 2:0 sec (1498 samples); and (d) T � 10:0 sec (507 samples).
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match reasonably well with the theoretical quantiles up to
~ε values of 3.5 or 4. Beyond ~ε � 	4, there is no longer
enough data to study possible truncation. This large data
set thus contradicts claims that an ~ε truncation at less than
4 is reasonable and provides no evidence to support trunca-
tion at a larger value. This is consistent with the findings of
other researchers examining large data sets (Bommer et al.,
2004; Abrahamson, 2006; Strasser et al., 2008).

Interevent Residuals. According to the ground-motion
model of Campbell and Bozorgnia (2007), the standard de-

viation of the interevent residuals (η) depends on the rock
PGA at the sites. As a result, while the η values computed
at any particular period are identical across all the sites dur-
ing a given earthquake, the normalized interevent residuals
(~η) vary across sites even during a single earthquake (because
the standard deviation, τ , with which they are normalized
varies from site to site). This makes it impossible to use ~η
for the normality study. It is seen, however, using the records
in the PEER NGA database (see the Data and Resources sec-
tion) that over 90% of the standard deviations of η (obtained
using the ground-motion model of Campbell and Bozorgnia
[2007]) lie within a reasonably narrow interval (with an ap-
proximate range of 0.04). Hence, homoscedasticity (i.e., con-
stant variance) of η is considered to be reasonable and so the
η values are used as such, without normalization.

Figure 4 shows the normal Q-Q plot obtained using the
η values corresponding to four different periods. The theo-
retical quantiles are obtained using a normal distribution with
zero mean and a standard deviation that equals the sample
standard deviation (which does not equal 1 because the η
values are not normalized). It is seen from Figure 4a–d that
the normal Q-Q plots match reasonably well with the 45°
straight lines, thereby indicating the univariate normality
of interevent residuals.

Testing the Multivariate Normality Assumption for
Random Vectors Using Independent Samples

In this section, several statistical tests are presented that
can be used with observed ground-motion data to test the
validity of the assumed multivariate normal distribution for
logarithmic spectral accelerations.

A given ground motion will have spectral acceleration
values that vary stochastically as a function of period. Hence,
for any d periods, T � �T1; T2;…; Td�, let the corresponding
values of spectral acceleration at the sites be denoted by
Sja�Ti�, where j is an index that denotes a given recording
while Ti indicates a particular period. The mathematical pro-
cedures explained in this section can be used to test whether
the random vectors of logarithmic spectral accelerations,
fln�Sa�T1��; ln�Sa�T2��;…; ln�Sa�Td��g, are jointly normal.

Testing for multivariate normality is much more com-
plex than testing for univariate normality because there are
many more properties in a multivariate distribution to be con-
sidered during the test. Among the many possible tests for
multivariate normality of a given data set, eight are reviewed
in detail by Mecklin and Mundfrom (2003). They examined
the power of the eight tests using a Monte Carlo study for
several data sets that had predetermined multivariate distri-
butions. They recommend the use of the Henze–Zirkler test
(Henze and Zirkler, 1990) as a formal test of multivariate
normality, complemented by other test procedures such as
the Mardia’s skewness and kurtosis tests (Mardia, 1970).
Multivariate normality can also be tested using the chi-square
plot (also known as the gamma plot) (Johnson and Wichern,
2007), which is a multivariate equivalent of the normal

Figure 2. The histogram of the 12,194 pooled normalized in-
traevent residuals computed at 10 periods, with the theoretical stan-
dard normal distribution (scaled) superimposed.
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Figure 3. The normal Q-Q plot of the pooled set of normalized
intraevent residuals.
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Q-Q plot. The procedure to obtain the chi-square plot is sim-
ilar to that used for a normal Q-Q plot except that squared
Mahalanobis distances (Mardia et al., 1979) of data samples
are used in place of the data quantiles and a theoretical chi-
square distribution is used in place of the theoretical normal
distribution. A departure from linearity indicates departure
from multivariate normality. In this work, however, only
the three more quantitative tests, namely, the Henze–Zirkler
test and Mardia’s test of skewness and of kurtosis, are used.
These three tests are described in the following paragraphs.

Henze–Zirkler Test

Henze and Zirkler (1990) proposed a class of invariant
consistent tests for testing multivariate normality. The test
procedure is based on the computation of a defined test sta-
tistic that is a function of the given data and whose asymp-
totic distribution is known if the data follows a multivariate
normal distribution. The statistic can be compared to the
asymptotic distribution to test whether the data set can be
reasonably assumed to be normal. The Henze–Zirkler test
statistic is defined as follows: let X1;X2;…;Xn be a set
of n independent data samples (i.e., the X1;X2;…;Xn are

obtained from n independent records) each of dimension
d (i.e., Xi � fXi1; Xi2;…; Xidg). It is to be noted that the
variables Xi�j1� and Xi�j2� could be correlated.

Tn;β � 1

n

Xn
k�1

Xn
j�1

�
exp

�
� β2

2
∥Yj � Yk∥2

��

� 2�1� β2��d=2
Xn
j�1

�
exp

�
� β2

2�1� β2� ∥Yj∥2
��

� n�1� 2β2��d=2; (3)

where

β � 1���
2

p
�
2d� 1

4

�
1=�d�4�

n1=�d�4�;

∥Yj � Yk∥2 � �Xj � Xk�0S�1�Xj � Xk�;
∥Yj∥2 � �Xj � �Xn�0S�1�Xj � �Xn�;

where Tn;β is the test statistic, �Xn is the sample mean vector
of the n realizations X1;…;Xn, and S is the sample covari-
ance matrix defined as S � 1

n

P
n
j�1�Xj � �Xn��Xj � �Xn�0.

Figure 4. The normal Q-Q plots of interevent residuals at four different periods. (a) T � 0:5 sec (64 samples); (b) T � 1:0 sec
(64 samples); (c) T � 2:0 sec (62 samples); and (d) T � 10:0 sec (21 samples).

Statistical Tests of the Joint Distribution of Spectral Acceleration Values 2235



Henze and Zirkler (1990) also approximated the limiting
distribution of Tn;β (given the multivariate normality of X)
with a lognormal distribution with the mean and the variance
defined as follows:

E�Tβ � � 1 � �1� 2β2��d=2
�
1� dβ2

1� 2β2
� d�d� 2�β4

2�1� 2β2�2
�
;

(4)

Var�Tβ � � 2�1� 4β2��d=2

� 2�1� 2β2��d
�
1� 2dβ4

�1� 2β2�2

� 3d�d� 2�β8

4�1� 2β2�4
�

� 4w�β��d=2
�
1� 3dβ4

2w�β� �
d�d� 2�β8

2w�β�2
�
; (5)

where w�β� � �1� β2��1� 3β2�.
Based on the value of the statistic computed using

the data and the asymptotic distribution of Tn;β , the p value
of the test of multivariate normality can be calculated. The
p value is the probability of obtaining a statistic value that is
at least as extreme as the statistic computed from the data, if
the null hypothesis of multivariate normality were true. The
smaller the p value, the stronger the evidence against the null
hypothesis. It is suggested that this test be used if the sample
size n is at least 20 (Henze and Zirkler, 1990).

Mardia’s Measures of Kurtosis and Skewness

Mardia (1970) extended the concepts of kurtosis and
skewness from the univariate case to the multivariate case.
Mardia (1970) also obtained the asymptotic distribution of
the multivariate kurtosis and skewness parameters (which is
needed to test the null hypothesis of multivariate normality).

Multivariate Kurtosis. Mardia (1970) defined the multi-
variate kurtosis coefficient as follows:

K � E��X�μ�0Σ�1�X�μ��2; (6)

where X � �X1;X2;…;Xn� is the random vector whose dis-
tribution is tested, μ is the mean vector of X, �X � μ�0 refers
to the transpose of �X � μ�, and Σ is the covariance matrix
of X. In practice, the value of multivariate kurtosis can be
computed from the sample data as follows:

k � 1

n

Xn
i�1

��Xi � �Xn�0S�1�Xi � �Xn��2: (7)

Mardia (1970) also showed that the asymptotic distribu-
tion of the previously defined multivariate kurtosis parameter
(k) can be obtained from the following equation, if X follows
the multivariate normal distribution:

k � �d�d� 2��n � 1�=�n� 1��
�8d�d� 2�=n�0:5 ⇒ N�0; 1�; (8)

where N�0; 1� denotes the univariate standard normal dis-
tribution. The asymptotic distribution can be used to test if
the sample data are from a multivariate normally distributed
population, by allowing a p value to be computed.

Multivariate Skewness. Mardia (1970) and Mardia et al.
(1979) defined the measure of multivariate skewness to be
as follows:

S � E��X1 � μ�0 Σ�1�X2 � μ��3; (9)

where X � �X1;X2;…;Xn� is the random vector whose dis-
tribution is tested. This parameter can be computed from the
sample data as follows:

s � 1

n2

Xn
i�1

Xn
j�1

��Xi � �Xn�0S�1�Xj � �Xn��3: (10)

The asymptotic distribution of the multivariate skewness
parameter (s) can be obtained from the following equation:

ns

6
⇒ χ2

d�d�1��d�2�=6; (11)

where χ2
d�d�1��d�2�=6 is the chi-square distribution with

d�d� 1��d� 2�=6 degrees of freedom. This asymptotic
distribution can be used to test the null hypothesis of multi-
variate normality.

The preceding procedures can be used to test the multi-
variate normality of any random vector using a set of inde-
pendent data samples. For instance, these tests can be used to
verify the multivariate normality of intraevent residuals com-
puted at multiple periods. In this case, in order to obtain a set
of independent data samples, each random vector (composed
of intraevent residuals computed at multiple periods) must be
obtained from records that are independent of one another. A
technique to obtain independent data samples is discussed in
a subsequent section.

Results and Discussion

As mentioned earlier, multivariate normality tests need
to be performed on intraevent and interevent residuals in or-
der to verify multivariate normality of the logarithmic spec-
tral accelerations. The intraevent residuals are normalized
by the appropriate standard deviations before use, while the
interevent residuals are used without normalization, for rea-
sons mentioned previously.

Normalized Intraevent Residuals at Different Periods. Let
~ε�T� � �~ε�T1�; ~ε�T2�;…; ~ϵ�Td�� denote the random vector of
normalized intraevent residuals computed at d different
periods. During an earthquake, different sites experience dif-
ferent levels of ground motion based on their distance from
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the earthquake source, the local soil conditions, and other
factors. These ground motions can be used to compute sam-
ples ( ~ej�T�) of the random vector ~ε�T� at site j. This section
uses the samples ~ej�T� obtained at various sites to test
whether ~ε�T� follows a multivariate normal distribution.

The results presented in this work are based on data from
the 1994 Northridge earthquake and the 1999 Chi-Chi earth-
quake. The PEER NGA database (see the Data and Resources
section) is used to obtain the data and contains 160 records
from the Northridge earthquake and 421 records from the
Chi-Chi earthquake (the aftershock data are not used). From
these records, only those used by the authors of the Campbell
and Bozorgnia (2007) ground-motion model are included in
the analysis. Even this reduced data set cannot be used as
such because the samples will not be independent of one an-
other on account of the spatial correlation of the ground mo-
tion during a given earthquake. It is known, however, that the
correlation between ~ei�Tp� and ~ej�Tp� decreases with in-
creasing separation distance between the sites i and j, where
Tp denotes any particular period. It is seen from the literature
that the correlation coefficient drops close to zero (i.e., the
~ε�Tp� are approximately uncorrelated) when the separation
distance exceeds 10 km (Boore et al., 2003). Moreover, it is
shown subsequently in this manuscript that the ~ϵ�Tp� ob-
tained at different sites from a single earthquake follow a
multivariate normal distribution. Hence, approximately un-
correlated ~ε�Tp� values are also approximately independent,
and therefore, samples of random vectors obtained from re-
cordings at mutually well-separated sites would be approxi-
mately independent and can be used in the tests described in
the previous section. Therefore, in the current work, well-
separated locations (with separation distances exceeding
20 km) are identified for the Northridge earthquake and
the Chi-Chi earthquake, and the tests of normality are per-
formed on the data set obtained by combining the Chi-Chi
and Northridge earthquake data. There are several possible
combinations of recordings that would satisfy the constraints
on the minimum separation distance and the minimum sam-
ple size (as defined in the section Testing the Multivariate
Normality Assumption for Random Vectors Using Inde-
pendent Samples), and hence, the tests are carried out on
the various allowable configurations. Though the test results
vary slightly based on the configuration used, p values from
only a single data set are reported in this manuscript. The
combined data set has around 35 records at periods less than
or equal to 2 sec and close to 30 records at periods below
7.5 sec, which are reasonable sample sizes for testing the
hypothesis. At 10 sec, however, the number of independent
samples available is 22, which barely exceeds the threshold
of 20, mentioned in the section Testing the Multivariate Nor-
mality Assumption for Random Vectors Using Independent
Samples. Hence, ~ε values computed at 10 sec are not used
often in the tests.

In order to strictly prove multivariate normality of ~ε, one
must evaluate multivariate normality of normalized residuals
having all possible period combinations (i.e., all pairs, trip-

lets, etc.). For all practical purposes, however, it is sufficient
to consider the joint distribution of ~ε computed at five peri-
ods. Incidentally, if multivariate normality can be established
for such a case, it can be inferred that the lower-order com-
binations (i.e., subsets of the five periods that are used) also
follow a multivariate normal distribution and do not have to
be tested explicitly. This is because all subsets of a random
vector X are multivariate normal if X is multivariate normal
(Johnson and Wichern, 2007).

Results from a set of hypothesis test results are shown in
Table 1 and are explained in the following paragraphs. The
table shows the set of periods at which the ~ε values are com-
puted and the p values are obtained based on the Henze–
Zirkler test, Mardia’s test of skewness, and Mardia’s test of
kurtosis. Case 1 shown in the table corresponds to the bivari-
ate normality tests on the ~ε obtained at 1 and 2 sec. The p
values reported by all three tests are statistically insignifi-
cant at the 5% significance level typically used for testing.
In case 2, five different periods ranging between 0.5 and
2 sec are chosen. The Henze–Zirkler test and the test of
skewness report highly insignificant p values, and the test
of kurtosis reports a p value of 0.05, which is insignificant
as well. The normality tests are also performed considering
long periods. In case 3, the periods are chosen over the
0.5–7.5 sec range, as shown in Table 1. The p values reported
by all three tests are highly statistically insignificant. Finally,
a test is carried out considering long periods exclusively
(case 4); the p values obtained from all the tests are sta-
tistically insignificant. Overall, there seems to be not much
evidence to reject the null hypothesis that ~ε computed at
different periods follows a multivariate normal distribution.

Interevent Residuals at Different Periods. This section dis-
cusses tests carried out on interevent residuals (η) at multiple
periods. The number of interevent residuals available for the
tests ranges from 64 at 0.5 sec to 40 at 7.5 sec. Only 21 re-
cords are available, however, at 10 sec.

Table 2 shows the hypothesis test results based on η
values. In case 1, η values at two periods, 1 and 2 sec,
are tested for bivariate normality. It can be seen that the p
values reported by all three tests are highly insignificant.
In case 2, five different periods are chosen ranging between

Table 1
Tests on Normalized Intraevent Residuals

Computed at Different Periods

Case Periods (sec) PHZ PSK PKT

1 T � f1:0; 2:0g 0.10 0.23 0.93
2 T � f0:5; 0:75; 1:0; 1:5; 2:0g 0.49 0.92 0.05
3 T � f0:5; 1:0; 2:0; 5:0; 7:5g 0.69 0.90 0.42
4 T � f5:0; 7:5; 10:0g 0.19 0.14 0.62

PHZ indicates the p value obtained from Henze–Zirkler test,
PSK indicates the p value obtained from Mardia’s test of skew-
ness, and PKT indicates the p value obtained from Mardia’s test
of kurtosis.
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0.5 and 2 sec. The table shows that the p values reported by
all three tests are statistically significant. We believe, how-
ever, that this is a result of the deviations from marginal nor-
mality due to the small sample size being carried over to the
higher-order distributions (i.e., even if the true marginal dis-
tribution is normal, a sample from the distribution will not be
exactly normal). In order to verify this, the η values are again
computed at the same set of periods as in case 2 and are trans-
formed so that their marginal distributions are normal (in
order to remove the deviations in the sample’s univariate dis-
tribution from the normal distribution), using the normal
score transform procedure described by Deutsch and Journel
(1998). It is to be noted that the normal score transform (or
any other monotonic transform) of the univariate distribution
cannot change the basic nature of the bivariate and the other
multivariate distributions. Further, the marginal distribution
of η has been shown to be normal in the section Testing the
Univariate Normality of Residuals, and hence, the transfor-
mation of the marginal distribution of the sampled data does
not interfere with the tests for multivariate normality. This
transformation procedure is described in Appendix A. The
tests are performed on the transformed data (case 3) and
the p values corresponding to all three tests are seen to
increase significantly, indicating that the statistically signifi-
cant p values in case 2 is probably a result of the deviation of
the sample’s marginal distribution from a normal distribu-
tion rather than an indicator of nonnormality in the joint
distribution.

Case 4 involves testing η values at five periods ranging
from 0.5 to 7.5 sec. The reported p values are, again, found
to be insignificant. In case 5, η values at three long periods
are tested for multivariate normality. The p values reported
by the three tests are highly statistically insignificant. It can,
hence, be concluded from the results that it is reasonable to
assume that the η computed at different periods follow a mul-
tivariate normal distribution.

Because both the interevent and intraevent residuals
computed at multiple periods follow multivariate normal dis-
tributions, it is concluded that the logarithmic spectral accel-
erations computed at different periods, at a given site during
a given earthquake, follow a multivariate normal distribution.

Similar tests are used to approximately evaluate the bi-
variate normality of logarithmic spectral accelerations corre-
sponding to two different orientations, and the results are

shown in Appendix B. It is seen that pairs of residuals cor-
responding to the fault-normal and the fault-parallel data can
be reasonably considered to be bivariate normal.

Testing the Multivariate Normality Assumption for
Spatially Distributed Data

The tests that have been described so far are valid only
for testing random vectors using independent samples. While
testing spatially distributed data from a given earthquake,
ground-motion recordings at closely separated sites should
also be considered, and hence, it is not possible to obtain
independent samples using the techniques described in the
section Testing the Multivariate Normality Assumption for
Random Vectors Using Independent Samples. Hence, certain
other tests are needed for testing the multivariate normality
assumption for ground-motion intensities distributed over
space. Multivariate normality can be ascertained by verify-
ing univariate normality, bivariate normality, trivariate nor-
mality, etc. Goovaerts (1997) and Deutsch and Journel
(1998) described a procedure to test the assumption of bivari-
ate normality of spatially distributed data whose marginal
distribution is standard normal. This test procedure can be
used to verify whether pairs of residuals computed at two
different sites during a single earthquake follow a bivariate
normal distribution. The test is described in the following
subsection, followed by test results from recorded ground
motions.

Check for Bivariate Normality

Let X�u� denote the random variable (e.g., the residuals)
in consideration at location u, and let X�u� h� denote the
random variable in consideration at location u� h (h de-
notes the spatial separation between the two locations).
The procedure to test bivariate normality (Goovaerts, 1997;
Deutsch and Journel, 1998) involves the comparison of the
indicator semivariogram of the data (the experimental indi-
cator semivariogram) to the theoretical indicator semivario-
gram obtained by assuming that �X�u�; X�u� h�� follows a
bivariate normal distribution.

An indicator semivariogram is a measure of spatial
variability and is defined as follows:

γI�h; xp� �
1

2
E�fI�X�u� h�; xp� � I�X�u�; xp�g2�; (12)

where xp denotes the p quantile of X and I�X�u�; xp� � 1 if
X�u� ≤ xp and I�X�u�; xp� � 0 otherwise.

The experimental indicator semivariogram is a
regression-based relationship between γI�h; xp� and h. In
this study, an exponential model is assumed as the form
of the regression. Based on an exponential model, the experi-
mental indicator semivariogram can be defined as follows:

γI�h; xp� � axp �1 � exp��3h=bxp��; (13)

Table 2
Tests on Interevent Residuals Computed at Different Periods

Case Periods (sec) PHZ PSK PKT

1 T � f1:0; 2:0g 0.85 0.20 0.35
2 T � f0:5; 0:75; 1:0; 1:5; 2:0g 0.00 0.01 0.01
3 T � f0:5; 0:75; 1:0; 1:5; 2:0;Norm:g 0.24 0.11 0.11
4 T � f0:5; 1:0; 2:0; 5:0; 7:5g 0.79 0.28 0.41
5 T � f5:0; 7:5; 10:0g 0.68 0.18 0.31

PHZ, PSK, and PKT are defined as in Table 1; Norm. indicates the data
transformed to the standard normal space.
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where axp and bxp are the sill and range of the experimen-
tal indicator semivariogram, respectively. The sill of a semi-
variogram equals the variance of X, while the range of a
semivariogram is defined as the separation distance h at
which γI�h; xp� equals 0.95 times the sill (for the exponen-
tial model). The range and the sill can be computed using
nonlinear least-squares regression based on observed values
of γI�h; xp� and h. The values (observed) of γI�h; xp� for a
given data set can be obtained as follows (based on equa-
tion 12):

γI�h; xp� �
1

2N�h�
XN�h�

α�1

fI�X�uα � h�; xp� � I�X�uα�; xp�g2;

(14)

whereN�h� is the number of pairs of data points separated by
h (within some tolerance) and �X�uα � h�; X�uα�� denotes
the αth such pair.

Theoretically, if X�u� and X�u� h� follow a bivariate
normal distribution, the indicator semivariogram is (Goo-
vaerts, 1997)

γI�h; xp�

� p �
�
p2 � 1

2π

Z
sin�1 Cx�h�

0

exp
� �x2p
1� sin�θ�

�
dθ

�
; (15)

where Cx�h� denotes the covariance model of X, given as
follows:

CX�h� � covariance�X�u�; X�u� h��: (16)

The null hypothesis that X�u� and X�u� h� follow a
bivariate normal distribution is not rejected if the experimen-
tal indicator semivariogram compares well to the theoretical
indicator semivariogram.

As mentioned earlier, univariate and bivariate normality
are not sufficient conditions for multivariate normality. For
realistic data sets, however, the tests for trivariate normality
and normality at other higher dimensions are impractical.
This is because, for example, the trivariate normality test re-
quires many triplets of data points that have the same geo-
metric configuration (in terms of the spatial orientation of the
three points), which are usually not available. Hence, in prac-
tice, if the sample statistics do not show a violation of the
univariate and bivariate normalities, a multivariate normal
model can be assumed for X (Goovaerts, 1997).

Results and Discussion

If the spatially distributed normalized intraevent resid-
uals (~ε) follow a multivariate normal distribution, it can be
seen from equation (2) that the logarithmic spectral accelera-
tions conditioned on the predicted median spectral accelera-
tions will be multivariate normal as well. This is because the
interevent residuals at any particular period are constant

across all sites, during any single earthquake. Hence, in this
section, normality tests are carried out on the normalized in-
traevent residuals (~ε) only.

It has been shown previously that the ~ε values can be
represented by a normal distribution marginally, and hence,
only the bivariate normality test results are considered in this
section. To prevent the deviations in the sample’s univariate
distribution from the normal distribution (which can arise
even if the population actually follows a univariate normal
distribution) from affecting the results of the bivariate nor-
mality test, the univariate distributions of ~ε are transformed
to the standard normal space using the normal score trans-
form procedure described in Appendix A. As mentioned
earlier, the normal score transform of the univariate distri-
bution does not change the basic nature of the bivariate
distributions and, hence, does not interfere with the test of
bivariate normality.

The procedure to test the bivariate normality of spatially
distributed data described by Goovaerts (1997) involves
comparing the theoretical and the experimental indicator
semivariograms obtained based on the ~ε values computed
at various periods and for all quantiles xp (equations 13
and 15). However, such an exhaustive test is practically im-
possible and so a few sample periods and quantiles are tested
here. Based on the symmetry of the bivariate normal distri-
bution, only values of p in the interval [0, 0.5] are needed.
The authors present results corresponding to p � 0:1, 0.25,
and 0.5 so as to cover the entire range. The periods chosen
for the illustrations vary over the range of periods for which
the ground-motion models are usually valid.

Figure 5a–c shows comparisons of the theoretical and
the experimental indicator semivariograms obtained using
the Chi-Chi data set, with the ~ε values computed at a period
of 2 sec. It is to be noted that all records (that are usuable at
the chosen period) can be part of the sample data used for
obtaining the experimental indicator semivariograms (unlike
in the section Testing the Multivariate Normality Assump-
tion for Random Vectors Using Independent Samples where
the sample data had to be independent of each other). The
theoretical and experimental indicator semivariograms match
reasonably well in all cases. Figure 5d shows the comparison
of the theoretical and the experimental indicator semivario-
grams (p � 0:25) for the ~ε values computed at T � 2 sec
based on the Northridge earthquake data set, and a reason-
able match can be seen there as well. Similar plots are ob-
tained using the Northridge and the Chi-Chi earthquake data
sets and are shown in Figure 6. In obtaining this figure, the
value of p is kept constant at 0.25, while the value of T is
varied from as low as 0.5 sec to as high as 5 sec. A reason-
ably good match between the theoretical and the experimen-
tal semivariograms can be seen in these figures as well. All
these results suggest that bivariate normality can be safely
assumed for spatially distributed ~ε. Incidentally, it can be
seen from Figures 5 and 6 that the sill of the indicator semi-
variograms equals p�1 � p�, which is a consequence of the
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independence between well-separated intraevent residuals
(Goovaerts, 1997).

Conclusions

Statistical tests have been used to test the assumption
of joint normality of logarithmic spectral accelerations. Joint
normality of logarithmic spectral accelerations was verified
by testing the multivariate normality of interevent and in-
traevent residuals. Univariate normality of interevent and in-
traevent residuals was studied using normal Q-Q plots. The
normal Q-Q plots showed strong linearity, indicating that the
residuals are well represented by a normal distribution mar-
ginally. No evidence was found to support truncation of the
marginal distribution of intraevent residuals as is sometimes
done in PSHA. Using the Henze–Zirkler test, Mardia’s test of

skewness, and Mardia’s test of kurtosis, it was shown that
interevent and intraevent residuals at a site, computed at dif-
ferent periods, follow multivariate normal distributions. The
normality test of Goovaerts was used to illustrate that pairs of
spatially distributed intraevent residuals can be represented
by the bivariate normal distribution. For a set of correlated
spatially distributed data, it is practically impossible to ascer-
tain the trivariate normality and the normality at higher di-
mensions, and hence, the presence of univariate and bivariate
normalities is considered to indicate multivariate normality
of the spatially distributed intraevent residuals (Goovaerts,
1997). The results reported in this study are based on the re-
siduals computed using the ground-motion model of Camp-
bell and Bozorgnia (2007), but similar results were obtained
when using the Boore and Atkinson (2007) ground-motion
model. This study provides a sound statistical basis for as-

Figure 5. Theoretical and empirical semivariograms for residuals computed at 2 sec. (a) Results for the 0.1 quantile of the residuals from
the Chi-Chi data; (b) results for the 0.25 quantile of the residuals from the Chi-Chi data; (c) results for the 0.5 quantile of the residuals based
from the Chi-Chi data; and (d) results for the 0.25 quantile of the residuals from the Northridge data.
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sumptions regarding the marginal and joint distribution of
ground-motion parameters that must be made for a variety
of seismic hazard calculations.

Data and Resources

The data for all the ground motions studied here came
from the PEER NGA database (http://peer.berkeley.edu/nga;
last accessed May 2007).
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Appendix A

Normal Score Transform

The data sample can be transformed to have a standard
normal distribution by a normal score transform. The trans-
formation involves equating the various quantiles of the data
to the corresponding quantiles of a standard normal distribu-
tion. Let z represent the given data set, and let the empirical
cumulative distribution function of the data be denoted by
F̂�z�. The F̂�z� quantile of the standard normal distribution
is given by Φ�1�F̂�z��, where Φ represents the standard nor-
mal cumulative distribution function. Hence, for a given zk,
the corresponding normal score value (yk) is computed as
follows:

yk � Φ�1�F̂�zk��: (A1)

Appendix B

Spectral Acceleration Values at
Different Orientations

This appendix describes tests carried out to verify
whether spectral acceleration values corresponding to two
different orientations at a site follow a bivariate normal dis-
tribution. The test procedures are identical to those described
in the section Testing the Multivariate Normality Assump-
tion for Random Vectors Using Independent Samples, except
that the random vector is now written as �SH1

a �T1�; SH2
a �T2��,

where H1 and H2 refer to two orthogonal horizontal orienta-
tions (e.g., the fault-normal and the fault-parallel directions)
and T1 and T2 denote the periods in consideration in the two
orthogonal directions.

In order to verify bivariate normality of the spectral ac-
celerations corresponding to two different orientations, nor-
mality tests should be carried out on the interevent and the
intraevent residuals separately. The interevent residuals in the
fault-normal and the fault-parallel directions, however, are
not known. As a result, an approximate test for bivariate nor-
mality of spectral accelerations in different orientations is
carried out by performing tests on normalized total residuals.
Total residuals are computed based on the following alternate
formulation of the ground-motion equations:

ln�Y� � ln� �Y� � δ; (B1)

where Y denotes the ground-motion parameter of interest, �Y
denotes the predicted median value of the ground-motion
parameter, and δ refers to the total residual, which is a
random variable that represents both the interevent and the
intraevent residuals. From equations (1) and (B1), it can be
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inferred that δ has zero mean and standard deviation�����������������
σ2 � τ2

p
. Hence, normalized total residuals (~δ) can be ob-

tained as δ=
�����������������
σ2 � τ 2

p
.

In this work, ~δ values are computed using the fault-
normal and the fault-parallel time histories observed during
the Chi-Chi and Northridge earthquakes (PEER NGA data-
base, see the section Data and Resources). As mentioned ear-
lier, the tests described in the section Testing the Multivariate
Normality Assumption for Random Vectors Using Indepen-
dent Samples require independent data samples, and hence,
pairs of fault-normal and fault-parallel residuals are com-
puted at well-separated sites (separation distances exceeding
20 km).

Table B1 shows a sample of the multivariate normal-
ity test results obtained when ~δ values are computed at dif-
ferent orientations (fault-normal and fault-parallel) and/or
different periods. In case 1, the ~δ values corresponding to
the fault-normal direction and to the fault-parallel direction
are computed at the same period (2 sec). The three tests of
multivariate normality report insignificant p values in this
case. In case 2, the ~δ values corresponding to the fault-normal
and fault-parallel directions are computed at two different
periods. All three tests report insignificant p values in case 2

as well. Finally, it is intended to check if a larger separation
in the periods affects the bivariate distributional properties.
Hence, in case 3, the fault-normal ~δ values are computed at
0.5 sec, while the fault-parallel ~δ values are computed at
10 sec. It can be seen from the table that the p values are
highly insignificant in this case as well.
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Table B1
Tests on Residuals Corresponding to Two Orthogonal

(Fault-Normal and Fault-Parallel) Directions

Case Periods (sec) PHZ PSK PKT

1 T1 � 2; T2 � 2 0.14 0.13 0.41
2 T1 � 1; T2 � 2 0.17 0.34 0.96
3 T1 � 0:5; T2 � 10 0.94 0.80 0.22

PHZ, PSK, and PKT are defined as in Table 1.
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