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and the Impact on Ground-Motion Models

by Nirmal Jayaram and Jack W. Baker

Abstract Ground-motion models are commonly used in earthquake engineering to
predict the probability distribution of the ground-motion intensity at a given site due
to a particular earthquake event. These models are often built using regression on
observed ground-motion intensities and are fitted using either the one-stage mixed-
effects regression algorithm proposed by Abrahamson and Youngs (1992) or the two-
stage algorithm of Joyner and Boore (1993). In their current forms, these algorithms
ignore the spatial correlation between intraevent residuals. This paper emphasizes the
theoretical importance of considering spatial correlation while fitting ground-
motion models and proposes an extension to the Abrahamson and Youngs (1992)
algorithm that allows the consideration of spatial correlation.

By refitting the Campbell and Bozorgnia (2008) ground-motion model using the
mixed-effects regression algorithm considering spatial correlation, it is apparent that
the variance of the total residuals and the ground-motion model coefficients used for
predicting the median ground-motion intensity are not significantly different from the
published values even after the incorporation of spatial correlation. However, there is
an increase in the variance of the intraevent residual and a significant decrease in the
variance of the interevent residual. These changes have implications for risk assess-
ments of spatially-distributed systems because a smaller interevent residual variance
implies lesser likelihood of observing large ground-motion intensities at all sites in a
region.

Introduction

Ground-motion models are commonly used in earth-
quake engineering to predict the probability distribution of
the ground-motion intensity at a given site due to a particular
earthquake event. Typically, a ground-motion model takes
the following form:

ln�Yij� � f�Pij; θ� � εij � ηi; (1)

where Yij denotes the ground-motion intensity parameter of
interest (e.g., Sa�T�, the spectral acceleration at period T) at
site j during earthquake i; f�Pij; θ� denotes the ground-
motion prediction function with predictive parameters Pij

(e.g., magnitude, distance of source from site, site condition)
and coefficient set θ; εij denotes the intraevent residual,
which is a zero-mean random variable with standard devia-
tion σij; ηi denotes the interevent residual, which is a random
variable with zero mean and standard deviation τ ij. The rest
of this paper assumes for simplicity that the residuals have a
constant σ (i.e., σij � σ) and τ (i.e., τ ij � τ ) for any given
ground-motion intensity parameter; that is, the residuals are

homoscedastic. This assumption is not true in some modern
models (e.g., Abrahamson and Silva, 2008), in which case,
the concepts remain the same, but some of the equations are
no longer directly applicable.

Ground-motion models are primarily fitted using two
approaches: the two-stage regression algorithm of Joyner
and Boore (1993) (e.g., Boore and Atkinson, 2008) and the
one-stage mixed-effects model regression algorithm of Abra-
hamson and Youngs (1992) (e.g., Abrahamson and Silva,
2008; Campbell and Bozorgnia, 2008; Chiou and Youngs,
2008). Joyner and Boore (1993) provide a detailed compar-
ison of these two algorithms. Both these algorithms, in their
current forms, assume that the intraevent residuals are inde-
pendent of each other. The intraevent residuals, however, are
known to be spatially correlated (Boore et al., 2003; Wang
and Takada, 2005; Goda and Hong, 2008; Jayaram and
Baker, 2009). Recently, Hong et al. (2009) investigated the
influence of including spatial correlation in the regression
analysis on the ground-motion models fitted using the
two-stage regression algorithm and a one-stage algorithm
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of Joyner and Boore (1993). They concluded that the influ-
ence of considering spatial correlation on the estimated
ground-motion models is negligible based on insignificant
changes to the coefficient set θ. Fitting ground-motion
models considering correlation does, however, change the
variances of the interevent and the intraevent residuals
(observed by Hong et al., 2009). This short note provides
a theoretical basis for such changes to the variance terms
and also discusses the impact of these changes on the esti-
mated seismic risk of spatially-distributed systems. Further,
a modified algorithm based on that of Abrahamson and
Youngs (1992) is developed that accounts for the spatial cor-
relation in the mixed-effects regression. This modified algo-
rithm is used to refit the Campbell and Bozorgnia (2008)
ground-motion model in order to illustrate the impact of
incorporating spatial correlation.

Current Regression Algorithm

Ground-motion models were originally treated as fixed-
effects models that take the form

ln�Yij� � f�Pij; θ� � ε�t�ij ; (2)

where ε�t�ij denotes the total residual term at site j during
earthquake i (e.g., Joyner and Boore, 1981; Bolt and Abra-
hamson, 1982).

Brillinger and Preisler (1984a, 1984b) first proposed
regressing a ground-motion model as a mixed-effects model.
The mixed-effects model differs from the fixed-effects model
in its consideration of the error term as being the sum of an
intraevent error term and an interevent error term (equa-
tion 1). The interevent term helps partially account for the
correlation between the ground-motion intensities recorded
during any particular earthquake. Brillinger and Preisler
(1984b) employed the expectation-maximization algorithm
(Dempster et al., 1977) to estimate the ground-motion model
parameters. Abrahamson and Youngs (1992) (henceforth
referred to as AY92) found that the algorithm can yield
incorrect results for bad initial estimates of the model param-
eters, and they subsequently modified the algorithm to obtain
a more stable version that is less sensitive to the initial model

parameter estimates. The AY92 algorithm uses a combination
of a fixed-effects regression algorithm and a likelihood max-
imization approach and is described in more detail later in
this short note.

In the first step of the algorithm, it is assumed that the
random-effects terms η1; η2;…; ηM equal zero, in which
case equation (1) simplifies to ln�Yij� � f�Pij; θ� � εij.
The coefficient set θ is then estimated using a fixed-effects
regression algorithm for the observed Yij. In the next step,
the standard deviations σ (for the intraevent residuals)
and τ (for the interevent residuals) are computed using
the likelihood maximization approach described subse-
quently here.

The total residuals (i.e., the sum of the interevent and the
intraevent residuals), denoted ε�t�ij , can be computed using the
θ estimated in the previous step as

ε�t�ij � εij � ηi � ln�Yij� � f�Pij; θ�: (3)

Jayaram and Baker (2008) observed that the total residuals
recorded at multiple sites during any particular earthquake
can be assumed to jointly follow a multivariate normal
distribution. Therefore, the likelihood (L1) of having
observed the set of total residuals ε�t� � �ε�t�ij � can be
estimated as

ln�L1� � �N

2
ln�2π� � 1

2
ln jCj � 1

2
�ε�t��0C�1�ε�t��; (4)

whereN is the total number of data points,C is the covariance
matrix of the total residuals and �ε�t��0 denotes the transpose of
ε�t�. While estimating the model coefficients, AY92 assume
that the intraevent residuals are independent of each other
and of the interevent residuals. Hence, the covariance matrix
C can be written as

C � σ2IN � τ 2
XM
i�1

�1ni;ni ; (5)

where IN is the identity matrix of sizeN × N , 1ni;ni is a matrix
of ones of size ni × ni,

P � indicates a direct sum operation
(using the notation of AY92), M is the number of earthquake
events, and ni is the number of recordings for the ith event.
The matrix C can be expanded as

C �

σ2In1 � τ 21n1;n1 0 � � � 0
0 σ2In2 � τ 21n2;n2 � � � 0
: : � � � 0
: : � � � 0
0 0 � � � σ2InM � τ 21nM;nM

2
66664

3
77775: (6)

The maximum likelihood estimates of σ and τ are those that
maximize the likelihood function L1 and are obtained using
numerical optimization. Now, for given θ and the maximum
likelihood estimates of σ and τ , the random-effects term ηi is
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estimated using the maximum likelihood approach as well.
The maximum likelihood estimate of ηi is obtained as follows
(Abrahamson and Youngs, 1992):

ηi �
τ2

Pni
j�1 ε

�t�

niτ2 � σ2
: (7)

Finally, using the estimated value of ηi, a new set of coeffi-
cients θ is obtained using a fixed-effects algorithm for
ln�Yij� � ηi (i.e., considering ln�Yij� � ηi � f�Pij; θ� � εij�.
The new set θ is then used to reestimate σ, τ , and η, and this
iterative algorithm is continued until the coefficient estimates
converge.

In summary, the steps of the mixed-effects algorithm
used by AY92 are as follows:

1. Estimate the model coefficients θ using a fixed-effects
regression algorithm assuming η equals 0.

2. Using θ, solve for the variances of the residuals, σ2 and
τ2, by maximizing the likelihood function described in
equation (4).

3. Given θ, σ2, and τ2, estimate ηi using equation (7).
4. Given ηi, estimate new coefficients (θ) using a fixed-

effects regression algorithm for ln�Yij� � ηi.
5. Repeat steps 2, 3, and 4 until the likelihood in step 2 is

maximized and the estimates for the coefficient set
converge.

One drawback of this algorithm is the assumption in
equation (5) that the intraevent residuals are independent
of each other. It is known that the intraevent residuals are
spatially correlated, with the correlation decreasing with in-
creasing separation distance (e.g., Jayaram and Baker, 2009).
Before addressing that issue, the need to account for the spa-
tial correlation in the regression algorithm is illustrated in the
next section.

Should Spatial Correlation Be Considered
in the Regression Algorithm?

Consider the hypothetical case where the correlation be-
tween the intraevent residuals at any two different sites is a
constant equal to ρ. In this case, the covariance matrix (C) for
the total residuals (ε�t�ij ) is defined by the following equations:

C�ε�t�ij ; ε�t�ij0 � � ρσ2 � τ2 ∀ i; j ≠ j0; (8a)

C�ε�t�ij ; ε�t�ij � � σ2 � τ 2 ∀ i; j; (8b)

and

C�ε�t�ij ; ε�t�i0j0 � � 0 ∀ j; j0; i ≠ i0: (8c)

In summary, the covariance matrix for the total residuals can
be expressed as

C � �1 � ρ�σ2IN � �τ2 � ρσ2�
XM
i�1

�1ni;ni : (9)

Denoting
�����������
1 � ρ

p
σ by σ0 and

�������������������
τ 2 � ρσ2

p
by τ 0, equation (9)

can be rewritten as

C � σ02IN � τ 02
XM
i�1

�1ni;ni : (10)

Comparing the forms of equations (5) and (10), it can be seen
that the algorithm of AY92 actually provides the estimates of
σ0 and τ 0 rather than σ and τ . (If spatial correlations are
absent, this is correct because σ0 � σ and τ 0 � τ .)

Assume for simplicity that the set of coefficients θ is not
affected by the spatial correlation (this assumption is subse-
quently relaxed). Hence, the correct estimates of σ and τ can
be estimated from the σ0 and τ 0 provided by AY92 as follows:

σ � σ0�����������
1 � ρ

p (11a)

and

τ �
�������������������
τ 02 � ρσ2

q
: (11b)

It is to be noted from the preceding discussion and equa-
tion (11) that assuming independent intraevent residuals will
underestimate σ and overestimate τ . This has implications
for lifeline risk assessments because a larger τ implies a
higher likelihood of observing large ground-motion intensi-
ties throughout the region of interest. Thus, it is important to
determine whether fitting the ground-motion equations while
considering correlated intraevent residuals significantly
changes the estimates of σ and τ .

Regression Algorithm for Mixed-Effects Models
Considering Spatial Correlation

This section describes an algorithm for fitting the mixed-
effects model while accounting for spatial correlation
between intraevent residuals. The algorithm described here
differs from that of AY92 in the estimation of the likelihood
function L1 (used in step 2) and in the computation of the
interevent residual ηi (step 4). Both these changes are neces-
sary to account for the spatial correlation between intraevent
residuals in the regression algorithm.

Covariance Matrix for the Total Residuals

The covariance matrix for the total residuals shown in
equation (5) is based on the assumption of independence
between spatially-distributed intraevent residuals. The covari-
ance matrix in the presence of spatial correlation is described
subsequently here.
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Let ρ�djj0 � denote the spatial correlation between intrae-
vent residuals at two sites j and j0 as a function of djj0 , the
separation distance between j and j0. Then,

C�ε�t�ij ; ε�t�ij0 � � C�εij � ηi; εij0 � ηi�
� ρ�djj0 �σ2 � τ 2 ∀ i; j; j0 (12a)

and

C�ε�t�ij ; ε�t�i0j0 � � 0 ∀ j; j0; i ≠ i0: (12b)

It is to be noted that ρ�djj0 �, which is required for computing
the covariance matrix, is typically unknown. In concept, the
parameters that define ρ�djj0 � can be treated as unknown and
estimated as part of the regression algorithm. There are,
however, advantages (discussed later in this manuscript) in
estimating the spatial correlation outside of the ground-
motion model fitting algorithm. The Estimates of Spatial
Correlation section outlines a procedure that can be used
to estimate ρ�djj0 � and compute the above-described covar-
iance matrix.

Obtaining Interevent Residuals from Total Residuals

The maximum likelihood approach is typically used to
estimate a constant but unknown parameter from observed
data. The parameter ηi that is of interest here, however, is
a random variable in itself, and hence we use a Bayesian
framework rather than the method of maximum likelihood
to estimate ηi.

The prior distribution of ηi is N�0; τ 2�. Conditional on
the knowledge of ηi, the values for ε

�t�
ij marginally follow a

normal distribution with mean ηi and variance σ2 (because
ε�t�ij � εij � ηi). Also, the correlation coefficient between ε

�t�
ij

and ε�t�ij0 conditional on ηi is given by ρ�djj0 �. In other words,
the conditional covariance matrix (Cc) for the total residuals
can be expressed as

Cc�ε�t�ij ; ε�t�ij0 � � ρ�djj0 �σ2 ∀ i; j; j0 (13a)

and

Cc�ε�t�ij ; ε�t�i0j0 � � 0 ∀ j; j0; i ≠ i0: (13b)

Hence the joint density of ε�t�i � �ε�t�i1 ; ε�t�i2 ; � � � ; ε�t�ini � and ηi is
expressed as

f�ε�t�i ; ηi� � f�ε�t�i jηi�f�ηi�

∝ exp
�
� 1

2
�ε�t�i � ηi1ni;1�0C�1

c �ε�t�i � ηi1ni;1�
�

× exp
�
� 1

2τ2
η2i

�
; (14)

where ε�t�i � �ε�t�i1 ; ε�t�i2 ; � � � ; ε�t�ini � is the collection of total
residuals at all the sites during earthquake i, f�:� denotes
the probability density function, �ε�t�i � ηi1ni;1�0 denotes the

transpose of (ε�t�i � ηi1ni;1), and 1ni;1 denotes a column
matrix of ones of length ni. It is to be noted that equation (14)
is valid only if the interevent residual follows a normal dis-
tribution and the intraevent residuals at multiple sites during
a given earthquake jointly follow a multivariate normal
distribution. These assumptions have been verified using
recorded ground motions by Jayaram and Baker (2008).

Noting that f�ε�t�i ; ηi� � f�ε�t�i �f�ηijε�t�i �, one possible
approach to identify the posterior distribution of ηi given
ε�t�i is to divide the joint density into a function of just ε�t�i
and a function that also contains ηi. Let Q�ε�t�i � denote any

generic function of only ε�t�i not containing ηi. Hence,

f�ε�t�i ; ηi� ∝ exp
�
� 1

2
�ε�t�i � ηi1ni;1�0

× C�1
c �ε�t�i � ηi1ni;1� �

1

2τ 2
η2i

�

� Q�ε�t�i � exp
�
1

2
ε�t�

0
i C�1

c ηi1ni;1 � ηi10ni;1C
�1
c ε�t�i

� 1

2
η2i 10ni;1C

�1
c 1ni;1 �

1

2τ 2
η2i

�

� Q�ε�t�i � exp
�
� 1

2

�
1

τ2
� 10niC

�1
c 1ni;1

�

×
�
ηi �

10ni;1C
�1
c ε�t�i

1
τ2 � 10ni;1C

�1
c 1ni;1

�
2
�
: (15)

From equation (15), it can be seen that f�ηijε�t�i � has a nor-
mal distribution with mean

10ni;1C
�1
c ε�t�i

1

τ2
�10ni;1C

�1
c 1ni ;1

and variance

1
1

τ2
�10ni;1C

�1
c 1ni;1

. If the best estimator for ηi is to be obtained

under the squared-error loss criterion, then the Bayesian
estimator of ηi equals the posterior mean (Lehmann and
Casella, 2003)

η̂i �
10ni;1C

�1
c ε�t�i

1
τ 2 � 10ni;1C

�1
c 1ni;1

: (16)

If the spatial correlation is absent, Cc is simply σ2 times an
identity matrix of size ni × ni, in which case, 10ni;1C

�1
c 1ni;1

equals ni=σ2 and 10ni;1C
�1
c ε�t�i equals

Pni
j�1 ε

�t�
ij =σ2, and equa-

tion 16 becomes identical to equation 7.

Algorithm Summary

In summary, the steps of the modified mixed-effects al-
gorithm are as follows:

1. Estimate the model coefficients θ using a fixed-effects
regression algorithm assuming η equals 0.

2. Using θ, solve for the variances of the residuals, σ2

and τ 2, by maximizing the likelihood function described
in equation (4). The covariance C in equation (4) is
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estimated using equation (12). Detailed discussion about
estimating ρ�djj0 �, which defined C, is provided in the
section Estimates of Spatial Correlation.

3. Given θ, σ2, and τ2, estimate ηi using equation (16).
4. Given ηi, estimate new coefficients (θ) using a fixed-

effects regression algorithm for ln�Yij� � ηi.
5. Repeat steps 2, 3, and 4 until the likelihood in step 2 is

maximized and the estimates for the coefficient set
converge.

Large Sample Standard Errors of σ and τ

If desired, the standard errors of the interevent and in-
traevent residual variances can be approximately estimated
as the corresponding large sample values, which are calcu-
lated based on the following results from Searle (1971):

var�σ2� � 2

�
tr
�
C�1 ∂C

∂�σ2�

�
2
��1

(17a)

and

var�τ2� � 2

�
tr
�
C�1 ∂C

∂�τ 2�
�
2
��1

; (17b)

where C is the covariance matrix defined in equation (12),
∂C

∂�σ2� denotes the partial derivative of C with respect to σ2,
∂C

∂�τ2� denotes the partial derivative of C with respect to τ2, tr
denotes the trace of a matrix, and var denotes variance. The
partial derivatives, ∂C

∂�σ2� and ∂C
∂�τ2�, can be evaluated using

numerical differentiation.
Alternately, the standard errors can also be evaluated

using statistical techniques such as bootstrap (Efron and
Tibshirani, 1998).

Mixed-Effects Regression Procedure in R

While mixed-effects regression procedures that consider
spatial correlation (referred to as within-group correlation in
statistical literature) are available in statistical programming
languages such as R (e.g., the nlme function of Pinheiro et al.,
2009), it is potentially more convenient for current users of
the Abrahamson and Youngs (1992) algorithm to switch
to the modified algorithm described in this short note.
Moreover, we experienced numerical instabilities with nlme
while fitting the ground-motion model with consideration of
within-group correlation. It is also to be noted that the devel-
opment of the nlme function has stalled in favor of the
revised version nlmer, which, however, does not yet provide
the option of fitting nonlinear mixed-effects models consid-
ering within-group correlation.

Results and Discussion

In the current study, the algorithm described in the pre-
vious section is used to refit the Campbell and Bozorgnia

(2008) ground-motion prediction model (henceforth referred
to as the CB08 model) for illustration. First, in order to pro-
vide a baseline model for comparison, the coefficients of
the CB08 model are reestimated while ignoring spatial
correlation. For consistency, only records of CB08 are used
by us for estimating the coefficients. Table 1 shows the
regression coefficients estimated in this study for predicting
spectral accelerations at 1 s (denoted Sa�1 s�) in the un-
correlated case. Also shown in the table for comparison
are the corresponding published CB08 model coefficients.
Documentation of how these coefficients are used to make
predictions is provided by CB08. The estimates of the stan-
dard deviations of the intraevent residual and the interevent
residual (σ and τ , respectively) are shown in Table 2. The
value of the published intraevent residual standard deviation
reported here corresponds to that at large values for VS30.
(The VS30 is set above a threshold value beyond which the
ground-motion model no longer considers soil nonlinearity
effects, wherein the intraevent residuals have a constant var-
iance at any given period. This allows a direct comparison of
the published values to those estimated in this study, assum-
ing homoscedastic residuals.) The refitted coefficients and
variance estimates obtained in this work are similar, but
not identical, to those reported by CB08. These small discre-
pancies are likely due to the manual coefficient smoothing
carried out by us on the CB08 model (K. Campbell, personal
comm, 2009). For consistency, the refitted model coefficients
are treated as the benchmark values for comparison to model
coefficients obtained considering spatial correlation. It is to
be noted that the functional form of the CB08 model required
knowledge about the A1100 value (median estimate of
peak ground acceleration [PGA] on a reference rock outcrop

Table 1
Regression Coefficients for Estimating Median

Sa�1 s�
Case 1* Case 2* Case 3*

c0 �6:406 �6:487 �6:942
c1 1.196 1.181 1.297
c2 �0:772 �0:878 �1:073
c3 �0:314 �0:379 �0:182
c4 �2:000 �2:064 �2:112
c5 0.170 0.195 0.198
c6 4.00 3.884 4.440
c7 0.255 0.264 0.324
c8 0.000 �0:110 �0:093
c9 0.490 0.897 0.796
c10 1.571 1.577 1.565
c11 0.150 0.122 0.093
c12 1.000 0.871 0.865
k1 400.0 400.0 400.0
k2 �1:955 �1:955 �1:955
k3 1.929 1.929 1.929

*Case 1, published CB08 results (Campbell and Bozorgnia,
2008); Case 2, estimated in this study without considering
spatial correlation; Case 3, estimated in this study considering
spatial correlation.
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with VS30 � 1100 m=s) for the median prediction. This is
obtained directly using the coefficients of the CB08 model
corresponding to PGA (as against fitting a separate model
for the PGAs) for simplicity. This is reasonable because
the model coefficients used for predicting median values
do not change significantly after incorporating spatial corre-
lation as shown subsequently in this paper.

The model coefficients are then reestimated considering
spatial correlation. The spatial correlation model is obtained
from Jayaram and Baker (2009) and is shown as

ρ�h� � e�3h=b; (18)

where h (km) denotes the separation distance between the
sites of interest, and b denotes the range parameter that
determines the rate of decay of correlation. This range is
a function of the spectral period and equals 26 km when
Sa�1 s� is considered. (The section Estimates of Spatial
Correlation provides additional discussion about the choice
of spatial correlation model.) The coefficient estimates (i.e.,
θ) obtained in this case are shown in Table 1. As can be seen
from this table, the coefficients obtained by considering spa-
tial correlation are similar to those obtained by ignoring spa-
tial correlation. This is reinforced by a plot of the predicted
medians at all the data sites using these two approaches
(Figure 1). This matches with the observation of Hong et al.

(2009) that the ground-motion model coefficients do not
change significantly when considering spatial correlation.

While the coefficients for the median predictions are
found to be relatively insensitive to the incorporation of
spatial correlation, significant changes are seen in the esti-
mates of the variance of the residuals (Table 2). In particular,
the value of σ increases from 0.578 to 0.654 and the value of
τ decreases from 0.223 to 0.157 after incorporating the spa-
tial correlation. This trend is to be expected based on the
illustrative example shown in the Introduction.

Standard Deviation of Residuals
as a Function of Period

The results presented in the previous section support the
use of the published coefficients (i.e., θ) for predicting the
median intensities. The values of σ and τ , however, must
be obtained considering spatial correlation. This implies that
the iterative mixed-effects algorithm described earlier in the
paper can be simplified to a computation of only the residual
variances σ2 and τ 2 (step 3) using the published values of θ;
that is, the mixed-effects regression is now simply a random-
effects regression procedure.

Hence, in this work, the CB08 model coefficients are
assumed to be the fixed-effects model coefficients, and the
total residuals are computed using the records in the Pacific

Table 2
Standard Deviations of Residuals Corresponding to Sa�1 s�

Case*
Standard Deviation

of Intraevent Residual (σ)
Standard Deviation

of the Interevent Residual (τ )
Standard Deviation

of the Total Residual (
�����������������
σ2 � τ2

p
)

1 0.568 0.255 0.623
2 0.578 0.223 0.620
3 0.654 0.157 0.673

*Case 1, published CB08 results (Campbell and Bozorgnia, 2008); Case 2, estimated in this study
without considering spatial correlation; Case 3, estimated in this study considering spatial correlation.
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Figure 1. Comparison of predicted median Sa(1 s) values obtained using the CB08 model fitted with and without the consideration of
spatial correlation: (a) linear scale and (b) log scale.
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Earthquake Engineering Research–Next Generation At-
tenuation of Ground Motions (PEER NGA) database (only
those records of the CB08 model used by us are considered
for compatibility) (Chiou et al., 2008). The maximum like-
lihood estimates of σ and τ are then obtained at different
spectral acceleration periods from the total residuals using
the procedures described earlier. Figure 2a compares the
estimates of σ obtained in this study to those reported by
CB08. It can be seen that the values of σ obtained considering
spatial correlation are mostly larger than the published σ va-
lues (which have been estimated ignoring spatial correla-
tions). Figure 2b shows that the values of τ , on the other
hand, are considerably smaller when spatial correlations are
considered. The values of σ and τ are then used to compute
the standard deviations of the total residuals (computed as�����������������
σ2 � τ 2

p
) and plotted in Figure 2c. It can be seen from this

figure that considering spatial correlation does not signifi-
cantly alter the total residual standard deviation. (Hong et al.,
2009, noticed a small reduction in the total residual standard
deviation when the spatial correlation was considered. The
alteration in the total residual standard deviation could de-
pend on the data set and the spatial correlation model used.)

Though the current work only refits the CB08 model, the
trends in the values of σ and τ are the same for the other
recent NGA ground-motion models (e.g., Boore and Atkin-
son, 2008; Chiou and Youngs, 2008). This can be seen from
Figure 2d, which shows typical ratios of the interevent resi-
dual standard deviation to the total residual standard devia-
tion reported by these ground-motion models. It is seen that
the ratios reported by the ground-motion modelers are
generally much larger than those estimated in this work, con-
sidering spatial correlation.

Estimates of Spatial Correlation

As discussed earlier, step 2 of the proposed algorithm
(see Algorithm Summary section) requires the computation
of the covariance matrix shown in equation (12). The covar-
iance matrix is defined by the spatial correlation between the
intraevent residuals denoted ρ�djj0 �; ρ�djj0 � is unknown,
however, and in concept can be estimated as part of the
regression algorithm. Alternately, ρ�djj0 � can also be
precomputed using ground-motion models that are fitted
without consideration of spatial correlation and used while
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developing ground-motion models with consideration of
spatial correlation. As discussed earlier, the consideration of
spatial correlation while fitting the models does not change
the median predictions and, therefore, the total residuals
(equation 1). Jayaram and Baker (2009) also showed that
the spatial correlation between intraevent residuals can be
estimated directly from total residuals (exactly when the in-
traevent residuals are homoscedastic and approximately
otherwise). Therefore, accurate spatial correlation estimates
can be obtained using ground-motion models fitted without
consideration of spatial correlation. In other words, it is still
appropriate to use the correlation models previously devel-
oped using the published ground-motion models. The advan-
tages of precomputing a spatial correlation model as
suggested previously in this short note rather than estimating
the spatial correlation while fitting the ground-motion
model are:

1. Separating out the development of the spatial correlation
model and the ground-motion model allows the use of
different ground-motion data sets for these two purposes.
This is advantageous because the NGA database used by
the ground-motion modelers has numerous events with
very few recordings that cannot be used for estimating
reliable spatial correlation estimates.

2. Jayaram and Baker (2009) argued that the spatial correla-
tion model should provide accurate estimates of the cor-
relation at short separation distances even if that means
slightly inaccurate estimates at longer separation dis-
tances. This is hard to implement if the spatial correlation
model parameters are estimated as part of the ground-
motion model regression procedure, particularly if exist-
ing software packages such as nlme are used.

3. The extent of spatial correlation sometimes depends on
site-related parameters such as VS30 (e.g., Jayaram and
Baker, 2009). It is hard to incorporate such dependencies
while developing spatial correlation models as part of the
ground-motion model regression procedure.

4. Developing the spatial correlation model separately can
potentially improve the numerical stability of the ground-
motion model regression procedure.

The current study estimates ρ�djj0 � using the spatial cor-
relation model provided by Jayaram and Baker (2009) (equa-
tion 18), which is based on residuals computed using the
published ground-motion models (fitted without considera-
tion of spatial correlation). This model has been fitted using
seven well-recorded earthquakes. Future studies could also
explore the option of using event-specified spatial correlation
models for well-recorded events and generic correlation
models for poorly-recorded events (for which reliable spatial
correlation estimates can not be obtained).

Implications for Risk Assessment

Because ignoring spatial correlation while fitting the
ground-motion model does not significantly affect the esti-

mates of the ground-motion medians (f�θ�) or the standard
deviation of the total residuals (Figure 2c), hazard and loss
analyses for single structures will produce accurate results if
the existing ground-motion models are used. Risk assess-
ments for spatially-distributed systems, however, are influ-
enced by the standard deviation of the interevent and the
intraevent residuals and not just by the medians and the stan-
dard deviation of the total residuals.

A large value of τ increases the likelihood of observing
large positive interevent residuals, which will simultaneously
increase the ground-motion intensity at all the sites in the
region. If spatial correlations are large, a large value of σ will
have a similar effect and can result in large ground-motion
intensities at multiple sites. In such a case, the effect of
underestimating σ is compensated by the effect of overesti-
mating τ . If the spatial correlations are small, however,
underestimating σ and overestimating τ will have the net
effect of jointly producing more extreme ground-motion
intensities at multiple sites than is probable in reality. It
can be inferred from equation (18) that the spatial correlation
will be small if h is large or if b is small. Therefore, when the
components of a spatially distributed system are well sepa-
rated (large h) or if the correlation range is small, the ground-
motion models fitted without considering spatial correlation
will overestimate the likelihood of jointly observing extreme
ground-motion intensities at multiple sites. It is difficult to
make general conclusions about the size of this effect, but
it is clear that this will have some impact on the estimated
seismic risk of spatially distributed systems.

Conclusions

This work illustrated the impact of considering spatial
correlation between intraevent residuals while developing
ground-motion models. The mixed-effects algorithm of
Abrahamson and Youngs (1992), which assumes indepen-
dence between intraevent residuals, was modified to account
for the spatial correlation between the intraevent residuals.
This was done by changing the likelihood function used for
estimating the interevent and the intraevent residual variances
given other model coefficients and changing the estimate of
the interevent residual given the total residuals at multiple
sites. The modified algorithm was used to refit the Campbell
and Bozorgnia (2008) ground-motion model to illustrate the
effect of this refinement. The variance of the total residuals
and the model coefficients used for predicting the median
ground-motion intensity were not significantly affected by
the proposed refinement. Significant changes, however, were
seen in the variance of the intraevent and the interevent resi-
duals. Incorporating spatial correlation was seen to increase
the intraevent residual variance and to decrease the interevent
residual variance. These changes have implications for risk
assessments of spatially-distributed systems because a smal-
ler interevent residual variance implies a lesser likelihood of
simultaneously observing larger-than-median ground-motion
intensities at all sites in a region.
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Data and Resources

The data for all the ground motions studied here came
from the Pacific Earthquake Engineering Research–Next
Generation Attenuation of Ground Motions (PEER NGA)
database, available at http://peer.berkeley.edu/nga (last
accessed 29 April 2010).
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