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ABSTRACT: Ground-motion models are commonly used in earthquake engineering to predict the probability
distribution of the ground-motion intensity at a given site due to a particular earthquake event. These models
are often built using regression on observed ground-motion intensities, and are fitted using either the one-stage
mixed-effects regression algorithm proposed by Abrahamson and Youngs (1992) or the two-stage algorithm of
Joyner and Boore (1993). In their current forms, these algorithms ignore the spatial correlation between intra-
event residuals. Recently, Jayaram and Baker (2010a) and Hong et al. (2009) observed that considering spatial
correlation while fitting the models does not impact the model coefficients that are used for predicting median
ground-motion intensities, but significantly increases the variance of the intra-event residual and decreases
the variance of the inter-event residual. These changes have implications for risk assessments of spatially-
distributed systems, because a smaller inter-event residual variance implies lesser likelihood of observing large
ground-motion intensities at all sites in a region.
This manuscript explores the impact of considering spatial correlation on the ground-motion model in situations
where the models are fitted using only a few recordings or closely-spaced recordings, which is often the case in
low to moderately seismic regions such as the eastern United States. This is done by quantifying the changes
to the variances of the inter-event and the intra-event residual in a variety of situations where the models are
fitted using earthquakes with a small to moderate number of recordings that are separated by short to medium
distances. It is seen that the changes to the variances of the residuals are more significant as the number of
recordings per earthquake reduces, though the trend with the average station separation distance is not as clear.
Finally, sample risk assessments are carried out for a hypothetical portfolio of buildings in order to illustrate the
potential impact on the seismic risk of spatially-distributed systems. Overall, this work serves to illustrate the
need to consider spatial correlation in the regression for ground-motion models in upcoming projects such as
the NGA east project.

1 INTRODUCTION

Ground-motion models are commonly used in earth-
quake engineering to predict the probability distribu-
tion of the ground-motion intensity at a given site due
to a particular earthquake event. Typically, a ground-
motion model takes the following form:

ln
(
Yi j

)
= f (PPPi j,θθθ)+ εi j +ηi (1)

where Yi j denotes the ground-motion intensity param-
eter of interest (e.g., Sa(T ), the spectral acceleration
at period T ) at site j during earthquake i; f (PPPi j,θθθ)
denotes the ground-motion prediction function with
predictive parameters PPPi j (e.g., magnitude, distance
of source from site, site condition) and coefficient set
θθθ ; εi j denotes the intra-event residual, which is a zero

mean random variable with standard deviation σi j; ηi
denotes the inter-event residual, which is a random
variable with zero mean and standard deviation τi j.

Ground-motion models are primarily fitted using
either the two-stage regression algorithm of Joyner
and Boore (1993) (e.g., Boore and Atkinson, 2008)
or the one-stage mixed-effects model regression algo-
rithm of Abrahamson and Youngs (1992) (e.g., Abra-
hamson and Silva, 2008; Campbell and Bozorgnia,
2008; Chiou and Youngs, 2008). Both these algo-
rithms, in their current forms, assume that the intra-
event residuals are independent of each other, al-
though the intra-event residuals are known to be spa-
tially correlated (e.g., Jayaram and Baker, 2009). Re-
cently, Jayaram and Baker (2010a) and Hong et al.
(2009) observed that considering spatial correlation



while fitting the models does not impact the model co-
efficients that are used for predicting median ground-
motion intensities, but significantly increases the vari-
ance of the intra-event residual and decreases the
variance of the inter-event residual. These changes
have implications for risk assessments of spatially-
distributed systems, because a smaller inter-event
residual variance implies lesser likelihood of observ-
ing large ground-motion intensities at all sites in a re-
gion.

This study explores the impact of considering spa-
tial correlation on the variances in situations where
the models are fitted using only a few closely-spaced
recordings. These situations often arise in low to mod-
erately seismic regions such as the eastern United
States (Cramer et al., 2010). This manuscript first
summarizes the procedure proposed by Jayaram and
Baker (2010a) for fitting ground-motion models with
consideration of spatial correlation. Subsequently, the
ground-motion models are fitted for a variety of sam-
ple earthquake databases comprising of earthquakes
with a small to moderate number of recordings that
are separated by short to medium distances, and the
impact of considering the spatial correlation on the
residual variances is discussed. Finally, sample risk
assessments are carried out for a hypothetical port-
folio of buildings in order to illustrate the potential
impact of the changes in the residual variances on the
seismic risk of spatially-distributed systems.

2 REGRESSION ALGORITHM FOR FITTING
GROUND-MOTION MODELS
CONSIDERING SPATIAL CORRELATION

The regression algorithm proposed by Jayaram and
Baker (2010a) for fitting ground-motion models con-
sidering spatial correlation is summarized below.

In the first step of the algorithm, it is assumed that
the random-effects terms η1,η2, · · · ,ηM equal zero,
in which case Equation 1 simplifies to ln

(
Yi j

)
=

f (PPPi j,θθθ)+εi j. The coefficient set θθθ is then estimated
based on the observed Yi j’s using a fixed-effects re-
gression algorithm. In the next step, the standard de-
viations σ (for the intra-event residuals) and τ (for
the inter-event residuals) are computed using the like-
lihood maximization approach described below.

The total residuals (i.e., the sum of the inter-event
and the intra-event residuals), denoted ε

(t)
i j , can be

computed using the θθθ estimated in the previous step
as follows:

ε
(t)
i j = εi j +ηi = ln(Yi j)− f (PPPi j,θθθ) (2)

The likelihood (L1) of having observed the set of
total residuals εεε(t) =

(
ε
(t)
i j

)
can be estimated as fol-

lows:

ln(L1)=−
N
2

ln(2π)− 1
2

ln|CCC|− 1
2

(
εεε
(t)
)′

CCC−1
(

εεε
(t)
)

(3)

where N is the total number of data points, CCC is the

covariance matrix of the total residuals and
(

εεε(t)
)′

denotes the transpose of εεε(t).
The covariance matrix CCC can be estimated as

CCC(ε
(t)
i j ,ε

(t)
i j′ ) = CCC(εi j +ηi,εi j′+ηi)

= ρ(d j j′)σ
2 + τ

2 ∀ i, j, j′ (4a)

CCC
(

ε
(t)
i j ,ε

(t)
i′ j′

)
= 0 ∀ j, j′, i 6= i′ (4b)

where ρ(d j j′) denote the spatial correlation be-
tween intra-event residuals at two sites j and j′ as a
function of d j j′ , the separation distance between j and
j′.

The maximum likelihood estimates of σ and τ are
those that maximize the likelihood function L1, and
are obtained using numerical optimization.

Given θθθ and the maximum likelihood estimates of
σ and τ , ηi can be estimated as follows:

η̂i =
111
′
ni,1CCC−1

ccc εεε
(t)
i

1
τ2 +111

′
ni,1CCC−1

ccc 111ni,1
(5)

Finally, using the estimated value of ηi, a new set of
coefficients θθθ is obtained using a fixed-effects algo-
rithm for ln(Yi j)−ηi (i.e., considering ln

(
Yi j

)
−ηi =

f (PPPi j,θθθ)+ εi j). The new set θθθ is then used to reesti-
mate σ , τ and ηηη , and this iterative algorithm is con-
tinued until the coefficient estimates converge.

3 IMPACT OF CONSIDERING SPATIAL
CORRELATION ON INTER-EVENT AND
INTRA-EVENT RESIDUAL VARIANCES

In the current study, the algorithm described in the
previous section is used to refit the Campbell and
Bozorgnia (2008) ground-motion prediction model
(henceforth referred to as the CB08 model) for illus-
tration. Both Jayaram and Baker (2010a) and Hong
et al. (2009) reported that the consideration of spatial
correlation does not significantly change the coeffi-
cients of the ground-motion model that are used for
predicting median intensities. This was also observed
in this study, and hence this manuscript only reports
the variances of the inter-event and the intra-event
residuals estimated after fitting the ground-motion
models with and without consideration of spatial cor-
relation. First, in order to provide a baseline model
for comparison, the coefficients of the CB08 model
are reestimated while ignoring spatial correlation. For
consistency, only records in the Pacific Earthquake
Engineering Research (PEER) Next Generation At-
tenuation (NGA) database used by CB08 are used for



estimating the coefficients. Table 1 shows the stan-
dard deviations estimated in this study for predicting
spectral accelerations at 1 second (denoted Sa(1s)) in
the uncorrelated case. Also shown in the table for
comparison are the corresponding published CB08
model coefficients. The value of the published intra-
event residual standard deviation reported here corre-
sponds to that at large Vs30’s (The Vs30 is set above
a threshold value beyond which the ground-motion
model no longer consider soil non-linearity effects,
wherein the intra-event residuals have a constant vari-
ance at any given period.) The refitted variance esti-
mates obtained in this work are similar, but not iden-
tical, to those reported by CB08. As reported by Ja-
yaram and Baker (2010a), these small discrepancies
are likely due to the manual coefficient smoothing
carried out by the authors of the CB08 model (Camp-
bell, 2009). For consistency, the refitted model vari-
ances are treated as the benchmark values, for com-
parison to variances obtained considering spatial cor-
relation.

Table 1: Standard deviations of residuals corresponding to
Sa(1s)

Case σ τ

1 0.568 0.255
2 0.578 0.223
3 0.654 0.157

Case 1: Published CB08 results
(Campbell and Bozorgnia, 2008)

Case 2: Estimated in this study without
considering spatial correlation

Case 3: Estimated in this study considering
spatial correlation

The model coefficients and variances are reesti-
mated considering spatial correlation. The spatial cor-
relation model is obtained from Jayaram and Baker
(2009), and is shown below.

ρ(h) = e−3h/b (6)

where h (km) denotes the separation distance between
the sites of interest, and b denotes the ‘range’ parame-
ter which determines the rate of decay of correlation.
This range is a function of the spectral period, and
equals 26km when Sa(1s) is considered.

After the incorporation of spatial correlation, sig-
nificant changes are seen in the estimates of the vari-
ance of the residuals (Table 1). In particular, the value
of σ increases from 0.578 to 0.654 and the value of τ

decreases from 0.223 to 0.157 after incorporating the
spatial correlation.

In certain situations, it becomes necessary to fit
ground-motion models using data from earthquakes
instrumented with only a few potentially closely-
spaced recording stations. This is, for example, the

case while fitting ground-motion models in low to
moderately seismically active regions such as the
eastern United States. The impact of considering spa-
tial correlation in such situations is discussed subse-
quently in this section.

First, the CB08 ground-motion model is fitted to
predict spectral accelerations at six different periods
(0, 1, 2, 4, 7.5, 10 seconds) with and without consid-
eration of spatial correlation using subsets of earth-
quakes with specified maximum average spacings be-
tween recordings. The percent change in the residual
standard deviations on incorporating spatial correla-
tion in various cases is shown in Figure 1. In general,
the consideration of spatial correlation results in an
increase in the value of σ and a decrease in the value
of τ . These changes are more significant when smaller
average separation distance thresholds are used, with
an exception being the change in the long-period σ ’s
when the threshold is set at 50km. In fact, when the
threshold is set to below 50km (in which case, the av-
erage separation distance falls to below 12km), the
value of τ drops close to zero at periods longer than
1s, as indicated by a near 100% change in the value
of τ in these cases.

Figure 1: Impact of the average site-separation distance on (a) σ

(b) τ

In order to study the impact of fitting ground-
motion models using earthquakes that are not well in-
strumented, a subset of the NGA database is chosen
that only comprises of earthquakes with a specified
maximum number of recordings. The CB08 ground-



motion model is then fitted with and without consid-
eration of spatial correlation using the selected sub-
set. The percent change in the residual standard devi-
ations on incorporating spatial correlation in various
cases is shown in Figure 2. In this case, the impact of
the considering spatial correlation does not increase
monotonically with a reduction in the threshold num-
ber of sites (significant changes are observed when
the threshold is set at 200). In all the cases, however,
significant impacts are seen on both σ and τ when
spatial correlation is considered.

Figure 2: Impact of the number of recordings on (a) σ (b) τ

As discussed by Jayaram and Baker (2010a), ignor-
ing spatial correlation while fitting the ground-motion
model does not significantly affect the estimates of the
ground-motion medians ( f (θθθ)) or the standard devi-
ation of the total residuals, and therefore hazard and
loss analyses for single structures will produce accu-
rate results if the existing ground-motion models are
used. Risk assessments for spatially-distributed sys-
tems, however, are influenced by the standard devi-
ation of the inter-event and the intra-event residuals
and not just by the medians and the standard devia-
tion of the total residuals (this is discussed in more
detail in the following section). Therefore, risk as-
sessments of such systems carried out using ground-
motion models fitted with and without consideration
of spatial correlation could result in different loss es-
timates. Based on Figure 1, it can be concluded that
the error in the loss estimates obtained using ground-
motion models fitted without the consideration of
spatial correlation will, in particular, be more se-

vere when the models are fitted using closely-spaced
recorded ground motions. In the next section, this is
illustrated using risk assessments carried out on a hy-
pothetical portfolio of buildings located in the San
Francisco Bay Area.

Recently, many researchers have focused on esti-
mating a ’site-specific variance’ term, with the goal of
reducing the intra-event residual variance by explic-
itly quantifying the site-effects which if not modeled
can contribute to the variance (e.g., Al Atik et al.,
2010). The increase in the variance of the intra-event
residual while considering spatial correlation lends
this issue additional importance and potential.

4 RISK ASSESSMENT FOR A HYPOTHETICAL
PORTFOLIO OF BUILDINGS

Consider a hypothetical portfolio of 100 buildings in
the San Francisco Bay Area located on a 10 by 10
grid with a grid spacing of 20km. Each building in
the portfolio is assumed to have a replacement value
of $1,000,000. The seismic risk of this portfolio is es-
timated by modeling the seismic hazard due to 10 dif-
ferent faults and fault segments. (The source model
is obtained from USGS (2003)). The risk assessment
is carried out using a simulation-based procedure de-
scribed in Crowley and Bommer (2006) and Jayaram
and Baker (2010b). The steps involved in this proce-
dure are summarized below.

Step 1: Simulate earthquakes of different magni-
tudes on the active faults in the region, using appro-
priate magnitude-recurrence relationships.

Step 2: Using the ground-motion model, compute
the median ground-motion intensities ( f (θθθ)) and the
standard deviations of the inter-event and the intra-
event residuals (σ and τ respectively) at the sites of
interest.

Step 3: Simulate the inter-event residual (i.e., η j)
by sampling from the univariate normal distribution
with mean zero and standard deviation τ .

Step 4: Simulate the intra-event residuals (i.e., εi j’s)
by sampling from a multivariate normal distribution
with mean 000p,1 (zero vector of size p) and covariance
matrix given by Equation 4. Here, the spatial corre-
lation (ρ j j′) is defined by the exponential model in
Equation 6 with a range of 26 km.

Step 5: Combine the medians, inter-event residuals
and intra-event residuals using Equation 1 to obtain
realizations of the ground-motion intensity at all sites
of interest. In the rest of the paper, each set of ground-
motion intensities is referred to as a ground-motion
intensity map. The collection of all simulated ground-
motion intensity maps quantifies the total ground-
motion hazard in the region.

Step 6: Simulate the damage to the buildings due to
each ground-motion intensity map. Here, this is done
using damage functions which provide the probability
of the building damage being in or exceeding various
damage states (no damage, minor damage, moderate



damage, extensive damage and collapse) as a function
of the spectral acceleration at 1 second at the building
location. The damage functions were assumed to be
cumulative lognormal distribution functions with me-
dian values 0.4, 0.5, 0.7 and 0.9 for the minor, moder-
ate, extensive and collapse damage states respectively.
The lognormal standard deviation was assumed to be
0.6 in all these cases.

Step 7: Compute the total monetary loss associated
with the damage to the portfolio due to each ground-
motion intensity map. This is computed by assuming
the damage ratio (ratio of repair cost to replacement
cost) to be 0.03, 0.08, 0.25 and 1.00 for the minor,
moderate, severe and collapse damage states respec-
tively.

Step 8: Obtain the loss exceedance curve which
provides the annual rate of exceedance of various
monetary loss values. The loss exceedance curve is
obtained as the product of the recurrence rates of all
earthquakes in the region and the probability of ex-
ceedance of various monetary loss values. The ex-
ceedance probabilities are calculated as follows:

P(L≥ l) =
1
n

n

∑
i=1

I(Li ≥ l) (7)

where P(L≥ l) is the probability that the loss exceeds
l, n denotes the number of simulated ground-motion
intensity maps, Li is the monetary loss associated with
ground-motion intensity map i, and I(Li ≥ l) is an in-
dicator variable that equals one if Li exceeds l and
zero otherwise.

The above-mentioned risk assessment process is
carried out using the values of σ and τ estimated in
this work with and without consideration of spatial
correlation for two cases: (a) case 1: ground-motion
model fitted using all the NGA database records used
by CB08 (b) case 2: ground-motion model fitted us-
ing earthquakes where the average station-station sep-
aration distance is less than 100km. In both cases,
the CB08 median model coefficients are used for
estimating median intensities, since the objective of
this manuscript is to demonstrate the impact of the
changes in the variances on the risk estimates. The re-
sulting loss exceedance curves are shown in Figure 3.

It can be seen from Figure 3 that the recurrence
rates of extreme losses are overestimated while us-
ing the variances obtained without consideration of
spatial correlation. This is a result of the fact that the
value of τ gets overestimated and σ gets underesti-
mated on ignoring spatial correlation. A large value
of τ increases the likelihood of observing large pos-
itive inter-event residuals, which will simultaneously
increase the ground-motion intensity at all the sites
in the region. If spatial correlations are large, a large
value of σ will have a similar effect and can result
in large ground-motion intensities at multiple sites. In
such a case, the effect of underestimating σ is com-
pensated by the effect of overestimating τ . If the spa-
tial correlations are small, however, underestimating

Figure 3: Risk assessment for a hypothetical portfolio of build-
ings performed using ground-motion models developed with and
without the proposed refinement

σ and overestimating τ will have the net effect of
jointly producing more extreme ground-motion inten-
sities at multiple sites than is probable in reality. It can
be inferred from Equation 6 that the spatial correla-
tion will be small if h is large or if b is small. There-
fore, when the components of a spatially-distributed
system are well separated (large h) or if the corre-
lation range is small, the ground-motion models fit-
ted without considering spatial correlation will over-
estimate the likelihood of jointly observing extreme
ground-motion intensities at multiple sites. It is to
be noted that the separation between the buildings in
the hypothetical portfolio considered in this work is
substantial, which leads to differences between the
loss curves obtained with and without consideration
of spatial correlation.

Further, the difference between the risk estimates
obtained with and without consideration of spatial
correlation is higher in case 2 than in case 1 directly
as a consequence of the more significant differences
in the values of σ and τ in case 2.

It is difficult to make general conclusions about the
size of this effect, but it is clear that seismic risk anal-
ysis calculations using existing ground-motion model
estimates of σ and τ will bias the estimated risk.

5 CONCLUSIONS

This work illustrated the impact of considering spatial
correlation between intra-event residuals while de-
veloping ground-motion models in situations where
the models are fitted using only a few recordings or
closely-spaced recordings, which is often the case in
low to moderately seismic regions such as the eastern
United States. Ignoring spatial correlation while fit-
ting ground-motion models is seen to underestimate
the intra-event residual variance while overestimat-
ing the inter-event residual variance. The changes to
the variances are more severe in situations where the



models are fitted using only a few recordings, though
the trend with average station separation distance is
not clear. The changes to the variances have implica-
tions for risk assessments of spatially-distributed sys-
tems, because a smaller inter-event residual variance
implies lesser likelihood of observing large ground-
motion intensities at all sites in a region. This is illus-
trated using sample risk assessments for a hypotheti-
cal portfolio of buildings, which show that the portfo-
lio loss estimates are biased while fitting models ob-
tained without consideration of spatial correlation.

This work serves to illustrate the need to con-
sider spatial correlation in the regression for ground-
motion models in upcoming projects such as the NGA
east project. Further, many researchers have focused
recently on estimating a ’site-specific variance’ term,
with the goal of reducing the intra-event residual vari-
ance by explicitly quantifying the site-effects which
if not modeled can contribute to the variance. The in-
crease in the variance of the intra-event residual while
considering spatial correlation lends this issue addi-
tional importance and potential.
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