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Abstract 

A primary goal of seismic provisions in building codes and retrofit legislation is to protect life safety 
through prevention of structural collapse. To evaluate the extent to which these specifications meet this 
objective, the authors have conducted detailed assessments of the collapse performance of both modern 
reinforced concrete (RC) special moment frames (SMF) and existing RC non-ductile moment frames.  
 
Many aspects of the assessment process, including the treatment of modeling uncertainties, can have a 
significant impact on the evaluated collapse performance.  Approaches for evaluating the effects of 
modeling uncertainties are described in this study. Uncertainties in strength, stiffness, deformation 
capacity, and cyclic deterioration are considered for ductile frame structures of varying heights. Due to 
the computationally intensive nature of these analyses, the effect of these modeling uncertainties is 
assessed through creation of a response surface from the results of sensitivity analyses. From the 
response surface, Monte Carlo simulation is used to quantify the impact of these uncertainties on the 
predicted collapse capacity of each structure.  
 
1. Introduction  

The process of assessing structural seismic performance at the collapse limit state through nonlinear 
simulation is highly uncertain.  For assessment of an individual building design, there is significant 
uncertainty in the future ground motion that may occur, both in terms of the intensity (given by the site 
specific hazard curve), and the frequency content and other characteristics of the ground motion (termed 
record-to-record variabilities).  Similarly, there are uncertainties in the structural modeling process and 
the extent to which the idealized model accurately represents real behaviour. Firstly, there may be 
several options of what type of model to use.  Once a particular model is chosen, the modeling 
parameters used in the structural model are again a source of uncertainty, as the actual strength and 



deformation may differ from the expected values.  These uncertainties are referred to as modeling 
uncertainties.  Additionally, if the assessment is based on a possible future design, there is also design 
uncertainty, which accounts for variability in engineering design choices, given the prescriptive code 
requirements that govern design.  Other sources of uncertainty, including human error and construction 
quality, are not considered in this study.   
 
These sources of uncertainty are critical components of the probabilistic assessment of a structure’s 
collapse capacity. Record-to-record variabilities are directly incorporated into the analysis procedure 
through use of a sufficiently large set of ground motion records.  The problem considered here is how to 
realistically and expediently quantify the effects of modeling uncertainties.  Many researchers have 
varied uncertain modeling parameters, including damping, mass, and material strengths, and concluded 
that these variations make a relatively small contribution to the overall uncertainty in seismic 
performance predictions.  However, these studies have focused primarily on pre-collapse performance.  
In contrast, we show that the modeling uncertainties associated with deformation capacity and other 
parameters critical to collapse prediction have a significant effect on the assessed collapse performance.   
 
To begin, we provide an overview of the collapse assessment procedure and results for a set of 
structures: RC moment frames in high seismic regions. We then review methods for quantifying the 
effects of uncertainty in element and system level modeling, and propose a procedure that combines 
response surface analysis and Monte Carlo simulation. This procedure is applied to three RC SMFs of 
varying heights.  Finally, we compare the results obtained in this study with first-order second-moment 
reliability methods, which are easier to implement, but rely on the validity of key, simplifying 
assumptions.  We focus primarily on the effects of modeling uncertainties on the spectral acceleration at 
collapse, but other measures such as the peak interstory drift ratio at collapse could also be explored.   
 
2. Overview of Collapse Assessment Procedure and Results  

This study is primarily concerned with assessing structural collapse due to earthquakes, focusing in 
particular on RC frame structures.  The procedure used for collapse assessment utilizes the performance-
based earthquake engineering methodology developed by the Pacific Earthquake Engineering Research 
center, which provides a probabilistic framework for relating ground motion intensity to the structural 
response through structural simulation (Deierlein 2004).   
 
Simulation of global sidesway collapse uses the Incremental Dynamic Analysis (IDA) technique 
(Vamvatsikos and Cornell 2002).  In IDA, the analytical model of a structure is subjected to a ground 
motion record, and the structural response is simulated. This analysis is repeated, each time increasing 
the scale factor on the ground motion’s intensity, until that record causes structural collapse in a 
sidesway mode.  This process is then repeated for an entire suite of ground motion records, to capture 
the record-to-record uncertainty in the response.1  In these analyses, the ground motion intensity 
measure is the spectral acceleration at the first mode period of the building [Sa(T1)].  The outcome of 
the IDA procedure is an empirically obtained cumulative probability distribution relating probability of 
collapse to the Sa(T1) of the ground motion. When there are possible failure modes that are not captured 
in the simulation model, these can be incorporated through post-processing, combining component or 
system fragility curves with the IDA results (see Liel et al. (2006)).  Several different metrics can be 
used to quantify collapse performance: collapse capacity margin (the ratio of median collapse capacity 
                                                      
1 For this study, the ground motions were selected to represent large earthquakes with moderate fault-rupture 
distances (i.e., non near-field conditions).  This is the basic Far-Field ground motion set selected by Haselton and 
Kircher as part of an Applied Technology Council project, ATC-63.   These records were selected without 
consideration of epsilon, a measure of spectral shape which has been shown to have a significant impact on 
collapse capacity (Haselton 2006).   



to the maximum considered earthquake (MCE) demand), probability of collapse conditioned on the 
MCE (or other hazard level of interest), and mean annual frequency of collapse (obtained by integrating 
the collapse probability distribution with the hazard curve for a particular site).  
 
This procedure was used to assess the performance of both modern and existing RC frame buildings.  
The nonlinear analysis model for each structure consists of a 2-D three-bay frame created in OpenSees, 
as shown in Figure 1.  The models capture material nonlinearities in beams, columns, and beam-to-
column joints, along with P-Delta effects.  The beam-column hinges are modeled using the backbone 
shown in Figure 1b and the associated hysteretic rules; the properties of these hinges are obtained from 
systematic calibration to 255 experimental tests, as described in Haselton et al. (2007).  The joints are 
modeled as finite size with a joint shear spring.  Mean values are utilized for all modeling parameters, in 
order to represent the expected behavior.    
 
Haselton (2006) studied 30 code-conforming RC SMFs of varying height (1 - 20 stories), and evaluated 
the collapse capacity of each structure.2  These structures are assumed to be at a specified site in Los 
Angeles in the transition zone, for which the hazard curve has been defined through probabilistic 
seismic hazard analysis (Goulet et al. 2007).  From the analysis, the collapse margins (relative to the 
MCE) range from 1.1 to 2.1 for this set of structures. The collapse probabilities conditioned on the MCE 
ground motion vary from 0.12 to 0.47.  The mean annual frequency of collapse (λcollapse) ranges from 
2.2x10-4 to 25.5x10-4 collapses/year, corresponding to a collapse return period of between 400 and 4500 
years.3,4   These collapse assessments reveal that the collapse performance is relatively stable for 
structures of different heights, and that perimeter frames typically have worse performance than space 
frames (because of the higher inherent overstrength in space frame design and greater dominance of P-Δ 
effects in perimeter frames).  A similarly comprehensive study of non-ductile RC moment frames, of the 
type constructed in the 1960s and 1970s in California, is underway.  In general, it is shown that these 
structures are considerably more likely to collapse in earthquakes due to the lack of capacity design 
requirements and detailing provisions (Liel et al. 2006).   
 
3. Treatment of Modeling Uncertainties  

3.1. Review of Previous Research 
Recognizing the uncertainties in the structural modeling process, a variety of approaches have been used 
to study the effects of these uncertainties on the resulting structural response and performance 
predictions, such as those described above for reinforced concrete frame structures.  
 
Sensitivity analysis provides a simple method for computing the effects of modeling uncertainties on 
response quantities of interest.  The effect of each random variable on structural response is determined 
by varying a single modeling parameter and re-evaluating the structure’s performance. These studies, 
eg. those conducted by Esteva and Ruiz (1989), Porter et al. (2002), Ibarra (2003), or Aslani (2005), are 
used to identify those modeling parameters that have the most significant impact on the response.   
 
                                                      
2 These structures are fully designed according to the provisions of ASCE 7-02, ACI 318-02 and IBC 2003.   
3 The values reported here include the effects of modeling uncertainties obtained through the FOSM procedure 
and the mean estimates approach (discussed later), where it is assumed σln,modeling = 0.45.  The σln,modeling = 0.45 
value was obtained through a detailed study for a 4-story reinforced concrete building, and it was assumed that 
this value is appropriate for the other structures studied.  When structural modeling uncertainties are excluded 
from the analyses, λcollapse decreases to 0.3x10-4 to 8.3x10-4 collapses/year.   
4 As noted previously, these collapse assessments are conservative, because they do not include an adjustment for 
spectral shape.   



First-order-second-moment (FOSM) reliability approaches provide a simple method for propagating 
modeling uncertainties to quantify their effect on structural response.  In FOSM, the variance of the 
response due to various sources of uncertainty is computed by assuming the limit state function is linear. 
The needed gradients of the linearized limit state function can be obtained through perturbation of 
individual random variables in a series of sensitivity analyses.  Unfortunately, the analyses may become 
inaccurate for highly nonlinear functions.  In addition, the FOSM method uses only information about 
the first and second moments of the input random variables (mean and variance), and is inappropriate 
for problems in which the modeling uncertainties may alter the prediction of the median as well as the 
dispersion (Baker and Cornell 2007).   
 
Several researchers have explored the effects of modeling uncertainties with FOSM, including Ibarra 
(2003), Lee and Mosalam (2005).  Haselton studied the effects of modeling uncertainties on the collapse 
capacity of a code-conforming 4-story RC SMF designed for a high seismic region in California 
(Haselton 2006; Haselton et al. 2006).  The authors used a finite difference approach to compute the 
sensitivity to each random variable for use in FOSM input.  When partial correlation assumptions were 
used, the most realistic case, the logarithmic standard deviation contribution from modeling and design 
uncertainties on collapse capacity is 0.45 (or roughly equivalent to the record-to-record variability).  
This work by Haselton et al. provides the basis for comparison for this study.   
 
An alternative approach uses Monte Carlo simulations to determine the effect of modeling uncertainties 
on the structural response predictions.  The Monte Carlo procedure generates realizations of each 
random variable, which are inputted into a simulation model, and the model is then analyzed to 
determine the collapse capacity.  When the process is repeated for thousands of sets of realizations a 
distribution on collapse capacity results associated with the input random variables is obtained.  The 
simplest sampling technique is based on random sampling using the distributions defined for the input 
random variables, though other techniques, known as variance reduction, can decrease the number of 
simulations needed.  These Monte Carlo procedures can become computationally very intensive if the 
time required to evaluate each simulation is non-negligible (Helton and Davis 2001; Rubinstein 1981).   
 
The computational effort associated with full Monte Carlo simulation can be reduced through 
combination with response surface analysis.  A response surface is a simplified functional relationship 
or mapping. As such, it can be used to approximate a limit state function as a function of selected input 
random variables.  The price of this efficiency is a loss of accuracy in the estimate of the collapse 
capacity, which depends on the degree to which the highly nonlinear predictions of structural response 
can be accurately represented by the simplified response surface (Helton and Davis 2001; Pinto et al. 
2005). Ibarra (2003) analyzed the collapse capacity of a single degree-of-freedom system and used a 
response surfaced to represent the collapse capacity as a function of post-capping stiffness.  Ibarra’s 
study found, for that particular case, that the simplified FOSM procedure, the full Monte Carlo 
procedure, and the combined response surface/Monte Carlo approach produced comparable result.   
 
Whichever procedure is used, correlations between the input random variables under consideration can 
determine how significantly the modeling uncertainties impact the structural response (Haselton 2006; 
Val et al. 1997).  Possible correlations include both correlations between the properties of a particular 
element, and correlations over the height of the building.  There is insufficient data to quantify these 
correlations, so expert judgment is typically used.  In general, increased correlation tends to increase the 
dispersion in the response quantity of interest, which generally leads to decreased collapse performance; 
the fully correlated case is typically considered to be conservative.   
 
Once the effects of modeling uncertainties have been predicted there is still significant debate related to 
interpretation of these results, centering on how the effects of modeling uncertainties should be 



combined with the effects of other sources of uncertainty, such as record-to-record variabilities. For this 
purpose, different sources of uncertainty are sometimes characterized as either “aleatory” (randomness) 
or “epistemic” (lack of knowledge).   
 
One common approach for combining the effects of different sources of uncertainty is the confidence 
interval approach, through which we can make statements about structural response fragilities at a 
specified level of confidence (Cornell et al. 2002).  The confidence interval method is illustrated in the 
collapse fragilities shown in Figure 2a.  Record-to-record variability (treated as aleatory) is shown by 
the cumulative distribution function obtained directly from IDA analyses (blue), and the epistemic 
uncertainty (related to modeling variability) creates the distribution on the mean(green).  The 
distribution associated with epistemic uncertainty may be obtained from FOSM, Monte Carlo 
simulations, or expert judgment.  In order to make predictions at a specified confidence level, the 
cumulative aleatory distribution is shifted to the appropriate percentile on the epistemic distribution.  
Thus, the probabilities associated with the shifted distribution in Figure 2a (red) are consistent with a 
90% prediction of confidence, accounting for both aleatory and epistemic sources of uncertainty.  
Although this approach is conceptually appealing, the resulting structural performance predictions 
become highly dependent on the level of confidence chosen.  In addition, it requires distinguishing 
between aleatory and epistemic uncertainties, which can quickly become a philosophical debate.  
 
A second approach, referred to as the mean estimates approach, can be used to combine the 
contributions of the epistemic and aleatory uncertainties in structural response fragilities.  Two 
assumptions are needed: first, it is assumed that the two distributions are independent and, second, that 
both can be well-described using lognormal distributions such that the epistemic uncertainty is 
represented by a lognormal distribution on the median collapse capacity (Cornell et al. 2002).  If these 
two conditions are satisfied, the logarithmic standard deviations associated with each can be combined 
using the square-root of the sum-of-the-squares approach (SRSS) to obtain the total variance associated 
with the fragility.  When the mean estimates approach is used, the median is unchanged when modeling 
uncertainties are incorporated, but the variance increases, as shown in Figure 2b. This approach does not 
distinguish between aleatory and epistemic uncertainties.   
 
A third approach is similar to the mean estimates approach, except that it does not rely on the 
assumption of independence, and can be used to quantify the effects of modeling uncertainty on both the 
mean and variance of the structural response fragility.  By viewing the results of Monte Carlo 
simulations as alternate potential descriptions of reality, we interpret both the modeling and record-to-
record uncertainties as leading to uncertainties in the probabilities defining the collapse fragility curve at 
each spectral acceleration level.  The combined (mean) fragility is computed from the expected value of 
the probability at each spectral acceleration level.  (See Figure 5.) 

3.2. Procedure for Evaluating Effects of Modeling Uncertainties 
 
In this study, we use the response surface methodology to quantify the effects of modeling uncertainties 
on collapse capacity.  The most complete method, the full Monte Carlo procedure, is infeasible because 
of the computationally intensive nature of the analysis (it takes approximately 160 minutes to compute 
the mean collapse capacity for one set of realizations of the input random variables).  The simplest 
method, FOSM with mean estimates approach, is unable to capture the shift in the median of the 
distribution, and is insufficient to capture the effects of model uncertainties (especially where the 
median collapse capacity is small relative to the site seismic hazards).  
 
Firstly, sensitivity analyses are used to probe the effects of modeling variables on the collapse capacity 
of the system.  The results of the sensitivity analysis are used to create a response surface using 



regression analysis. The response surface has a second-order polynomial functional form, which is 
capable of representing asymmetric response to modeling (random) variables, and interactive effects 
between the random variables.  Following creation of the response surface, Monte Carlo simulation is 
used to obtain a suite of sample realizations for the set of random variables under consideration.  For 
each set of realizations, the collapse capacity of the structure is computed from the response surface.  
The outcome is a set of predicted collapse capacities for the structure, which represent the combined 
effect of modeling and record-to-record uncertainties.  These results are then combined through the third 
approach described above.   
 
4. Evaluation of Effect of Modeling Uncertainties on Case Study Structures 

In this study, the collapse capacities of ductile RC SMF structures of three different heights (1, 4 and 12 
stories) are assessed.  All structures have 20 ft. bay spacing, and have 13 ft. story heights except at the 
first story (15 ft.).  The collapse assessment was performed using as the procedure described in Section 
2, discussed in more detail in Haselton (2006).  A summary of the main metrics of collapse performance 
is shown in Table 1.  These measures include only the effects of record-to-record uncertainties 
associated with the variability in ground motions, and are based on results for the model with mean 
values for all modeling parameters.   
 
For each of these structures, we consider uncertainty in the modeling parameters that define the lumped 
plasticity plastic hinges for beams and columns.  These hinges are modeled using a material model 
developed by Ibarra and Krawinkler (2005). The backbone (Figure 1b) and hysteretic rules are defined 
by six parameters: flexural strength (My), initial stiffness, post-yield (hardening) stiffness, capping point 
(θcap,pl), post-capping stiffness (θpc) and cyclic deterioration (λ).  Each of these parameters is assumed to 
be lognormally distributed, and the mean and standard deviation are obtained from previous research 
(Haselton et al. 2007).  In this study, hardening stiffness is neglected because of its very small influence 
on collapse capacity.  For simplicity, other parameters related to element level modeling (eg. pinching 
and residual strength) and system level behaviour (eg. damping, mass, live and dead loading) are not 
considered; earlier sensitivity studies found that modeling parameters related to component strength and 
deformation capacity had the most significant effect on the collapse assessment (Haselton 2006).  The 
uncertainty associated with the modeling and behaviour of reinforced concrete joints is also neglected 
for these structures, because capacity design provisions and transverse reinforcement requirements for 
joints have been shown to be sufficient to ensure that failure occurs outside the joints.   
 
If each of the random variables discussed in the preceding paragraph were investigated individually the 
sensitivity analyses would quickly become extremely time intensive, requiring examination of 5 random 
variables for each plastic hinge location in the analytical model.  To further reduce the number of 
variables under consideration, we make assumptions about correlations, at both the element and 
building level.  At the element level, two meta random variables are created. The strength/stiffness meta 
variable assumes that strength and stiffness are perfectly correlated within the element.  The ductility 
meta variable assumes that plastic rotation capacity, cyclic deterioration, and post-capping stiffness are 
perfectly correlated. These groupings are assumed, but a study of the correlations among these random 
variables (from the calibration results in Haselton et al. 2007) reveals that each random variable does 
tend to be more highly correlated with the other random variables within its group.   Further correlations 
are assumed at the structural level; we assume that beam strength/stiffness is perfectly correlated over 
the entire structure, and likewise for column strength/stiffness, column ductility and beam ductility meta 
variables.  These correlation assumptions leave four meta variables, each assumed to be lognormally 
distributed. These are all normalized random variables, and their values reflect the number of standard 
deviations that the realization is from the mean value. 
 



Based on these four random variables, sensitivity analyses are conducted to quantify the effects of each 
modeling variable on the collapse distribution.  The realizations of random variables used in the 
sensitivity analysis are based on central composite design, including star points (in which only one 
random variable is changed at a time) and factorial points (capturing interactions between the random 
variables) (Pinto et al. 2005).  In total, 33 sensitivity analyses were conducted for each structure, and 
each random variable was perturbed a maximum of 1.7 standard deviations away from the mean.  For 
each sensitivity analysis, a nonlinear model is created with modified element material properties, and 
the collapse analysis is run with a subset of 20 earthquake records.5  A summary of the results of the 
sensitivity analysis for the 4-story SMF is shown in Figure 3.  Of the four random variables, column 
strength/stiffness and column ductility have the largest effect.  Beam strength/stiffness has an inverse 
effect due to the benefit having weak beams relative to the columns. It is also noteworthy that all the 
random variables have an asymmetric effect, ie. improvement and degradation of a capacity random 
variable do not have equivalent positive and negative effects on the response.   This characteristic is 
problem for FOSM analysis, which cannot capture this nonlinearity.  
 
The sensitivity analysis results are used to create a response surface that describes the collapse capacity 
[ln(Sa(T1))] as a function of the input random variables.  The response surface is the second-order 
polynomial that best fits the data, obtained using the regression analysis capabilities of Matlab.  For the 
4-story building, the fitted polynomial is partially described in Equation (1) 6:  

...)(05.0)(01.0)(07.0)(20.0)(08.026.0))(ln( 2
1 +−+++−= BSCDBDCSBSTSa    (1) 

where BS refers to beam strength/stiffness, BD refers to beam ductility, CS refers to column 
strength/stiffness and CD refers to column ductility. Since these are normalized random variables, when 
all meta variables are 0 all random variables are at their mean values, and the results should be 
consistent with the mean model; Eqn. (1) predicts exp(0.26) = 1.30g, compared to 1.30g in Table 1.   A 
graphical representation of the response surface is provided in Figure 4. As expected, column 
strength/stiffness, column ductility and beam ductility all have a positive effect on the collapse capacity 
of the structure, while beam strength/stiffness has an inverse effect.  The response surface obtained in 
(1) is evaluated according to statistical measures of goodness of fit. In particular, the R2

 value, which 
characterizes how much of the variability is captured by the regression, is 0.99.  The p-value of 1.11 x 
10-16 strongly indicates statistical significance. In addition, the variance inflation factors are computed to 
be << 10, indicating that collinearity is not a problem. Similar results are obtained for the 1 and 12 story 
SMFs.  
 
Monte Carlo simulations are conducted using the response surfaces created for each structure.  For each 
simulation, realizations of each of the different random variables are generated, in keeping with the 
lognormal assumption for the meta random variables.  From these realizations, the response surface is 
used to obtain a prediction of the collapse capacity of the structure which the simulation represents.  Ten 
thousand simulations were performed, and the predicted collapse capacity for each was obtained.    
 
The final step is to recreate the cumulative distribution of collapse, incorporating the information from 
the Monte Carlo simulations that includes the effects of modeling uncertainties.  Each simulation 
predicts a value of the collapse fragility at each spectral acceleration level; by taking the expected value 
of these predictions the final fragility is obtained.  This process is illustrated in Figure 5, for the 4-story 
structure.  The final probability distributions for collapse capacity of the 1, 4, and 12 story structures are 
shown in Figure 6, and these effects are summarized in Table 2.  The effect of incorporating modeling 
uncertainties is to decrease the prediction of the median and increase the dispersion of the collapse 

                                                      
5 This subset of earthquake records was chosen to reduce the computational times needed.  The response spectra 
of this subset was observed to be characteristic of the response spectra of the whole set.   
6 The coefficients on higher order interaction terms are not shown here for simplicity.  



fragility.  However, the extent of the effect depends on the structure under consideration.  The base case, 
no consideration of modeling uncertainty, is highly unconservative.  Table 2 also illustrates how choices 
about how to incorporate modeling uncertainty affect the prediction of the mean annual frequency of 
collapse.  Figure 6 compares the results obtained by a simplified FOSM approach assuming σln,modeling =  
0.45, as described previously.3  At the left tail, the FOSM-obtained CDFs (using the mean estimates 
approach) are relatively close to those obtained from the Monte Carlo simulation.  In this study the 
mean annual frequencies computed using the FOSM/mean estimate approach and the full Monte 
Carlo/response surface approach are fairly close, but this result may be significantly different for non-
ductile structures.  
 
The Monte Carlo simulation also allows us to conduct a parametric study of the effects of correlation 
assumptions between the meta random variables. In the results presented thus far the four meta random 
variables are assumed to be uncorrelated.  Two other sets of correlation assumptions are considered for 
the 4-story structure.  In the first case BS and CS are assumed to be correlated, as are BD and CD, but 
there is no correlation assumed between the two groups.  In the second case, BS and BD are assumed to 
be correlated, as are CS and CD.  For the first case, full correlation leads to a 9.3% increase in the 
median collapse capacity, reducing the overall effect of considering modeling uncertainty.  This 
suggests that the relative difference in beam and column strength and beam and column ductility is a 
larger factor in determining collapse capacity than the absolute values.  In the second case, as the 
assumed level of correlation increases the median collapse capacity decreases (by 5.6% in the fully 
correlated case) and the dispersion increases. At higher levels of correlation it becomes more likely that 
beam behaviour is either very good (in terms of both strength and ductility) or very bad.  Since poor 
behaviour tends to decrease the collapse capacity more than good behaviour increases it, the median is 
further reduced as higher levels of correlation are assumed.  
 
5. Conclusions  

The results of this study, which utilizes Monte Carlo simulation in conjunction with a fitted response 
surface, demonstrate that incorporation of modeling uncertainties can have a significant effect on the 
collapse fragility obtained.  Neglecting these effects is nonconservative.   
 
For the ductile RC moment frames considered in this study, explicit consideration of uncertainties 
associated with element strength/stiffness and ductility may decrease the median collapse capacity by 5 
to 21%.  This decrease in collapse capacity occurs because the effects of the random variables on the 
collapse response are asymmetric, and tend to have a larger negative than positive effect. The dispersion 
of the collapse fragility also increases, by between 16 and 23% for the case study structures.  Variation 
in the importance of modeling uncertainties for the three different structures is likely due to the possible 
failure modes in the structure and the propensity of the modeling uncertainties to alter the most likely 
failure mode.  In particular, the 1-story building has essentially one failure mode consisting of hinging 
in the column bases and hinging in the columns or beams at the 1st floor.  In contrast, there are nearly 
ten observed failure modes for the 4-story building, and this may be associated with the larger effect of 
modeling uncertainties in this case.  Correlations also have a significant impact on collapse performance 
predictions; the correlation cases considered here show a 5 – 10% change in the median collapse 
capacity.  Further cases of building level correlations, particularly for the 4-story building, are a topic 
for future research.   
 
These results also suggest that for a ductile well-performing structure (ie. the MCE is significantly 
below the median collapse capacity) the simplified FOSM approach gives reasonable estimates, because 
the lower tails of the collapse distributions obtained in the two cases are relatively similar.  The FOSM 
approach, however, cannot predict a shift in the median value, which is important for some structures.  



Moreover, for non-ductile structures which have significantly lower collapse capacities relative to the 
site hazard level, differences at the upper end of the collapse distribution will become more critical and 
the FOSM results show poor agreement with the Monte Carlo results.   
 
These results point more generally to the potential importance of characterizing and propagating 
uncertainties appropriately.  Because simplified approaches may have a large effect on calculated risks 
the accuracy of simplifying assumptions should be considered with care when the results will impact 
important decisions.   
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Table 1: Collapse metrics for case study ductile frame structures 
Design ID Num. of 

Stories
Framing 
System

T1 (s) Mean Sag.m., 
collapse (g)

Margin compared to 
MCE

P[collapse|
MCE] λcol x 10 -4 Collapse Mode (most 

frequently occuring)

2061 1 space 0.42 2.95 2.11 0.07 1.2 1-story collapse mechanism

1003 4 perimeter 1.12 1.3 1.71 0.09 1.7
(1) 2nd story mechanism; (2) 
Mechanism in stories 1 and 2

1013 12 perimeter 2.01 0.61 1.32 0.26 6.7
2; (2) Mechanism in stories 1,2 
and 3  

*Model with mean parameters, subset of 20 earthquake records 
 
Table 2: Effect of modeling uncertainties on median and dispersion of collapse fragility and comparison 

of λcollapse with different methods of computing modeling uncertainty.  

 

Num. of 
Stories

% change in 
median

% change in 
dispersion

No consideration of 
modeling 

uncertainty

FOSM3, where 
σln,modeling = 0.45

This study

1 -5% 14% 1.2 4.1 1.6
4 -28% 19% 1.7 6.1 5.9

12 -9% 15% 6.7 17.0 12.0

Effect of Modeling Uncertainty 
in this Study λcollapse (x 10-4)
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Figure 1:  Schematic diagram of analytical model, showing (a) generalized model configuration and (b) 

nonlinear material features of beam-column hinges.   
 

Distribution of the mean of the 
collapse capacity distribution, due 

to epistemic (modeling) 
uncertainties

Aleatory distribution shifted to 
10th percentile of the epistemic 
uncertainty distribution – “90% 

prediction confidence” 
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Figure 2:  Collapse fragilities for a 4-RC frame structure, illustrating (a) the confidence interval 
approach and (b) the mean estimates approach. [After Haselton (2006)] 
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Figure 3: (a)  Histogram showing the results of sensitivity analysis for the 4-story SMF. (b) Tornado 

diagram from sensitivity analysis results.   
 

 
Figure 4: Graphical representation of the polynomial response surface obtained for the 4-story 

structure. Each of these represents a slice of a multi-dimensional surface. In (a) the effects of column 
strength/stiffness and beam strength/stiffness are shown, while beam ductility and column ductility are 
held constant (at 0).  Likewise, Figure 4(b) illustrates the effects of varying beam and column ductility.  
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Figure 5: (a) Histogram of collapse probabilities obtained form Monte Carlo simulations at Sa = 1.91g 

and (b) Computed collapse CDF with histograms superimposed at selected Sa levels. 
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Collapse CDF, neglecting model uncertainty
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Figure 6: Cumulative CDFs obtained for (a) 4-story building, (b) 12-story building and (c) 1-story 

building.   


