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The primary goal of seismic provisions in building codes is to protect life safety through the prevention of
structural collapse. To evaluate the extent to which current and past building code provisions meet this
objective, the authors have conducted detailed assessments of collapse risk of reinforced-concrete
moment frame buildings, including both ‘ductile’ frames that conform to current building code require-
ments, and ‘non-ductile’ frames that are designed according to out-dated (pre-1975) building codes.
Many aspects of the assessment process can have a significant impact on the evaluated collapse perfor-
mance; this study focuses on methods of representing modeling parameter uncertainties in the collapse
assessment process. Uncertainties in structural component strength, stiffness, deformation capacity, and
cyclic deterioration are considered for non-ductile and ductile frame structures of varying heights. To
practically incorporate these uncertainties in the face of the computationally intensive nonlinear
response analyses needed to simulate collapse, the modeling uncertainties are assessed through a
response surface, which describes the median collapse capacity as a function of the model random vari-
ables. The response surface is then used in conjunction with Monte Carlo methods to quantify the effect
of these modeling uncertainties on the calculated collapse fragilities. Comparisons of the response surface
based approach and a simpler approach, namely the first-order second-moment (FOSM) method, indicate
that FOSM can lead to inaccurate results in some cases, particularly when the modeling uncertainties
cause a shift in the prediction of the median collapse point. An alternate simplified procedure is proposed
that combines aspects of the response surface and FOSM methods, providing an efficient yet accurate
technique to characterize model uncertainties, accounting for the shift in median response. The method-
ology for incorporating uncertainties is presented here with emphasis on the collapse limit state, but is
also appropriate for examining the effects of modeling uncertainties on other structural limit states.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Comprehensive assessment of the risk of earthquake-induced
structural collapse requires a robust analytical model that captures
nonlinear behavior and, also, explicit consideration of the many
important sources of uncertainty. The largest uncertainty lies in
characterizing the earthquake ground motion. Uncertainties in
ground motion intensity are commonly represented by a site-spe-
cific hazard curve, which relates spectral intensity to the frequency
of exceedance; the additional uncertainties associated with fre-
quency content and other attributes of the ground motion records
are termed ‘record-to-record’ variabilities. Apart from ground mo-
tions, there are uncertainties in simulating the structural response,
which relate to the analysis method and the extent to which the
idealized model accurately represents real behavior. Where de-
ll rights reserved.
tailed nonlinear response history analysis is used to simulate struc-
tural response, a primary source of modeling uncertainty lies in
definition of the analysis model parameters – specifically the
strength, stiffness, deformation capacity, and energy dissipation
characteristics of the building components – as compared to the
components’ actual behavior.

This study involves probabilistic assessment of structural col-
lapse risk through nonlinear response history simulation, which
incorporates the uncertainties associated with ground motions
and structural modeling. However, the primary focus of this study
is on modeling parameter uncertainties and how to realistically
and expediently quantify their effects in nonlinear response his-
tory analysis. Past research (e.g. [1,2]) has indicated that modeling
uncertainties associated with damping, mass, and material
strengths have a relatively small effect on the overall uncertainty
in seismic performance predictions, but these studies have focused
primarily on pre-collapse performance of structures. In contrast,
Ibarra and Krawinkler [3] have shown that the uncertainty
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associated with modeling deformation capacity and post-peak
softening response of component element models can have a sig-
nificant influence on the predicted collapse performance. This
study builds on the work by Ibarra and Krawinkler to quantify
the significance of modeling uncertainties associated with compo-
nent deformation capacity and other parameters critical to collapse
prediction of reinforced concrete moment frame buildings. Though
we use reinforced concrete frame structures for illustration pur-
poses, the procedure developed for incorporating modeling uncer-
tainties is systematic and applicable to other structural systems.

To begin, we provide an overview of the collapse assessment
procedure and results for reinforced concrete (RC) moment frames
in high seismic regions. We then review methods for quantifying
the effects of uncertainty in element and system level modeling,
and propose a procedure that combines response surface analysis
and Monte Carlo methods. This procedure is applied to six case
study frame structures of varying heights and ductility capacity.
The results of these case studies indicate that modeling uncertain-
ties tend both to increase the dispersion (rln) and also to shift the
median ðm̂Þ of the probability distribution for structural response.
We compare the response surface results with first-order second-
moment reliability methods, which are easier to implement but
rely on simplifying assumptions that do not necessarily apply. Fi-
nally, we propose a new simplified method (‘‘ASOSM”), which cap-
tures the critical effects of modeling uncertainties, but requires less
computational time than the response surface based method.
Throughout this study, we focus primarily on the effects of model-
ing uncertainties on the assessment of collapse risk, but also dem-
onstrate the applicability of response surface based method to
structural response limit states other than collapse.

2. Overview of collapse assessment procedure and results

The procedure for collapse assessment utilizes the perfor-
mance-based earthquake engineering methodology developed by
the Pacific Earthquake Engineering Research Center, which pro-
vides a probabilistic framework for relating ground motion inten-
sity to the structural response and building performance through
nonlinear time-history simulation [4]. Assessment of global side-
sway collapse capacity is based on the incremental dynamic anal-
ysis (IDA) technique [5]. In IDA, the structural model, which
captures both material and geometric nonlinearities, is analyzed
for a specific ground motion record. This time-history analysis is
repeated, each time increasing the scale factor on the input ground
motion, until that record causes structural collapse, as identified by
runaway interstory drift displacements. This process is repeated
for an entire suite of ground motion records.1 In our study, the
ground motion intensity measure is the spectral acceleration at the
first mode period of the building [Sa(T1)]. The outcome of the IDA
procedure is a collapse fragility function, a cumulative probability
distribution that defines the probability of structural collapse as a
function of the ground motion intensity. The median value of the fra-
gility (or median ‘‘collapse capacity”) corresponds to the ground mo-
tion intensity that causes collapse in half of the records of the ground
motion suite. For a given structural model, the uncertainty in the col-
lapse fragility from IDA represents the so-called record-to-record
variability.

Several different metrics can be used to quantify collapse per-
formance, either in absolute terms or relative to the earthquake
1 For this study, the ground motions were selected to represent large earthquakes
with moderate fault-rupture distances (i.e., non-near-field conditions). This is the
basic Far-Field ground motion set assembled by Haselton and Kircher as part of an
Applied Technology Council project, ATC-63 [9]. These records were selected without
consideration of epsilon, a measure of spectral shape which has been shown to have a
significant impact on collapse capacity [8].
intensity used for design. In the United States, design levels for
seismic effects in building codes are based on the definition of a
‘‘maximum considered earthquake” or MCE. Accordingly, the col-
lapse capacity can be described through the following metrics:
(a) the collapse capacity margin, equal to the ratio of median col-
lapse capacity obtained from IDA to the MCE intensity, (b) the
probability of collapse conditioned on the MCE (or other hazard le-
vel of interest), and (c) the mean annual frequency of collapse, ob-
tained by integrating the collapse probability distribution with the
hazard curve for a particular site.

This procedure has been applied to assess the performance of
both ductile and non-ductile RC frame buildings. The ductile
frames represent designs that conform to current building code
requirements, whereas the non-ductile frames represent older
buildings that do not meet current building code design and detail-
ing requirements, and typically exhibit worse seismic perfor-
mance. The nonlinear analysis models consist of the two-
dimensional three-bay frame, as shown in Fig. 1a. Modeled in
OpenSees [6], the simulation model captures both material nonlin-
earities in beams, columns, and beam-to-column joints and large
deformation (P � D) effects. Inelasticity in the beams, columns,
and joints are modeled with concentrated springs idealized by
the backbone response curve shown in Fig. 1b and the associated
hysteretic rules developed by Ibarra et al. [7]. An important attri-
bute of the inelastic model is that it captures both in-cycle and be-
tween-cycle strength degradation, the former being particularly
important for realistic simulation of collapse behavior [3,8]. Prop-
erties of these inelastic springs are obtained from calibration to
experimental tests of reinforced concrete beam–columns and
joints, as described by Haselton [8]. These spring properties are cal-
ibrated to mean or expected values of the structural components.
When used in combination with nonlinear geometric transforma-
tions and robust convergence algorithms, these structural models
are capable of simulating structural response into the collapse lim-
it state. These collapse models have been used in several applica-
tions, including the validation of seismic performance factors for
building codes in the ATC-63 project [9,10].

Haselton [8] evaluated the collapse capacity of 30 ductile rein-
forced concrete moment frames of varying height (1–20 stories)
which were designed according to current building code provisions
(ASCE 7-02, ACI 318-02 and IBC 2003 requirements for ‘special’
moment frames). The buildings are assumed to be located at a site
in Los Angeles, for which the hazard curve has been defined
through probabilistic seismic hazard analysis [11]. The calculated
collapse margins (relative to the MCE) range from 1.1 to 2.1 and
the conditional probabilities of collapse at the MCE vary from
0.12 to 0.47. When the collapse fragility is combined with the site
hazard curve, the mean annual frequency of collapse (kcollapse) var-
ies between 2.2 � 10�4 and 25.5 � 10�4 collapses/year, corre-
sponding to collapse return periods from 400 to 4500 years.
These collapse assessments are conservative (i.e. overstating the
collapse risk), because they do not include an adjustment for spec-
tral shape [8]. The authors have also conducted a similar study of
non-ductile reinforced concrete frame structures [12]. The collapse
assessment results for the six case-study structures are reported in
Table 1. (Note that the collapse rates are obtained by assuming all
random variables to be ergodic. The approximation is not strictly
true, as uncertain model parameters take a single value fixed over
a structure’s lifetime, while ground motion intensities will take a
unique value for each earthquake. The error introduced by this
approximation is trivial, however, for the small rates of interest
here [13].)

The collapse metrics reported here include the effects of both
record-to-record and modeling uncertainties. The record-to-record
uncertainties are calculated from the IDA results, where the loga-
rithmic standard deviation (rln, RTR) ranges between 0.35 and 0.45
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Fig. 1. Schematic diagram of analytical model for frame structures, showing: (a) generalized two-dimensional model configuration and (b) nonlinear material features of
beam–column hinges.

Table 1
Collapse metrics for case study reinforced concrete frame structures

Number
of
stories

Frame
ductility

Framing
system

T1

(s)a
Mean Sag.m.,
collapse (g)

Margin
compared
to MCE

kcol

(�10�4)

1 Ductile Space
frame

0.42 2.95 2.11 1.2

4 Ductile Perimeter
frame

1.12 1.3 1.71 1.7

12 Ductile Perimeter
frame

2.01 0.61 1.32 6.7

2 Non-
ductile

Perimeter
frame

1.04 0.71 0.89 15

4 Non-
ductile

Space
frame

1.98 0.3 0.65 62

12 Non-
ductile

Space
frame

2.26 0.35 0.83 22

a All metrics refer to the model with mean parameters, and are obtained from the
subset of 20 earthquake records.

2 Both Haselton [8] and Ibarra and Krawinkler [3] use a one-sided gradient for the
FOSM computations, calculating the slope separately in the two directions away from
the mean and using the higher value (higher rate of change).
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depending on the structure of interest. Haselton [8] determined
the modeling uncertainty through detailed study of a 4-story rein-
forced concrete frame using the FOSM procedure and the mean
estimates approach (discussed later). He calculated the logarithmic
standard deviation associated with modeling uncertainties
(rln, modeling) of 0.45. When combined with the record-to-record
uncertainties using SRSS, the modeling uncertainty increased the
aggregate uncertainty by about 40–60%, depending on the struc-
ture. Although Haselton does not predict a shift in the median or
margin associated with collapse, this increase of dispersion (rln)
has a significant impact on both the computed conditional collapse
probabilities and mean annual frequencies of collapse, indicating
the importance of accurately incorporating modeling uncertainties
in the assessment. When structural modeling uncertainties are ex-
cluded from the analyses, the computed kcollapse is only 0.3 � 10�4

to 8.3 � 10�4 collapses/year.

3. Treatment of modeling uncertainties

3.1. Techniques for incorporating modeling uncertainties

A variety of approaches have been used to study the effects of
these modeling uncertainties on the fragilities for structural re-
sponse. These approaches range from methods that simplify the
calculations by discretely interrogating the effects of one or more
model random variables to specialized structural reliability meth-
ods and more general Monte Carlo-type methods.
Sensitivity analyses provide a straightforward method for inter-
rogating the effects of modeling uncertainties on response quanti-
ties of interest. The effect of each random variable on structural
response is determined by varying a single modeling parameter
and re-evaluating the structure’s performance. These studies, such
as those conducted by Esteva and Ruiz [14], Porter et al. [1], Ibarra
and Krawinkler [3], and Aslani [15], are used to select those mod-
eling parameters that have the most significant impact on the re-
sponse. While useful for identifying trends in the behavior,
sensitivity analyses alone are not sufficient to quantify the effect
of modeling uncertainties in the collapse risk assessment.

First-order-second-moment (FOSM) reliability methods can be
used to propagate modeling uncertainties to quantify their effect
on the collapse fragility [16]. Here, we use FOSM to predict the
parameters of the response distribution directly rather than a
probability of failure or reliability index (b). Where X represents
the set of model random variables with mean values M, in FOSM,
the limit state g(x) is linearized using a Taylor series expansion
about the mean (x = M), such that the mean of the fragility is un-
changed (lg = g(M)) and the variance of the response due to
sources of modeling uncertainty is computed from the gradients
of g(x). Where the limit state function does not have a defined
functional form, the needed gradients of the linearized limit state
function can be obtained through perturbation of individual ran-
dom variables in a series of sensitivity analyses. However, the lin-
ear approximation may be problematic when the limit state
functions are highly nonlinear. FOSM will not predict a shift in
the mean value of the fragility resulting from the effects of model-
ing uncertainties.

Several researchers have explored the effects of modeling
uncertainties with FOSM, including Ibarra and Krawinkler [3],
and Lee and Mosalam [2]. In the study described previously, Hasel-
ton [8] investigated the effects of modeling uncertainties on the
collapse capacity of a code-conforming 4-story reinforced concrete
frame. Haselton used sensitivity analysis results to compute the
relationship between model random variables and structural re-
sponse for the gradients needed in FOSM calculations. For the most
realistic modeling case, the logarithmic standard deviation contri-
bution from modeling and design uncertainties on collapse capac-
ity is 0.45, which is roughly equivalent in magnitude to the record-
to-record variability.2 This work by Haselton et al. provides the basis
for comparison with the present study.
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Another class of reliability-based methods that might be con-
sidered for this problem are the first-order reliability method
(FORM) and related second-order reliability method (SORM). These
methods use linear or quadratic approximations, respectively, of
the failure surface, and the approximations are centered around a
design point (the point on the failure surface associated with the
highest probability of failure). These methods are very effective
at handling large numbers of random variables, and the approxi-
mation is very good at low failure probabilities. Further, probabil-
ities are computed directly, unlike FOSM where only means and
variances are computed. The challenge with using FORM/SORM is
that the fragility function is a complete probability distribution
for collapse capacity, so its specification requires calculations of
the body of the distribution, where the FORM/SORM approxima-
tions are not as good as in the tails of the distribution. Further,
specification of the complete fragility function requires repeated
FORM/SORM calculations at many limit-state thresholds (i.e. each
ground motion intensity level), resulting in much greater computa-
tional expense than the FOSM approach. For these reasons, the old-
er FOSM approach is generally preferred to FORM/SORM for
incorporating modeling uncertainties into fragility functions.

An alternative approach uses Monte Carlo methods to deter-
mine the effect of modeling uncertainties on the structural re-
sponse predictions [17,18]. Using Monte Carlo, one can generate
realizations of each modeling random variable, which are inputted
into a simulation model, and the model is then analyzed to deter-
mine the collapse capacity. When the process is repeated for hun-
dreds or thousands of sets of realizations, a distribution of collapse
capacity results associated with the input random variables is ob-
tained. The simplest sampling technique to generate the realiza-
tions of model random variables is based on random sampling
using the distributions defined for the input modeling random
variables, though other techniques, known as variance reduction,
can decrease the number of simulations needed. Porter et al. [19]
used Monte Carlo methods to predict structural damage in an
existing 6-story non-ductile reinforced concrete frame building lo-
cated in Van Nuys, California based on a set of uncertain model
random variables. Their study employed a two-dimensional non-
deteriorating structural model. In another study, Zhang and Elling-
wood [20] investigated the effects of uncertain material properties
on structural stability problems using a Monte Carlo approach (and
compared it with a perturbation approach). While conceptually
straightforward, these Monte Carlo procedures can become com-
putationally very intensive if the time required to evaluate the lim-
it state for each set of realizations of model random variables is
non-negligible. For this reason, past seismic reliability studies
using Monte Carlo analysis have tended to use less computation-
ally intensive structural models (e.g. [19]) than the degrading,
highly nonlinear models in this study.

The computational effort associated with Monte Carlo methods
can be reduced when combined with response surface analysis
[17,21]. A response surface is a simplified functional relationship
or mapping between the input random variables and the limit state
criterion, such as collapse capacity of a structure. The price of this
efficiency is a loss of accuracy in the estimate of the limit state,
which depends on the degree to which the highly nonlinear predic-
tions of structural response can be accurately represented by the
simplified response surface. Ibarra and Krawinkler [3] analyzed
the collapse capacity of a single degree-of-freedom oscillator and
used a response surface to represent the collapse capacity as a
function of one of the model random variables, post-capping stiff-
ness. In that particular case, Ibarra and Krawinkler’s study found
that the simplified FOSM procedure, the full Monte Carlo proce-
dure, and the combined response surface/Monte Carlo approach
all produced comparable results. However, this observation is
based on a single degree-of-freedom model and only one random
variable, and may not be easily generalized to multiple random
variables and degrees of freedom.

Whichever procedure is utilized, correlations between the input
random variables may significantly affect the extent to which
modeling uncertainties impact the performance assessment
[8,22]. For the nonlinear structural analyses considered here, ques-
tions about correlation involve both correlations between the mul-
tiple model parameters associated with a single structural
component, and correlations between parameters for multiple
components in a building. There is insufficient data to quantify
these correlations, so values are typically based on expert judg-
ment. In general, increased correlation tends to increase the dis-
persion (rln) in the response quantity of interest (e.g. [8,15]) and,
hence, the fully correlated case is often considered to be
conservative.

3.2. Combination of sources of uncertainty

Once the effects of modeling uncertainties have been predicted
there remains significant debate related to interpretation of these
results, centering on how the effects of modeling uncertainties
should be combined with the effects of other sources of uncer-
tainty, such as record-to-record uncertainties. For this purpose, dif-
ferent sources of uncertainty are sometimes characterized as either
‘aleatory’ (randomness) or ‘epistemic’ (lack of knowledge) [23].

One approach for combining the effects of different sources of
uncertainty is the confidence interval approach, e.g. [24,25]. The
confidence interval method is illustrated by the collapse fragilities
shown in Fig. 2a. Record-to-record variability (treated as aleatory)
is shown by the cumulative distribution function obtained directly
from IDA analyses, and the epistemic uncertainty (related to mod-
eling variability) creates the distribution on the median of that
cumulative distribution. The distribution associated with episte-
mic uncertainty in this case may be obtained from FOSM, Monte
Carlo methods, or expert judgment. In order to make predictions
at a specified confidence level, the aleatory distribution is shifted
to the appropriate percentile on the epistemic distribution. For
example, if the median of the aleatory distribution is shifted to
the 10% probability of exceedance of the epistemic distribution,
then the probabilities associated with the shifted aleatory distribu-
tion in Fig. 2a are consistent with a 90% prediction of confidence. In
other words, the 90% confidence measure implies a 90% probability
that the true collapse capacity is higher than the collapse capacity
predicted by the shifted fragility function. Although this approach
is conceptually appealing, the resulting structural performance
predictions become highly dependent on the level of confidence
chosen, as shown in [8]. For example, at a spectral demand of
Sa(T1) = 1 g, the probability of collapse is close to zero for the med-
ian (50% confidence) estimate and over 0.4 for the 90% confidence
estimate. In addition to the high sensitivity in results, this method
requires distinguishing between aleatory and epistemic uncertain-
ties, which is a subjective and debatable distinction.

A second approach, referred to as the mean estimates approach,
can be used to combine the contributions of record-to-record and
modeling uncertainties in structural response fragilities, provided
that certain assumptions are made. When aleatory (record-to-re-
cord) uncertainties only are considered, the structural response is
well-described by a lognormal distribution [24], with logarithmic
mean (k) and standard deviation (rln). In the mean estimates ap-
proach, it is assumed that the epistemic (modeling) uncertainty de-
scribes uncertainty in the logarithmic mean (k), and that this
random variable is also lognormally distributed with log mean lk

and log standard deviation rk. The random variables associated
with epistemic and aleatory uncertainty are assumed to be inde-
pendent. It can be shown that when these two distributions are
combined the resulting distribution is also lognormal with the log-
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Fig. 2. Collapse fragilities for a 4-story reinforced concrete ductile frame structure, illustrating: (a) the confidence interval approach and (b) the mean estimates approach.
Legend: (i) distribution of collapse capacity due to aleatory (record-to-record) uncertainties only; (ii) distribution of the median of the collapse capacity distribution due to
epistemic (modeling) uncertainties; (iii) aleatory distribution shifted to the 10th percentile of the epistemic distribution, i.e. ‘‘90% confidence level”; (iv) distribution with
expanded variance (SRSS) to account for epistemic and aleatory uncertainties.
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arithmic mean of lk (and median = exp[lk]), and a logarithmic var-
iance that is the sum of the two logarithmic variances [26]. Thus,
when the mean estimates approach is used, the median is un-
changed when modeling uncertainties are incorporated, but the
variance increases, as shown in Fig. 2b. The results derived from
this approach are not sensitive to whether individual uncertainties
are classified as aleatory or epistemic, which is helpful when the
classification of a particular uncertainty is not obvious.

The third approach, adopted here, uses Monte Carlo simulation
over the uncertain model parameters to generate a set of alternate
potential descriptors of the real structural response fragility. The
record to record uncertainty is captured in the individual fragility
curve variances. A combined fragility, incorporating both aleatory
and epistemic uncertainties, is then computed as the expected va-
lue of the probability over the Monte Carlo realizations at each
spectral acceleration level.3 This approach is explained in more de-
tail below. Unlike the mean estimates approach, the more general
formulation here allows for modeling uncertainty to both shift the
median and the variance of the fragility function. It also does not as-
sume independence between the aleatory and epistemic random
variables, as was required above.

3.3. Proposed procedure for evaluating effects of modeling
uncertainties

Owing to the relative advantages and disadvantages of the var-
ious methods and the significance of various sources of uncertainty
in the assessment process, the response surface methodology in
combination with a Monte Carlo approach is proposed as the pre-
ferred method to quantify the effects of modeling uncertainties on
structural response. The most complete method, the full Monte
Carlo procedure, is infeasible because of the computationally
intensive nature of the time history analysis in this study (it takes
approximately 300 min to compute the median collapse capacity
for one set of realizations of the input random variables, and hun-
dreds of realizations would be needed for each structure consid-
ered). FORM/SORM methods would also require many
evaluations in order to obtain a continuous prediction of the prob-
ability of collapse as a function of spectral acceleration. The sim-
plest method, FOSM with mean estimates approach, is unable to
capture the potential shift in the median of the distribution associ-
ated with the effects of modeling uncertainties, and, as a result, it
3 This approach does not preclude computation of confidence intervals, if needed.
For a 90% confidence level, for example, compute the 90th percentile of the
probabilities at each spectral acceleration level, rather than the expected (mean)
value.
provides an insufficient representation of the effects of model
uncertainties.

In the response surface based method, sensitivity analyses are
first used to probe the effects of modeling variables on the median
collapse capacity of the system. The results of the sensitivity anal-
ysis provide the inputs to regression analysis used to create the re-
sponse surface, which represents the median collapse capacity as a
function of model random variables. The response surface is ideal-
ized by a second-order polynomial functional form, which is capa-
ble of representing nonlinear limit states and interactive effects
between the model random variables. Engineering judgment is
used to confirm that the functional form is a realistic representa-
tion of the limit state, particularly where it is extrapolated beyond
the region where sensitivity analysis data is available. Following
creation of the response surface, a Monte Carlo procedure is used
to obtain a suite of sample realizations for the set of random vari-
ables under consideration. For each set of realizations, the median
collapse capacity of the structure is computed from the response
surface. The outcome is a set of simulated collapse fragilities for
the structure. At a given spectral acceleration level, each individual
fragility curve will provide a probability representing record-to-re-
cord uncertainties, and the variation of these probabilities among
the simulations represents the effect of model uncertainty. We
compute the expected value of these probabilities at each spectral
acceleration level to obtain the structural collapse fragility. These
studies focus largely on the collapse limit state, but the same
methodology is equally applicable to other limit states for which
a response surface can be defined.
4. Evaluation of the effects of modeling uncertainties on case
study structures

4.1. Overview and discussion of 4-story ductile frame structure

The proposed method to assess modeling uncertainties is illus-
trated by applying it to the set of case study reinforced concrete
buildings that include both ductile and non-ductile design details.
All frames have 6.1 m (20 ft) or 7.6 m (25 ft) bay spacings and
4.0 m (13 ft) story heights, except for the first story which has a
4.6 m (15 ft) height. Three different building heights are consid-
ered (1, 4, and 12-story ductile structures; 2, 4, and 12-story
non-ductile structures). The frames are modeled as shown in Fig.
1. The details of the design and the collapse assessment for these
structures are available in [8] and [12].

The assessment of modeling uncertainties focuses on uncertain-
ties in the modeling parameters that define the lumped plasticity



Table 2
Uncertainties in modeling parameters for RC beams, columns and joints

Random variablea rln Source

Beam or column strength 0.19 Panagiatakos and Fardis [29]
Beam or column stiffness 0.33 Haselton [9]
Beam or column rotation capacity (hcap,pl) 0.59 Haselton [9]
Beam or column post-capping rotation

capacity (hpc)
0.72 Haselton [9]

Beam or column cyclic deterioration (k) 0.50 Haselton [9]

Joint strength 0.39 Mitra and Lowes [27]
Joint stiffness 0.39 Same as joint strength
Joint rotation capacity (hcap,pl) 0.59 Limited data; same as beam–

columns
Joint post-capping rotation capacity (hpc) 0.72 limited data; same as beam–

columns
Joint cyclic deterioration (k) 0.50 Limited data; same as beam–

columns

a Normalized variables, with lln = 0.

5 1:7 � p3; chosen for practicality (and with reference to values typically used in
the experimental design literature).

6 This subset of earthquake records was chosen to reduce the computational time
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plastic hinges for beams, columns and joints. The beam–column
hinges are modeled using an inelastic spring model developed by
Ibarra, Medina and Krawinkler [7]. The element backbone (Fig.
1b) and hysteretic rules are defined by six parameters: flexural
strength (My), initial stiffness (Ke), post-yield (hardening) stiffness
(Ks), capping point (hcap), post-capping deformation capacity (hpc)
and cyclic deterioration (k).4 These parameters are assumed to be
lognormally distributed, where the mean and standard deviation
are obtained from previous research; Table 2 summarizes the loga-
rithmic standard deviation for the parameters of each type of com-
ponent. The joint modeling parameters, also shown in Table 2, are
based on representative data from Mitra and Lowes [27] and on
engineering judgment where insufficient data is available. Modeling
uncertainties associated with the beam–column joints are neglected
for the ductile moment frame structures, because capacity design
provisions and transverse reinforcement requirements for joints
have been shown to be sufficient to ensure that failure occurs out-
side the joints. For simplicity, other parameters related to element
level modeling (e.g. pinching and residual strength) and system level
behavior (e.g. damping, mass, live and dead loading) are not consid-
ered; earlier sensitivity studies found that modeling variables re-
lated to component strength and deformation capacity are the
dominant model parameters affecting collapse assessment [8].

Independent assessment of each of the random variables de-
scribed in the preceding discussion is computationally prohibitive,
given the analysis time that would be required to assess combina-
tions of the five random variables for each plastic hinge location
and beam–column joint in the frame. To further reduce the num-
ber of variables under consideration, correlations are assumed be-
tween parameters within each component and between
components in the building. At the element level, two meta ran-
dom variables are created. The strength meta variable represents
the strength and stiffness model parameters (My,Ke) in an element,
implying that the strength and stiffness are perfectly correlated
within each element. The ductility meta variable does the same
for ductility parameters (hcap, hpc, and k), such that plastic rotation
capacity, cyclic deterioration, and post-capping rotation capacity
are assumed to be perfectly correlated. At the structural level,
the strength and ductility meta variables are assumed to be per-
fectly correlated with like variables among all like components in
the entire structure. These correlation assumptions leave six meta
variables: beam strength, beam ductility, column strength, column
ductility, joint strength and joint ductility. Each meta variable is a
standard lognormal random variable (with lln = 0 and rln = 1),
4 In this study, hardening stiffness (Ks) is neglected because of its very small
influence on collapse capacity.
which can be mapped to the model parameters of interest. While
these assumptions are loosely supported by observations from
the model calibration study of reinforced concrete columns [8],
there is insufficient empirical evidence to quantify correlations
and the assumed correlations are made primarily for tractability.

Based on the definition of these meta random variables, sensi-
tivity analyses are conducted to quantify the effects of each meta
modeling variable on the structural response. The realizations of
random variables used in the sensitivity analysis are based on cen-
tral composite design, including star points (in which only one ran-
dom variable is changed at a time) and factorial points (capturing
interactions between the random variables) [21]. In total, 33 sensi-
tivity analyses were conducted for each ductile structure based on
the four meta random variables of interest. For the non-ductile
frames, 93 sensitivity analyses were necessary to account for the
joint strength and ductility meta variables in addition to the col-
umn and beam strength and ductility variables. Each random var-
iable was perturbed ±1.7 standard deviations5 away from the mean
individually, and in combinations with other random variables at
±1r. For each sensitivity analysis, a nonlinear model is created with
modified element material properties, and the incremental dynamic
analysis is run with a subset of 20 earthquake records.6 The nonlin-
ear IDA collapse assessment procedure is conducted as described in
Section 2 and in more detail in [8,12,28].

To examine the effects of modeling uncertainty on structural
behavior, two distinct limit states are considered for the 4-story
ductile moment frame building, corresponding to: (a) exceedance
of 1% interstory drift and (b) collapse. The fragility functions are
defined in terms of the spectral acceleration at the structure’s fun-
damental period.

A summary of sensitivity analysis results for the two limit states
of interest for the 4-story ductile frame are shown in Fig. 3, where
Figs. 3a and c provide a histogram of the 33 analyses for each limit
state and Figs. 3b and d provide a tornado diagram of sensitivity re-
sults. As shown in Fig. 3b, of the four random variables, column
strength has the largest effect on the median collapse capacity, fol-
lowed by column ductility, beam strength and beam ductility.
Beam strength has an inverse effect on collapse since the weaker
beams tend to delay the formation of unfavorable story mecha-
nisms. Comparing the two different limit states (Figs. 3a and c),
it is apparent that modeling uncertainties are more significant
for the collapse limit state than the 1% interstory drift limit state.
In particular, the beam and column ductility meta variables have
virtually no effect on the 1% drift fragility, as these uncertainties
are related to highly nonlinear structural behavior that does typi-
cally not occur before 1% interstory drift.

The sensitivity analyses also demonstrate that the random vari-
ables have an asymmetric effect on the response, e.g., decreases in
ductility tend to have proportionally more significant effects on
collapse capacity than increases. This behavior is further illustrated
in Fig. 4, where we observe the effects of saturation in collapse
capacity. These nonlinearities are particularly acute in the collapse
limit state, but are also apparent at the 1% drift limit state. This
characteristic cannot be captured by the linearized limit state func-
tions in FOSM analysis.

The sensitivity analysis results are used to create a response
surface that describes each limit state as a function of the input
random variables. The response surface is idealized by a second-or-
needed to conduct the study. The response spectra of this subset were verified to be
characteristic of the response spectra of the whole suite of records, but the collapse
capacities reported may be somewhat different than those reported elsewhere
because of the smaller number of records used.
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der polynomial that is fitted to the data through standard regres-
sion analysis (e.g., the ‘regress’ function in Matlab). As opposed
to linearized limit state for standard FOSM methods, the quadratic
response surface enables representation of the nonlinearities and
asymmetries in the relationship between the model random vari-
ables and the structural response.

For the 4-story ductile moment frame example, the quadratic
response surfaces for the two limit states, median collapse capacity
½m̂collapse ¼ expðlln ;Sa; colÞ� and 1% interstory drift ½m̂IDR>1% ¼
expðlln ;Sa;IDR>1%Þ� are given by the following equations,

lln ;Sa;col ¼ 0:26� 0:077ðBSÞ þ 0:20ðCSÞ þ 0:073ðBDÞ
þ 0:098ðCDÞ � 0:052ðBS2Þ þ 0:064ðBSÞðCSÞ
� 0:019ðBSÞðBDÞ þ 0:078ðBSÞðCDÞ
� 0:045ðCS2Þ þ 0:052ðCSÞðBDÞ � 0:043ðCSÞðCDÞ
� 0:044ðBD2Þ þ 0:019ðBDÞðCDÞ � 0:047ðCD2Þ ð1Þ
lln ;Sa;IDR>1% ¼ �1:15� 0:063ðBSÞ þ 0:085ðCSÞ � 0:025ðBS2Þ
þ 0:067ðBSÞðCSÞ � 0:038ðCS2Þ ð2Þ

where BS refers to beam strength, BD to beam ductility, CS to col-
umn strength and CD to column ductility meta variables. The re-
sponse surface of Eq. (1) is evaluated according to statistical
measures of goodness of fit with R2 equal to 0.99 and a p-value of
1.11 � 10�16. In addition, the variance inflation factors are com-
puted to be �10, indicating that collinearity is not a problem. The
fit of Eq. (2) yields similarly robust values. A graphical representa-
tion of the response surface for median collapse capacity (Eq. (1))
is shown in Fig. 5. As expected, column strength, column ductility
and beam ductility all have a positive effect on the median collapse
capacity, while beam strength has an inverse effect.

The response surface provides a good representation of the sen-
sitivity analysis results in the region ±1.7r for each of the normal-
ized random variables. However, when extrapolated outside this
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region, it is possible that the fitted second-order response surface
may not increase monotonically as we would expect. In these
cases, we modified the fitted response surface to have monotonic
behavior. These changes were implemented for completeness,
but they do not have a large influence on the final results because
these discrepancies only exist in the region rarely sampled in the
Monte Carlo procedure.

Using the calculated response surfaces as a surrogate for time-
history analyses, the Monte Carlo method is used to incorporate
the effects of the uncertain model random variables on the pre-
dicted limit state fragilities. The model random variables are sam-
pled 10,000 times, each time generating a set of realizations that
are consistent with the assumed lognormal distribution of the
meta model random variables. For each set of realizations, the re-
Fig. 5. Graphical representation of the polynomial response surface for collapse capacit
dimensional surface. In (a) the effects of column strength and beam strength are shown
their mean values); likewise, (b) illustrates the effects of varying beam and column duc
sponse surface is used to calculate the median capacity of the
structure. Therefore, from each of the ten thousand sets of realiza-
tions, predictions of the median collapse capacity and 1% interstory
drift limit state are obtained. As noted previously, since a reduced
set of ground motion records is used to assess the response surface,
only the median collapse point is extracted from the surface. The
logarithmic standard deviation due to record-to-record uncertain-
ties is assumed to be constant over the response surface and set
equal to the value obtained for the collapse analyses of the median
structural model using the full record set (44 records). This
assumption is made for practical convenience, since conceptually
it is possible to re-estimate rln for each realization, provided that
the analyses used to generate the response surface are based on
a sufficiently large number of ground motion records.

The final step is to recreate the limit state fragility function,
based on the Monte Carlo results, to include both the effects of re-
cord-to-record and modeling uncertainties. Each Monte Carlo real-
ization is associated with a different fragility describing the
probability of failure as a function of spectral acceleration. As an
example, shown in Fig. 6a are results for the probability of collapse
at Sa(T1) = 1.91 g for all the 10,000 Monte Carlo realizations. The fi-
nal fragility probability is the expected value of the collapse prob-
ability at each spectral acceleration level. Fig. 6b illustrates the
effects of modeling uncertainties showing both the collapse fragil-
ity curve for the mean structural model considering only record-to-
record uncertainties (the lower curve), and the collapse fragility
including both record-to-record and modeling uncertainties (the
upper curve). The superposition of histograms of the probabilities
at selected spectral acceleration levels in Fig. 6b are included to
demonstrate the method through which the upper curve is
obtained.

Using the response surface procedure we observe that modeling
uncertainties tend to both increase the dispersion (rln) in the
structural response fragility and shift the prediction of the median.
Fig. 7 illustrates the fragility curves for the two limit states (col-
lapse and 1% drift), where the proposed response surface based
method for including modeling uncertainties (Figs. 7a and c) is
contrasted with a FOSM approach (Figs. 7b and d). Several observa-
tions can be drawn from these figures. First, comparing the plots in
Figs. 7a versus b and c versus d, the response surface based method
captures the shift in the median point, which is not captured by the
FOSM-type approaches. This inability to predict the shift in the
y of the 4-story ductile moment frame. Each of these represents a slice of a multi-
, while beam ductility and column ductility meta variables are held constant (at 0,
tility.



Fig. 6. (a) Histogram of collapse probabilities obtained from Monte Carlo realizations at Sa(T1) = 1.91 g and (b) computed collapse fragilities with histograms superimposed at
selected Sa levels.
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median is a significant limitation of FOSM, especially at the col-
lapse limit state, for which we observe a 19% decrease in the med-
ian collapse capacity of the 4-story ductile moment frame. Overall,
the comparison of Figs. 7a and c demonstrates that the model ran-
dom variables have a less significant impact on pre-collapse limit
states, and we observe both a smaller shift in the median (�3%)
and a smaller increase in the logarithmic standard deviation. The
lesser effect of modeling uncertainties on the one-percent drift
limit state is unsurprising, because much of the model uncertainty
relates to element deformation capacity and cyclic degradation
properties that do not have a significant effect when nonlinear
deformations in the structure are much smaller.

The results illustrated in Figs. 7a and c are somewhat contrary
to the conventional expectation that the effect of modeling uncer-
tainties is to flatten the response fragility, but not to shift the med-
ian. For example, suppose we use the FOSM with mean estimates
approach to quantify the impacts of model uncertainties on the fra-
gility representing exceedance of one-percent interstory drift,
obtaining the results shown in Fig. 7d; we observe the characteris-
tic flattening from incorporating additional sources of uncertainty.
The same results are obtained if we use the response surface based
method, provided that the response surface is linear (as illustrated
in Fig. 7b). Therefore, it is apparent that it is the nonlinear shape of
the relationship between the structural response limit state and
model random variables, as shown in Figs. 4 and 5, that predicts
the shift in the median, and which cannot accurately be captured
by the linearization in FOSM or a linear response surface.

This nonlinear relationship depends on both the limit state of
interest and the properties of the structure. For the 4-story exam-
ple structure, the saturation of collapse capacity as a function of
model random variables occurs because the structure has many
possible failure modes, and an increase in a given model random
variables tends to switch the failure mode. Hence, we don’t see a
large improvement in the collapse capacity as model random
variables increase (see Fig. 4). Additional unpublished parametric
studies by the authors indicate that ‘‘balanced designs,” where
the structure is not dominated by a single failure mode, tend
to see a more significant shift of the median collapse capacity
caused by the effects of modeling uncertainties. We observe be-
low, for example, a smaller shift in the median for the one-story
building, which has only one failure mode. For more discussion of
the collapse failure modes for the case study structures see
[8,12].
4.2. All case study structures

This same Monte Carlo and response surface method was used
to investigate the effects of modeling uncertainties on the collapse
fragility for five other reinforced concrete frame buildings. These
effects are summarized for the case study structures in Tables 3
and 4, and the collapse probability distributions are illustrated in
Fig. 8. As described earlier, the effect of incorporating modeling
uncertainties is to shift the median collapse capacity and to in-
crease the dispersion (rln) of the collapse fragility. However, the
extent of the change depends on the structure under consideration.
Consideration of model uncertainties actually increases the median
collapse capacity of the 12-story non-ductile reinforced concrete
frame, which is atypical and contrary to the decrease observed
for the 4-story ductile frame and all the other frame structures.
The increase for the 12-story non-ductile frame occurs because
the nonlinearities in the relationship between joint strength and
collapse capacity are reversed from those shown in Fig. 4. For the
12-story frame, there is a very strong benefit from increasing the
joint strength and moving the collapse mechanism out of the joints
and into the beams, but there is a much smaller decrease in col-
lapse capacity if the joint strength meta variable is decreased.
The 1-story ductile structure has only a small shift in the median;
this structure has essentially one possible collapse mode, a story
mechanism in the first story.

Tables 3 and 4 illustrate the importance of accurately incorpo-
rating modeling uncertainties in the analysis. The base case, no
consideration of modeling uncertainty, may be highly unconserva-
tive, and under-predicts the rate of collapse by a factor of 2.3 on
average. The simplified FOSM approach may underestimate or
overestimate the rate of collapse depending on the structure.
Referring to Fig. 8, we observe that in many cases the left tail of
the collapse fragility obtained by the FOSM (using the mean esti-
mates approach) and proposed response surface based method
are fairly close. However, when integrated with the hazard curve
to obtain the mean annual frequency of collapse there are more
significant differences between the FOSM/mean estimate approach
and the response surface based approach in some cases. FOSM will
also significantly underestimate the conditional probabilities of
collapse for high probabilities of collapse. These differences are
most significant when the relationship between the model random
variables and the structural response is highly nonlinear and a shift
in the median collapse capacity is likely. They are also more critical
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Fig. 7. Structural response fragilities representing the collapse limit state, obtained using: (a) quadratic (polynomial) response surface and (b) FOSM approximation, and the
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Table 3
Predicted effect of modeling uncertainties on median and dispersion (rln) of collapse
fragility, comparing response surface based approach and FOSM with mean estimates

Number of
stories

Frame
ductility

Response surface FOSM

Change in
median (%)

Change in
dispersion (%)

Change in
median (%)

Change in
dispersion (%)

1 Ductile �4 12 0 25
4 Ductile �19 19 0 35
12 Ductile �9 10 0 28

2 Non-ductile �18 28 0 39
4 Non-ductile �7 12 0 30
12 Non-ductile 8 18 0 23
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for structures, like the non-ductile RC frames, that have low col-
lapse capacity relative to the MCE.

4.3. Effects of correlations between model random variables

In the results presented thus far the meta random variables are
assumed to be uncorrelated. Since correlations are very difficult to
quantify, it is important to evaluate the impact of the correlation
assumptions on the effects of modeling uncertainties. In order to
examine the implications of these assumptions, two other sets of
correlation assumptions are considered for the 4-story ductile
frame. In the first case (Case I), the strength meta variables and
the ductility meta variables are assumed to be correlated between
beams and columns, but there is no correlation assumed between
the strength and ductility parameters. In the second case (Case II),
the beam meta variables (strength and ductility) are assumed to
be correlated, as are the column meta variables, but the beam
and column variables remain uncorrelated. The correlations only
affect the Monte Carlo stage of the procedure, and they do not af-
fect running of the nonlinear response analyses to conduct the
sensitivity analyses and build the response surface. Therefore, it
is relatively easy to vary the correlation model assumptions and
obtain new results. The ease with which correlations can be stud-
ied is another benefit of the response surface based approach. To
vary correlation assumptions in a full Monte Carlo approach,
these dependencies would need to be included at the structural
analysis stage, a painstaking process for each of the hundreds of
Monte Carlo realizations needed. Thus the response surface ap-
proach is particularly well-suited to research applications, such
as those presented here, where correlation assumptions are still
being investigated.
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Fig. 8. Collapse fragilities obtained for reinforced concrete frames.
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For Case I, full correlation between the meta variables leads to a
6.4% increase in the median collapse capacity from the baseline
uncorrelated case [from 1.10 to 1.17 g], thus reducing the overall
effect of modeling uncertainties on the outcome. These results,
summarized in Table 5, suggests that the relative difference in
beam and column strength and beam and column ductility is a lar-
ger factor in determining collapse capacity than the absolute val-
ues. In Case II, as the assumed correlation between the meta



Table 5
Parametric study of element level correlation assumptions on collapse fragility for 4-
story ductile frame

Correlation assumptions Collapse fragility

q Median (Sa(T1) [g]) rln

(a) Case I
0a 1.10 0.48
0.5 1.12 0.47
1 1.17 0.47

(b) Case II
0a 1.10 0.48
0.5 1.05 0.51
1 1.01 0.55

a Uncorrelated meta random variables; these are the results presented
previously.

Table 4
Effect of modeling uncertainties on conditional probabilities and mean annual frequency of collapse (kcollapse), comparing the response surface and FOSM methods

Number of
stories

Frame
ductility

P[Collapse|MCE] Acollapse (�10�4)

No consideration
of modeling
uncertainty

FOSM with mean
estimates, where
rln,modelling = 0.45

Response
surface method

No consideration
of modeling uncertainty

FOSM with mean
estimates, where
rln,modelling = 0.45

Response surface
method

1 Ductile 0.09 0.16 0.14 1.2 4.1 1.6
4 Ductile 0.11 0.21 0.26 1.7 6.1 5.9
12 Ductile 0.26 0.32 0.33 6.7 17 12

2 Non-ductile 0.73 0.64 0.80 15 36 44
4 Non-ductile 0.82 0.74 0.83 62 111 89
12 Non-ductile 0.62 0.58 0.54 22 46 24
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random variables decreases the median collapse capacity de-
creases and the dispersion (rln) increases. At higher levels of corre-
lation it becomes more likely that beam behavior is either very
good (in terms of both strength and ductility) or very bad in rela-
tion to column behavior. Since poor behavior tends to decrease
the collapse capacity more than good behavior increases it, the
median reduces with increasing Case II correlation. It is difficult
to quantify correlations of this sort, but the Case II correlations
(relating beam strength for example, to beam ductility) are not
supported by the currently available data (e.g. [8]). Thus, the Case
II correlation study is more for illustration than practical applica-
tion. On the other hand, the Case I correlations (similar properties
among similar members in a frame) are more likely, but the Case I
correlation effects are relatively small and assuming zero correla-
tion tends to be conservative. Negative correlations were also
examined, but these are unsubstantiated by experimental data.

To probe the effects of structural level correlation assumptions
on modeling uncertainties, we considered another case where the
meta variable definitions were revised to examine a situation in
which correlations between certain beams and columns were im-
posed to intentionally accentuate a critical collapse state. As ini-
tially defined, the meta variables are assumed to be perfectly
correlated over every element in the building, e.g. beam strength
of the 1st-floor beams is correlated to the beams in all the other
floors. To further examine building level correlation assumptions
in the study of the 4-story ductile frame structure, additional meta
variables were created for the 3rd-floor beam strength (BS3) and
the 2nd-story column strength (CS2). These meta variables are as-
sumed to be uncorrelated from the other strength meta variables
in the structure. Since the 4-story ductile frame structure often
fails in a story mechanism in the second story (see [8] for more de-
tails), these additional meta variables were chosen to represent an
upper bound on the effects of spatial correlation assumptions in
the frame. To incorporate the two new meta variables, additional
sensitivity analyses were run, a new response surface was created,
and the Monte Carlo procedure was repeated. Based on these anal-
yses, relaxation of the full correlation assumption by the addition
of two meta random variables lead to a 10% decrease in the median
collapse capacity of the structure, as compared to the default case
where the beam and column properties were assumed to be per-
fectly correlated in the building. Given the fact that the situation
considered (3rd-floor beams and 2nd-story columns uncorrelated
from the other random variables) is intentionally pessimistic for
this frame, the change in median is relatively modest. If each story,
or each column, were treated separately, or with partial correlation
assumptions, the effects of relaxing the correlation assumptions
would likely be much smaller.
5. Simplified method

This study demonstrates the importance of appropriately treat-
ing structural modeling uncertainties in collapse performance
assessments. However, the response surface based procedure re-
quires significant computational and analysis time, necessitating
running between 30 and 95 sensitivity analyses (depending on
the number of meta random variables), as well as the creation of
the response surface, and generation of Monte Carlo realizations.
Of these, the sensitivity analyses are the most time consuming.
Depending on the level of complexity of the structural model, the
number of earthquakes used in incremental dynamic analysis,
and the available computing power, each sensitivity analysis could
take 5–20 h of computing time. This level of effort may not be war-
ranted for all problems, and it is therefore desirable to develop a
simplified method that can be used to approximate the effects of
modeling uncertainties.

The proposed simplified method is capable of estimating both
the shift in the median and the increase in the dispersion (rln)
due to modeling uncertainties. We call this method ASOSM, for
approximated second order second moment. The method re-
quires running sensitivity analyses, though fewer than required
for the response surface based method. Beyond the mean model,
the sensitivity studies involve running nonlinear response analy-
ses for each of the key random variables scaled to ±1.7r. For the
ductile reinforced concrete frames with four meta variables, this
requires the mean model analysis, plus eight additional analyses
in which each meta variable is increased or decreased indepen-
dently (i.e. Xþi ¼ lXi

þ 1:7rXi
and X�i ¼ lXi

� 1:7rXi
Þ. In this sense,

the method is similar to the analyses required for the FOSM
assessment.

The logarithmic standard deviation of the response fragility,
including the effects of modeling uncertainties, can be computed
following the standard first order (FOSM) approach. The gradients
used in FOSM computations should represent the average slope
about the mean i.e.,
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Fig. 9. Prediction of the shift in median associated with model uncertainties, as a
function of D+/D�, a measure of the degree of nonlinearity in the relationship
between model random variables and the limit state function. ASOSM provides
good agreement with the data from the response surface method.

Table 7
Comparison of predicted median collapse capacity using different approaches for
incorporating model uncertainties

Number
of
stories

Frame
ductility

m̂mod
m̂ (Eq. (8)) Median

(without
model
uncertainty)
[g]

Median
predicted
(ASOSM)
[g]

Median
predicted
(response
surface)
[g]

Errora

(%)

1 Ductile 0.98 2.95 2.90 2.84 2
4 Ductile 0.84 1.31 1.09 1.10 �1
12 Ductile 0.91 0.61 0.55 0.56 �1
2 Non-ductile 0.83 0.71 0.59 0.60 �2
4 Non-ductile 0.94 0.30 0.28 0.28 1
12 Non-ductile 1.06 0.35 0.37 0.38 �2

a ASOSM compared to response surface approach.

Table 6
Comparison of predicted dispersion (rln) of the collapse fragility when record-to-
record and modeling uncertainties are included, using the response surface based
approach and ASOSM

Number of
stories

Frame
ductility

rln (response
surface)

rlln(ASOSM) Errora

(%)

1 Ductile 0.58 0.58 0
4 Ductile 0.48 0.46 �4
12 Ductile 0.52 0.52 0
2 Non-ductile 0.47 0.39 �16
4 Non-ductile 0.50 0.49 �2
12 Non-ductile 0.49 0.47 �3

a ASOSM compared to response surface approach.
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ogðXÞ
oXi

¼
Dlln ;Sa;col

DXi
¼

lln ;Sa;colðX
þ
i Þ � lln ;Sa;colðX

�
i Þ

Xþi � X�i
; ð3Þ

where g(X) is the collapse capacity. Note that Eq. (3) differs from
some of the FOSM calculations reported earlier, which used a max-
imum or one-sided gradient. After the gradients are calculated, the
dispersion associated with modeling uncertainties is computed
from the following equation for n random variables,

r2
ln;mod ¼

Xn

i¼1

Xn

j¼1

ogðXÞ
oXi

ogðXÞ
oXj

� �
qijrirj

" #
ð4Þ

and combined with the record-to-record uncertainties using SRSS,

r2
ln;total ¼ r2

ln;mod þ r2
ln;RTR: ð5Þ

As shown in Table 6, the resulting rln shows very good agreement
with those obtained from the response surface based procedure
for the six reinforced concrete frame buildings.

The shift in the median is predicted based on the nonlinearities
in the relationship between structural response and the model ran-
dom variables (again, refer to Fig. 4). The response asymmetry is
given by the parameter D+/D�,7

Dþ=D� ¼ m̂þ=m̂
m̂=m̂�

; ð6Þ

where m̂ is the median capacity of the model with mean model
parameters, and

m̂þ ¼ 1
n

Xn

i¼1

mXiþxri
and m̂� ¼ 1

n

Xn

i¼1

mXi�xri
; ð7Þ

represent the average of the median collapse capacities when the
model random variables are perturbed individually to +1.7r, and
�1.7r, respectively, and n is the number of perturbed analyses per-
formed (equal to the number of model random variables). Using
data from the six reinforced concrete frame example structures,
the resulting shift in the median collapse capacity can be calculated
by the following,

m̂mod

m̂
¼ 0:64ðDþ=D�Þ þ 0:36: ð8Þ

This equation was obtained from linear regression of the results for
the collapse capacity of the six case study reinforced concrete frame
structures (R2 = 0.97), as shown in Fig. 9.8 The median value of the
7 Eq. (6) is equivalent to:
expðlþ

ln
�llnÞ

expðlln�l�
ln
Þ.

8 It is also possible to run sensitivity analyses at ±1r (instead of ±1.7r), as is more
typical. However, this tends to slightly under-predict the dispersion in some cases
(due to nonlinearities, particularly in the negative direction) if used in Eqs. (3)–(5). If
used to predict the median, it is suggested that Eq. (8) be replaced with
m̂mod

m̂ ¼ 0:83ðDþ=D�Þ þ 0:17ðR2 ¼ 0:92Þ. However, this is based on fewer data points
than Eq. (8), and the statistical fit is not as good.
fragility, including the effects of model uncertainties as predicted
by ASOSM, is computed by multiplying the ratio, m̂mod

m̂ , from Eq. (8),
by the median obtained in the original fragility, where only re-
cord-to-record uncertainties are considered. Note that if the rela-
tionship between a random variable and collapse capacity is linear,
then D+/D� = 1, and thus median capacity is unchanged as would
be expected, and as predicted by FOSM. Comparisons of ASOSM
and the response surface based approach are tabulated in Table 7
for the six reinforced concrete frames. Since Eq. (8) has been derived
from the results of this study it has not been validated for other
structural systems (e.g. steel frames, reinforced concrete walls,
etc.), but it should provide a reasonable approximation for other sys-
tems. The coefficients in Eq. (8) may need to be re-examined for pre-
diction of other limit states.

This method is capable of capturing the significant decrease in
the median collapse capacity observed for the 4-story ductile
structure, and 2-story non-ductile structure, as well as the increase
observed for the 12-story non-ductile structure. Note that once the
sensitivity analyses for the FOSM assessment have been com-
pleted, no additional analyses are needed to compute D+/D�. Thus,
this simplified approach provides a significant savings in computa-
tional time as compared to the response surface based method. For
the case with four random variables, the response surface method
requires 33 sets of IDA analyses, while the simplified method re-
quires only 9 (twice the number of random variables, plus the
mean model). The advantage of the simplified analysis is even lar-
ger when more model random variables are investigated.
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Since the measure of nonlinearity, D+/D�, is obtained by varying
each modeling random variable individually, the simplified meth-
od may miss some of the complex interactions between the ran-
dom variables that are captured by the response surface. If Eqs.
(8) and (5) predict that modeling uncertainties have a significant
effect on the collapse fragility, the more complete response surface
based method may be warranted.
6. Conclusions

In this study, we propose a procedure for incorporating struc-
tural modeling parameter uncertainties into probabilistic collapse
risk assessments and other predictions of structural response. To
accomplish this expediently and accurately, we advocate using
Monte Carlo sampling with a response surface. The response sur-
face is a multivariate function representing the relationship be-
tween the model random variables and a structural response
parameter of interest (e.g. interstory drift, collapse capacity, etc.).
Once the response surface is created from the results of sensitivity
analyses, Monte Carlo methods are used to sample the model ran-
dom variables and the structural response is predicted using the
response surface, avoiding time consuming nonlinear simulations.
The outcome of this process is a structural response fragility that
incorporates both the uncertainty in the structural modeling
parameters and in the ground motion.

We illustrate this method by applying it to reinforced concrete
frame buildings, though the approach developed here is widely
applicable. From the case study of RC frames we observe the
following:

� Neglecting the effects of modeling uncertainties is unconserva-
tive in almost all cases.

� Incorporating modeling uncertainties increases the dispersion
(rln) in the response fragility, and also shifts the prediction of
the median. The median of the response fragility typically
decreases, and may decrease by as much as 20%.

� Modeling uncertainties have greater impact when the key mod-
eling parameters are more uncertain.

� Modeling uncertainties have greater impact when the relation-
ship between model parameters and structural response is
highly nonlinear.

The importance of incorporating modeling uncertainties in the
analysis is dependent upon both the structure and limit state of
interest. The final two bulleted observations serve to explain why
this study finds that modeling uncertainties have a more signifi-
cant effect on performance predictions compared to previous stud-
ies. For one, the model variables important for predicting collapse
include parameters related to component deformation capacity
and post-capping (softening) behavior, which are highly uncertain.
In addition, the relationship between the model random variables
and collapse capacity is typically nonlinear, due in part to the many
possible collapse modes in frame structures (and that these col-
lapse modes may alternate depending on the values of the model
random variables). These case studies demonstrate that compre-
hensive assessment of collapse risk requires careful propagation
of modeling uncertainties.

The response surface method proposed here improves upon the
often used FOSM approach because it is able to capture the effects
of nonlinearities in the relationship between model random vari-
ables and the limit state function. This improvement is crucial
for nonlinear limit states like collapse. We also show that this
improvement is important when predicting mean annual rates of
exceeding a limit state, or predicting conditional probabilities of
exceedance when the probabilities are large. FOSM, however,
may be an adequate approximation for predicting conditional
probabilities of exceedance when the probabilities are small, and,
correspondingly, for predicting mean rates of exceedance that are
dominated by the lower tail of the collapse fragility.

To remedy FOSM’s potential deficiencies, but to avoid the extra
effort needed for the response surface approach, we also propose a
simplified method, termed ASOSM (approximate second order sec-
ond moment). ASOSM uses FOSM to predict the increase in fragil-
ity’s logarithmic standard deviation, but also provides a method for
predicting the potential shift in the median of the limit state fragil-
ity. As a result, it will provide more accurate predictions of the
mean rate of limit state exceedance and conditional probabilities
in the upper tail of the distribution, and can serve as a diagnostic
tool to investigate the importance of modeling uncertainties in
the assessment process. Once sufficient analyses have been run
for FOSM, ASOSM does not require any additional time history
simulations.

These results point more generally to the importance of appro-
priately characterizing and propagating uncertainties in perfor-
mance-based earthquake engineering. Since simplified
approaches may have a large effect on calculated risks, the accu-
racy of simplifying assumptions should be considered with care
when the results will impact important decisions.
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