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SUMMARY

Many seismic loss problems (such as disruption of distributed infrastructure and losses to portfolios of
structures) are dependent upon the regional distribution of ground-motion intensity, rather than intensity
at only a single site. Quantifying ground-motion over a spatially-distributed region therefore requires
information on the correlation between the ground-motion intensities at different sites during a single
event. The focus of the present study is to assess the spatialcorrelation between ground-motion spectral
accelerations at different periods. Ground motions from eight well-recorded earthquakes were used to study
the spatial correlations. Based on obtained empirical correlation estimates, we propose a geostatistics-based
method to formulate a predictive model that is suitable for simulation of spectral accelerations at multiple
sites and multiple periods, in the case of crustal earthquakes in active seismic regions. While the calibration
of this model and investigation of its implications were somewhat complex, the model itself is very simple
to use for making correlation predictions. A user only needsto evaluate a simple equation relying on three
sets of coefficients provided here, in order to compute a correlation coefficient for spectral values at two
periods and at a specified separation distance. These results may then be used in evaluating the seismic risk
of portfolios of structures with differing fundamental periods. Copyrightc© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Quantifying ground-motion over a spatially-distributed region rather than at just a single site is of
interest for a variety of applications relating to risk of infrastructure or portfolios of properties.
This requires information on the correlation between the ground-motion intensities at different sites
during a single event. Researchers have previously estimated the correlations between residuals of
spectral accelerations at the same spectral period at two different sites. But very few [1] have studied
cross-correlations between residuals of spectral accelerations at different periods (or more generally
between residuals of two different ground-motion intensity measures) at two different sites, which
becomes important, for instance, when assessing the risk ofa portfolio of buildings with different
fundamental periods [2].

This research relies on the general framework of ground-motion models [3–6], that are defined as
follows: for an earthquakej at a sitei,

lnYij = ln Ȳij + σijεij + τjηj (1)
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2 CHRISTOPHE LOTH & JACK W. BAKER

whereYij refers to the ground-motion parameter of interest (e.g.Sa(T ) the spectral acceleration at
periodT ); Ȳij denotes the predicted (by the ground-motion model) median ground-motion intensity,
a function of various parameters such as magnitude, distance, period and local-site conditions;εij
refers to the intra-event residual, a random variable of mean zero and standard deviation one; and
ηj denotes the inter-event residual, also a random variable ofmean zero and standard deviation
one. The standard deviationsσij andτj are included in the ground-motion model prediction and
depend on the spectral period of interest (in some models, they are also a function of the earthquake
magnitude and the distance of the site from the rupture). Fora given earthquakej, the inter-event
residualηj computed at any particular period is a constant across all the sites.

Previous studies have established that a vector of spatially distributed intra-event residuals
εj = (ε1j, ε2j , ..., εnj) follows a multivariate normal distribution [7]. Consequently, one can fully
define theεj by specifying its mean vector and the covariance between allpairs of εij ’s. In our
particular case, the mean vector ofεj is 0 and hence we only need to know the variance-covariance
matrix: for a given earthquakej,

Σ(eventj) =







cov(ε1j , ε1j) · · · cov(ε1j, εnj)
...

.. .
...

cov(εnj , ε1j) · · · cov(εnj, εnj)






(2)

where cov(εkj , εlj) is the covariance betweenεkj , the residual at sitek due to earthquakej, andεlj ,
the residual at sitel due to earthquakej.

Spatial modeling of earthquake intensities has been investigated in the past by various researchers.
For instance, the recent work of Foulser-Piggott and Stafford [8] aims at modeling the spatial
correlation for Y = Iα, the Arias intensity. Esposito and Iervolino [9] examined the spatial
correlation of PGA and PGV based on European earthquake data. The modeling of the spatial
correlation of the residuals of a single spectral acceleration period Y = Sa(T ) has also been
addressed in previous contributions [1, 10–13], leading to predictive equations for the correlation
coefficient as a function of the period of interest and the separation distance between two considered
sites. The present work will generalize the modeling to a multivariate framework that accounts for
several intensity measures{Yi = Sa(Ti)|i = 1, ..., n}, where less study has been done.

This study will begin with a presentation of geostatisticalconcepts relevant to the spatial modeling
of correlations. Section3 will describe our first attempt at using empirical data to estimate these
correlations, to illustrate the encountered limitations and issues. An alternative technique will then
be introduced in Section4 as an improved solution, and a predictive model for covariance will be
derived using it. Finally, as Goda and Hong [1] proposed to use the single period result combined
with a Markov-type hypothesis to formulate a correlation model for the multi-period case, we
will also evaluate this hypothesis in the last section, in comparison with the formulated model.
In addition to the results presented here, supporting information is available in a related project
report [14].

In this work, we used recorded ground-motion data from the
Pacific Earthquake Engineering Research (PEER) Center’s NGA database
(http://peer.berkeley.edu/products/strong ground motion db.html).
This database consists of recordings from many data centersaround the world, as documented at
the above referenced website. All conclusions are therefore applicable primarily for the crustal
earthquakes in active seismic regions represented in that database. Figure1 shows plots of the
station locations for eight earthquakes which have been considered in this study: Northridge,
Chi-Chi, Tottori, Niigata, Parkfield, Chuetsu, Iwate, El Mayor Cucapah. In this study, we used the
Boore and Atkinson ground motion prediction model [3]. Furthermore, only recordings with a
Joyner-Boore distanceRjb smaller than 200 km and within the lowest usable frequency limit were
considered. TableI provides additional data regarding the selected earthquakes.
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Figure 1. Locations of recordings from the eight consideredearthquakes.

Table I. The eight considered earthquakes in the spatial correlation study

Name Location Year Magnitude Number of recordings

Northridge California 1994 6.7 152
Chi-Chi Taiwan 1999 7.6 401
Tottori Japan 2000 6.6 235
Niigata Japan 2004 6.6 365
Parkfield California 2004 6.0 90
Chuestu Japan 2007 6.8 403
Iwate Japan 2008 6.9 280
El Mayor Cucapah California 2010 7.2 154

2. GEOSTATISTICAL MODELING OF CORRELATIONS

Spatially distributed random variables are often described by a semivariogram, which is a very
popular tool in the geostatistics domain [15,16]. The semivariogram is a so-called two-point statistic
that characterizes the spatial decorrelation or dissimilarity. Its general formulation is given below
for a pair of locationsu,u′:

γ(u,u′) =
1

2
E

[

(Z(u)− Z(u′))
2
]

(3)

whereZ(u) is a random variable representing the value of interest at locationu, E [ ] denotes the
expectation, andγ(u,u′) is the semivariogram value.

Since one often does not possess several observations of a random variable at a given pair of
sites, the assumption of stationarity has to be made in orderto evaluate Equation3: one will
typically retain that the semivariogram does not depend on the site locations(u,u′) but only on their
separation vectorh = u− u′. Thus, for a stationary random variableZ, for instanceZ = ε(T ), the
semivariogram is defined as follows:

γ(h) =
1

2
E

[

(Z(u+ h)− Z(u))2
]

(4)

This semivariogram function can be empirically estimated with:

γ(h) =
1

2N(h)

N(h)
∑

α=1

[z(uα + h)− z(uα)]
2 (5)

wherez denotes an observation from the random variableZ, uα a recording location from the data,
andN(h) the number of pairs at separation vectorh available in the data.
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Previous studies have indicated that the correlation structure of residuals from ground motion
models was not dependent on the considered direction, and was therefore isotropic [1, 11,13,17].
This translates in Equations4 and5 by simply “removing” all vector notations, so thath = ‖h‖.
It should also be noted that in the practical computation of the semivariogram with Equation5, it
is unlikely that two data points will be separated by the exact distanceh. Therefore, a tolerance
parameter∆ will have to be considered such that for a given lag distanceh, all the pairs of points
separated by a distance included in the interval[h−∆, h+∆] will contribute to the evaluation of
the empirical semivariogramγ(h).

Furthermore, the covariance function can be defined as:

C(h) = cov(Z(u), Z(u+ h)) = E [(Z(u)−m)(Z(u + h)−m)] (6)

wherem is the mean ofZ(u) (and is also equal to the mean ofZ(u+ h) under the stationarity
hypothesis). This spatial covariance is directly related to the semivariogram function with:

C(h) = C(0)− γ(h) (7)

Similarly, it can be noted that the correlation coefficient is defined as:

ρ(h) =
C(h)

C(0)
(8)

Thus, semivariogram and covariance have “opposite” behaviors: the covariance is a measure of
spatial similarity betweenZ(u) andZ(u+ h). While one could conduct a covariance study on
either one of those functions, the semivariogram is often preferred in geostatistical practice, as it
does not require a prior estimation of the mean of the random fieldm.

In this research, we consider the cross-covariance structure of residuals of spectral acceleration
at multiple periods. This means that one needs to extend the previous definitions to the multivariate
case in order to estimate all spatial cross-correlation terms betweenε(Ti) andε(Tj), Ti 6= Tj . First,
the definition of the semivariogram can easily be generalized to the multivariate case. Denoting two
stationary random variablesZ1 = ε(T1) andZ2 = ε(T2), one defines their cross-semivariogram:

γ12(h) = E [(Z1(u+ h)− Z1(u))(Z2(u+ h)− Z2(u))] (9)

which may again be empirically evaluated with:

γ12(h) =
1

2N12(h)

N12(h)
∑

α=1

[(z1(uα + h)− z1(uα))(z2(uα + h)− z2(uα))] (10)

with N12(h) is the minimum number of available data pairs in the data betweenZ1 andZ2 (the
difference in the numbers of data for a period pair is due to the existence of a lowest usable frequency
for a given earthquake recording). Again, it should be notedthat the previously explained definitions
9 and10are true only for second order stationary random variables,meaning:
{

E [Zi(u)] = mi ∀i ∈ 1, ..., n,and for all locationsu
E [(Zi(u)−mi)(Zj(u+ h)−mj)] = Cij(h) ∀i, j ∈ 1, ..., n,and for all locationsu,u+ h

(11)
Equation7 will extend in the multivariate case, by defining the isotropic semivariogram matrix
functionΓ(h) :

Γ(h) = [γij(h)] =







γ11(h) · · · γ1n(h)
...

.. .
...

γn1(h) · · · γnn(h)







(12)

Similarly, one denotes the isotropic covariance matrix functionC(h) as follows:

C(h) = [Cij(h)] =







C11(h) · · · C1n(h)
...

. . .
...

Cn1(h) · · · Cnn(h)






(13)
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whereCij(h) is the covariance function betweenZi = ε(Ti) andZj = ε(Tj). With these notations,
one obtains the following relationship:

C(h) = C(0)− Γ(h) (14)

These concepts will be the basis of the quantification of the spatial correlation between pairs of
various spectral accelerations, presented in the following sections.

3. DIRECT SEMIVARIOGRAM FIT OF EMPIRICAL DATA

3.1. Computation of residuals

For each of the 8 selected earthquakes in this study, residuals were derived from Equation1:

ε(T ) =
lnSa(T )− lnSa(T )

σ(T )
(15)

with lnSa(T ) the recorded logarithmic spectral acceleration at periodT , Sa(T ) and σ(T )
respectively the median spectral acceleration and logarithmic standard deviation from the ground
motion model. Note that this computation does not take into account the inter-event term, since it is
constant for a given earthquake and therefore does not affect the actual correlation structure of the
intra-event residuals (a proof of this statement can be found in [13]).

3.2. Fitting technique

Geostatistics literature recommends a manual fit of the semivariogram, warning against regression
methods that might misrepresent the actual information provided by the semivariogram [15]. Each
estimated point of the semivariogramγ(h) is subject to an error inherent to that point. This error will
vary with the considered separation distanceh, the extent of the region used in the semivariogram
calculation, etc. For these reasons, semivariogram fittingcannot be reduced to a simple regression
problem. However, given the quantity of data to be analyzed in the multivariate case (we consider 9
periods and 8 earthquakes, resulting in 360 different semivariograms), it was deemed reasonable to
develop an automated fitting algorithm to speed up the process, as long as the result of the fit was
consistent with independently obtained manual fits.

Not any function can be chosen to fit an empirical semivariogram. The covariance function,
directly related to the semivariogram through Equation7, must be positive definite. This is due
to the fact that the variance of any linear combination ofZ values must be non-negative; in other
words, for any set of locationsuα and any set of weightsωα, the covariance function must satisfy:

var

(

p
∑

α=1

ωαZ(uα)

)

=

p
∑

α=1

p
∑

β=1

ωαωβC (‖uα − uβ‖) ≥ 0 (16)

where var() denotes the variance.
In practice, one ensures positive definiteness by modeling asemivariogram with a positive linear

combination of admissible semivariogram models. These admissible models include, but are not
limited to, the four following models. The exponential model is defined as:

γ̃(h) = S

[

1− exp

(

−3h

R

)]

(17)

where˜ refers to the value from a model,S is the sill andR is the range of the semivariogram. The
sill of a bounded semivariogram is equal to the variance ofZ; for the exponential semivariogram,
it represents the value to which̃γ(h) asymptotically converges ash tends to infinity. The range is
then defined as the separation distanceh at whichγ̃(h) is equal to 95% of the sill of the exponential
semivariogram. This means that the range represents the distance at which 95% of the correlation is

Copyright c© 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn.(2010)
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Figure 2. a) Spherical, exponential and Gaussian semivariograms withS = 0.8 andR = 45. For the spherical
model, the range represents the distance at which 100% of thecorrelation is lost, whereas for the Gaussian
and exponential semivariograms, it represents the distance at which 95% of the correlation is lost; b)
Empirical semivariogram and fitted exponential model of thenormalized residuals (ε) from the Northridge

earthquake data, atT1 = T2 = 1s.

lost. The spherical model is defined as:

γ̃(h) =











S

[

3

2

h

R
−

1

2

(

h

R

)3
]

if h ≤ R

S otherwise

(18)

With this model, the sillS is attained ath = R. The third common semivariogram model is the
Gaussian model:

γ̃(h) = S

[

1− exp

(

−3h2

R2

)]

(19)

The sill and the range of the Gaussian semivariogram are defined as for the exponential variogram.
Finally, the nugget effect model is defined as:

γ̃(h) =

{

0 if h = 0
S if h > 0

(20)

This semivariogram induces a complete lack of correlation at non-zero separation distance, therefore
no range can be defined for the nugget effect. The first three semivariogram models are shown in
Figure2a. The entire correlation structure of the variables of study will be completely defined by
the semivariogram model, which itself depends only on the corresponding sills and ranges. In this
work, we first assumed that each cross-semivariogramγij associated withε(Ti) andε(Tj) can be
modeled with an isotropic exponential function, such that:

γ̃ij(h) = Sij

[

1− exp

(

−3h

Rij

)]

(21)

whereSij is the sill andRij the range. Figure2b shows the isotropic semivariogram function
computed for data from the Northridge earthquake, and a fitted exponential model. This choice
is motivated by results obtained by researchers in the past [11, 13], who observed an exponential
decay of the correlation coefficient in the univariate case.Indeed, we know from Equation7 that the
semivariogram and the covariance are related as follows:

γij(h) = Cij(0)− Cij(h) (22)

Copyright c© 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn.(2010)
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and by extending Equation8 to the multivariate case, we obtain the following model for the
correlation coefficient:

ρ̃ij(h) = ρij(0) exp

(

−3h

Rij

)

(23)

whereρij(0) = Cij(0) = Sij if the considered variables have unit standard deviations.It can be
noted that other functional forms for the correlation coefficient have been used, such as the more
generalρ̃(h) = exp

(

−αhβ
)

by Goda and Hong [1], whereα andβ are constants (forβ = 1, this
model is equivalent to the exponential functional form). Boore et al. [10] used a particular case of
this model withβ = 0.5.

Previous studies have proposed empirical equations to predict the sill [7,12,18,19], as it is equal
to the covariance betweenε(Ti) andε(Tj) at the same site (h = 0):

Sij = Cij(0) (24)

Three methods were investigated in order to achieve a robustestimation of the sill:

(i) a direct computation ofCij(0) of the empirical data;
(ii) calculating the mode of the histogram of the semivariogram values themselves;

(iii) a refinement of (ii) using a Gaussian kernel function.

The last approach proved to be the most robust one, and it has been retained in lieu of the
predictive model. Indeed, when fitting a least squares regression, it is critical to assess as correctly
as possible the value of the sill, in order to achieve a correct estimate of the range.

The empirical estimation ofS with a kernel function relies on a discretization of the observed
semivariogram values, followed by a computation of a kernelweighted function:



















y0 = 0, y1 = 0.01, ..., yi = 0.01 i, ..., y100 = 1

kernel(i) =
kmax
∑

k=1

exp

(

−
(γ(hk)− yi)

2

σ

)

, hkmax
= 100 km, σ = constant

S = yi0 s.t. max
i

(kernel(i)) = kernel(i0)

(25)

Variations of the constantσ did not have a significant impact on the final result of the sillvalue. In
this study, a value ofσ = 0.1 has been used.

Once S is accurately determined, the range can be derived using weighted least squares
regression. With the exponential semivariogram model, theproblem can be linearized using a log
transformation:

γ̃(h) = S

[

1− exp

(

−3h

R

)]

⇒ ln (S − γ̃(h)) = ah+ b with
{

a = −3
R

b = lnS
(26)

The regression algorithm will evaluate the weighted sum of squares, as a function of the rangeR:

WSS(R) =
∑

k

ω(hk) [ln (S −min {γ(hk), S − 0.01})− ln (S − γ̃(hk))]
2

=
∑

k

1

hk

[

ln (S −min {γ(hk), S − 0.01})−

((

−3

R

)

hk + lnS

)]2 (27)

whereω(hk) is a weighting function giving more importance to the smallest separation distances (an
inverse distance weighting has been used here, such that theweight on the error at laghk is equal to
1/hk). The semivariogram values are constrained to be less thanS − 0.01 in order for the logarithm
function to be well-defined. The value ofR yielding the minimum of thisWSS is retained as the
range of the experimental semivariogram. It should be notedthat this regression bears no intrisic
fundamental or theoretical meaning; it merely is a convenient way to obtain satisfying fits for a
large amount of semivariograms.
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3.3. Observed results

Figure3 shows the result of the kernel fitting for the cross-semivariogram betweenT1 = 1s and
T2 = 2.5s from the Northridge earthquake. The fitted semivariogram proves to be a good match with
the data while also representing a likely outcome of a manualfitting. The kernel fitting provides
accurate estimates of the sills for all period pairs of interest, as shown in Figure4. It should be
noted that the sills atT1 = T2 are theoretically 1, but approximations in both the semivariogram
values and the fitted semivariogram lead to results that are not precisely unity. Results for cross-
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Figure 5. Direct cross-semivariogram fits for six pairs of periods from the Northridge earthquake data.

semivariograms for several period pairs obtained with thisapproach are shown in Figure5. However,
numerical instabilities may be encountered with residualshaving low correlation, e.g. betweenε’s
with very short and very long periods. These cross-semivariograms are often just ”noise” with an
almost zero sill and lead to irrelevant estimates of the range due to a poor convergence of the
least squares regression. Thus, raw results of the direct semivariogram fit have to be filtered, by
dismissing the data leading to low sills. After filtering theresults, we could observe clusters of
data in the range versus sill plane, where the observations could be distinguished with respect to
the value of the corresponding period pairs. It appeared that cross-semivariograms for two long
periods (approximately,T1 > 1s, T2 > 1s) have a higher range of around 40 km, while they show
a shorter range of approximately 25 km for two short periods (T1 < 1s, T2 < 1s). The presence of
two structures of different range is indicated in Figure6, which show both short and long range
components. Furthermore, the very low ranges obtained at short periods (Figure5) tend to indicate
the presence of a so-called ”nugget effect”, which means that a more appropriate semivariogram
function in this case might be the one from Equation20. Indeed, the nugget semivariogram is
nothing but a limiting case of an exponential semivariogramwhose range tends to zero.

The 1999 Chi-Chi earthquake provides many recordings and thus is one of the most useful
events for this study. The direct semivariogram fitting technique gives adequate representation of
the data. The results did not show two different spatial structures as was the case for the Northridge
earthquake, but longer semivariogram ranges were noticed in average, meaning that the correlation
between spectral accelerations generally holds for longerdistances.

Similar work was performed for the aforementioned six otherearthquakes. The same quality
of fit could be observed, although the empirical semivariograms did not demonstrate such a clear
exponential trend in some cases, possibly due to the relative lack of data (e.g., for Parkfield and
El Mayor). While a simple average of the sills and ranges overall earthquakes may be proposed
for the development of a predictive model, some limitationsprevent the use of these results for the
formulation of the covariance matrix.
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Figure 6. Filtered ranges of the cross-semivariograms fromthe Northridge earthquake data (9 periods were
considered).

3.4. Limitations

The direct semivariogram fit developed in this study proved to be a useful tool to evaluate the spatial
correlation of the empirical data. One may very well use these results to estimate any correlation
coefficient between spectral acceleration at two differentperiods at two different sites. However, a
more general objective of this study was to formulate a predictive model for the covariance matrix
of a given set ofε’s, based on these estimations and Equation14.

However, forC to be an acceptable covariance matrix, the same condition ofpositive definiteness
as in the univariate case (see Equation16) must be satisfied: the variance of any weighted linear
combination ofn variables atp sites must be non-negative. This results in the following requirement
for the multivariate case [20]:

var

(

n
∑

i=1

p
∑

α=1

ωi
αZi(uα)

)

=

n
∑

i=1

n
∑

j=1

p
∑

α=1

p
∑

β=1

ωi
αω

j
βCij (‖uα − uβ‖) ≥ 0 (28)

whereωi
α is the weight associated with the value ofZi at locationuα. Unfortunately, the direct

semivariogram fitting approach described above takes no such constraint into account when
evaluating empirical sills and ranges, and thus will not lead to a positive definite covariance matrix in
most cases. It is possible to “fix” this matrix by merely changing its eigenvalues to make it positive
definite ( [21]: section 6.2). This is achieved by performing an eigenvalue decomposition ofC, such
that:

C = QΛQT (29)

where each column ofQ is the eigenvectorqi of C andΛ is the diagonal matrix whose diagonal
elements are the corresponding eigenvalues, i.e.,Λii = λi. The eigenvalue matrixΛ is then
transformed intoΛ+ by changing the negative coefficients to0 :

Λ+
ii =

{

λi if λi ≥ 0
0 if λi < 0

(30)

Finally,Λ+ is recombined with the eigenvector matrixQ to obtain the positive definite matrixC+:

C+ = QΛ+QT (31)
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We have observed that only minor changes need to be made to thefitted covariance matrix in order
to transform it into a positive definite one (i.e.,C+ ≈ C).

While modifying the eigenvalues is relatively easy to do, itdoes not allow much control on
how much the covariance matrix will be changed. It also makesit difficult to access the “new”
actual values of the ranges of the different cross-semivariograms. Another approach involves the
computation of cross-covariance terms from convolution integrals of the direct covariances [22],
such thatCij(h) =

∫

R2
ρi(u)ρj(u+ h)du. Although this approach will lead to valid models, it

makes it quite difficult to fit the cross-covariance coefficients to empirical data.
An alternative solution to ensure positive definiteness is to impose a single range for all direct and

cross-semivariograms. The covariance matrix function will become:

C(h) = ρ(h) ·C(0) (32)

where ρ(h) is a scalar function (for instance in the present case,ρ(h) = exp(−3h/R)). This
formulation of the covariance matrix function is called theseparable model [23]. For the full
covariance matrix to be positive definite in this case, one has only to ensure that the covariance
matrix at a single siteC(0) is positive definite. This is a much simpler task than ensuring the full
covariance for the number of periodsn times the number of sitesp to be positive definite, sinceC(0)
is only defined for the number of periodsn. Unfortunately, fitting a single range to the data is not
possible, as it does not reflect the underlying structures discovered in this section. The next section
will introduce an extension of this separable model that canincorporate more than one range.

4. THE LINEAR MODEL OF COREGIONALIZATION

While independently fitting each empirical semivariogram may not provide an admissible
correlation model, it does give some insight into the spatial characteristics of the considered
variables. From the direct semivariogram fits developed forthe Northridge earthquake especially,
we noticed clear contributions of three different structures: a short range component acting on small
periods and a large range component acting on longer periods, as well as a nugget effect for very
short periods. To take the effect of multiple spatial scalesinto account, a model was considered
that assumes all variables to be linear combinations of the same basic structural components.
Analytically, for a given set ofn mean-zero random variables(Z1, Z2, ..., Zn) [15]:

Zi(u) =

L
∑

l=0

nl
∑

k=1

alikY
l
k (u) ∀i = 1, ..., n (33)

with

• E
[

Y l
k(u)

]

= 0

• cov(Y l
k (u), Y

l′

k′ (u+ h)) =

{

cl(h) if k = k′ andl = l′

0 otherwise

This is the so-called linear model of coregionalization. This model has become a widely used tool
in multivariate geostatistics. The decomposition ofZ into independent componentsY l yields the
following formulation of the semivariogram matrix (in the isotropic case):

Γ(h) =

L
∑

l=0

Blgl(h) (34)

whereBl are the coregionalization matrices andgl(h) are admissible semivariogram functions
chosen a priori by the user. One can note that the case ofL = 0 corresponds to the separable model
of Equation32. The coregionalization matrices can be interpreted as specific contributions to the sill
or variance of each structuregl(h) . It can be shown that in order to ensure the positive definiteness
of the covariance matrix, one only needs to provide positivedefiniteBl matrices.
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4.1. Fitting technique

Goulard and Voltz [24] proposed an automated algorithm to fit a Linear Model of Coregionalization
(LMC) in a positive definite manner. Its objective is to minimize a weighted sum of squares
comparable to the one presented in Equation27:

WSS =

K
∑

k=1

Nv
∑

i=1

Nv
∑

j=1

ω(hk) ·
[γ̃ij(hk)− γij(hk)]

2

σiσj

(35)

whereγ̃ij(hk) denotes the value of the semivariogram model,γij(hk) is the actual semivariogram
empirical value,ω(hk) the weight at laghk, σi the observed standard deviation ofZi = ε(Ti)
(here,σi = 1). TheWSS is simply a weighted sum of the standardized squared errors between
the empirical semivariogram and the model, over all periodsand all discrete separation distances.
The Goulard algorithm has become popular in multivariate geostatistics involving coregionalization
studies, as it provides a fast and elegant way to fit all crosssemivariograms while ensuring the
positive definiteness of the resulting covariance matrix.

The algorithm is executed as follows:

1. Initialize theL+ 1 coregionalization matricesBl with any values.
2. Remove one of theL+ 1 semivariogram models (gl0(h)) and compute the difference between

the initial empirical model and the LMC deprived of thel th
0 structure:

∆l0Γ(hk) = Γ̂(hk)−

L
∑

l=0
l 6=l0

Blgl(hk) (36)

3. Compute the symmetric matrix:

Gl0 =

K
∑

k=1

ω(hk) ·∆l0Γ(hk) · g
l0(hk) (37)

4. Obtain the spectral decomposition ofGl0 = Ql0Λl0Q
T
l0

. Set all negative eigenvalues to 0 by
forming:Gl0 = Ql0Λ

+
l0
QT

l0
whereΛ+

l0
isΛl0 with all the negative diagonal terms changed to

0 (this is similar to what was discussed in Equations29 to 31).
5. Compute the new coregionalization matrix correspondingto thel th

0 structure:

B̂l0 =
G+

l0
∑K

k=1 ω(hk) · [gl0(hk)]
2

(38)

6. Incrementl0 ← l0 + 1 (l0 ← 0 if l0 > L) and loop over steps 2 to 5 untilWSS is smaller than
a user-specified threshold.

This algorithm is equivalent to fitting one structure at a time to the empirical data, while ensuring
positive definiteness of each coregionalization matrix at step 4. The procedure is not guaranteed
to converge in theory, but the experience has shown that the algorithm almost always converges
whatever the initial choice of the coregionalization matrices at step 1 [16]. We were able to confirm
this experience with the ground motion data considered here.

The first step in fitting a coregionalization model is to choose a set of basic structuresgl(h). At
this point, insights from the earlier direct semivariogramfits are useful to identify which structures
should be included in the model. While one could consider a model that includes all the different
exponential functions previously fitted for each period pair, it is better to minimize the number
of structures to simplify both calculation and later interpretation. Thus, we propose to keep one
short range exponential function (of 20 kilometers) and onelong range exponential function (of 70
kilometers), as well as a nugget (constant) component, so that the semivariogram matrix function
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Figure 7. Northridge earthquake cross-semivariograms obtained using the Linear Model of Coregionaliza-
tion.

can be expressed as:

Γ(h) = B1

(

1− exp

(

−3h

20

))

+B2

(

1− exp

(

−3h

70

))

+B3 (39)

This choice is motivated by the observations obtained from the direct semivariogram fits. The
values of 20 and 70 km were picked based on the analysis of the 8studied earthquakes, in order
for all semivariogram ranges to fall approximately within these boundaries. The addition of a
nugget semivariogram is to further ensure an adequate fit at small separation distances for shorter
periods. The retained weighting was the same as for the direct semivariogram fitting, such that
ω(hk) = 1/hk.

4.2. Observed results

All results have to be checked visually in order to ensure an acceptable model. We present here
the fitting of a linear model of coregionalization to the empirical semivariograms previously
examined. Figure7 shows plots of the cross-semivariograms from the Northridge earthquake,
where we can observe that the coregionalization model matches quite well with the observed
data. However, we noted a relatively high value of theWSS compared to the other earthquakes.
This is mainly explained by the noise in the empirical semivariograms, which can be seen for
instance on the bottom-right plot of the semivariogram forT1 = T2 = 5s. We also noticed a good
fit for distances smaller than 50 km, while the larger distances show much more noise in the
empirical semivariogram and a poorer fit. Even so, the weighted fitting is not sensitive to these
large distance values and so provides a robust estimation ofthe data at short distances. The values
of the coefficients of the coregionalization matrices over the different period pairs show that the
short range matrixB1 makes a larger contribution to the semivariogram at small periods, while the
long range matrixB2 has a more significant impact on large periods. This result isin agreement
with the observations made in the direct semivariogram fit.

Direct semivariogram fits of the Chi-Chi earthquake residuals showed a somewhat different
spatial behavior, in the sense that we could not identify twostructures as clearly as with the
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Figure 8. Chi-Chi earthquake cross-semivariogram obtained using the Linear Model of Coregionalization
for T1 = 1s andT2 = 2s.

Northridge earthquake. However, it has been observed that the same linear coregionalization model
used with the Northridge data still provided very accurate fits of every semivariogram, mainly
because the observed ranges in the direct semivariogram fit were also within 20 to 70 kilometers.
Figure8 shows the fitted cross-semivariogram between 1s and 2s data,and the coregionalization
model provides a good fit of the empirical data, particularlyat distances of less than 50 km.

Other earthquakes were investigated, and the linear model of coregionalization lead once again
to high quality semivariogram fits. It was observed that the values of the coregionalization matrices
look quite similar from earthquake to earthquake, except for the high periods of the Northridge
earthquake (T > 3s), because those motions were recorded on analog instruments, causing much
of the long-period data to be unusable. While the presence ofsome interevent variability in the
spatial correlation has been previously established by Goda [25], the lack of systematically differing
patterns between these cases suggests that this data set does not provide evidence to build a model
that varies by region, or by earthquake magnitude. This lackof observed variation is not proof that
no such trends exist, but rather that if they exist they are subtle enough that they cannot be detected
using currently available earthquake strong motion data. The individual results for each event will
be incorporated in the proposed predictive equation.

4.3. Consistency

To verify the robustness of this fitting procedure, the empirical covariance matrix functions
developed for the Chi-Chi earthquake were used to generateε data via Monte-Carlo simulations
at the locations of the recordings from the same Chi-Chi earthquake. From the simulatedε
values, another model of coregionalization was fit, and compared to the original model of
coregionalization which the simulations were based on. A measure of the difference between the
initial coregionalization matrices and the ones fitted to the generated data was defined as follows:







∆SR
ij = B1

initial,ij −B1
fitted,ij

∆LR
ij = B2

initial,ij −B2
fitted,ij

∆
nug
ij = B3

initial,ij −B3
fitted,ij

(40)
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Figure 9. Average over the considered earthquakes of the short rangeB1 (a), long rangeB2 (b) and nugget
effectB3 (c) coregionalization matrices.

Very little differences were observed (i.e.|∆SR
ij |, |∆

LR
ij | and|∆nug

ij |were all less than0.1 for all i, j),
which indicates the robustness and unbiasedness of the fitting method. Similar numerical results are
provided in [14] to further quantify this conclusion.

4.4. Observations

Extending the simple framework of the separable model, the linear model of coregionalization
proved to be a reliable technique to fit many cross-covariances at once. The Goulard algorithm
is both fast and easy to use, as it requires only the empiricalsemivariograms and the set of basic
structuresgl(h). The goodness of fit obtained with this new method is comparable to the results
from the direct semivariogram fitting, but the linear model of coregionalization also provides an
admissible model for simulation purposes because the positive definiteness of the full covariance
matrix for ε’s having arbitrary periods and locations is ensured.

We next use the fitted coregionalization models to build a predictive equation for the covariance
matrix functionC(h) at lagh.

5. FORMULATION OF A PREDICTIVE MODEL

5.1. Predictive model for the covariance

From all investigated earthquake data, we propose a model topredict the covariance matrix function
C(h) from a sampling of nine periods ranging from 0.01 to 10 seconds, by averaging all the fitted
coregionalization matrices over the various earthquakes.The resulting matrices are plotted in Figure
9.

One can extract any subsample of periods and use the corresponding coregionalization sub-
matrices for simulation purposes. If one wants to consider aperiod that is not included here, linear
interpolation between periods can be used as long as the positive definiteness of the resulting
coregionalization matrices is verified. If the resulting coregionalization matrix is not positive
definite, then setting the eigenvalues of the non-positive definite matrix to 0 will lead to an
admissible model (see the procedure described in Equations29 to 31).

The semivariogram matrix function is first modeled using Equation39with the coregionalization
matricesB1 andB2. The covariance matrix functionC(h) can be obtained from the semivariogram
matrix with Equation14by noting that:

C(0) = lim
h→+∞

Γ(h) = B1 +B2 +B3 (41)
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Table II. Short range coregionalization matrix,B
1

Period (s) 0.01 0.1 0.2 0.5 1 2 5 7.5 10

0.01 0.30
0.1 0.24 0.27
0.2 0.23 0.19 0.26 sym.
0.5 0.22 0.13 0.19 0.32
1 0.16 0.08 0.12 0.23 0.32
2 0.07 0 0.04 0.14 0.22 0.33
5 0.03 0 0 0.09 0.13 0.23 0.34
7.5 0 0 0 0.06 0.09 0.19 0.29 0.30
10 0 0 0 0.04 0.07 0.16 0.24 0.25 0.24

Table III. Long range coregionalization matrix,B
2

Period (s) 0.01 0.1 0.2 0.5 1 2 5 7.5 10

0.01 0.31
0.1 0.26 0.29
0.2 0.27 0.22 0.29 sym.
0.5 0.24 0.15 0.24 0.33
1 0.17 0.07 0.15 0.27 0.38
2 0.11 0 0.09 0.23 0.34 0.44
5 0.08 0 0.03 0.17 0.23 0.33 0.45
7.5 0.06 0 0.02 0.14 0.19 0.29 0.42 0.47
10 0.05 -0.03 0 0.14 0.21 0.32 0.42 0.47 0.54

Table IV. Nugget effect coregionalization matrix,B
3

Period (s) 0.01 0.1 0.2 0.5 1 2 5 7.5 10

0.01 0.38
0.1 0.36 0.43
0.2 0.35 0.35 0.45 sym.
0.5 0.17 0.13 0.11 0.35
1 0.04 0 -0.04 0.20 0.30
2 0.04 0.02 -0.02 0.06 0.14 0.22
5 0 0 -0.04 0.02 0.09 0.12 0.21
7.5 0.03 0.02 -0.02 0.04 0.12 0.13 0.17 0.23
10 0.08 0.08 0.03 0.02 0.04 0.09 0.13 0.10 0.22

which yields the following simple formulation:

C(h) = B1 exp

(

−3h

20

)

+B2 exp

(

−3h

70

)

+B3Ih=0 (42)

whereIh=0 is the indicator function equal to1 ath = 0 and0 otherwise.
Note that due to fitting approximations and the fact that the diagonal terms of Equation41 are not
exactly one, the resulting coregionalization matrices from the Goulard fitting algorithm have been
standardized† such that:

Bl
ij ←

Bl
ij

(

√

B1
ii +B2

ii +B3
ii

)

×
(√

B1
jj +B2

jj +B3
jj

) (43)

The standardizedBl matrices are provided in TablesII to IV for a set of nine periods.

†This standardization formula is simply obtained by dividing the covariance matrix coefficients by the product of the
standard deviations at the two considered periods, since:σi =

√

Cii(0) =
√

B1

ii
+B2

ii
+B3

ii
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5.2. Example

Consider the covariance betweenlnSa(1s) at site A andlnSa(2s) at site B in a given earthquake,
where sites A and B are separated by a distance ofh = 10 kilometers. One reads in TablesII andIII
thatB1

1s,2s = 0.22 andB2
1s,2s = 0.34, and substitutes these values in Equation42 to obtain:

C12(10) = 0.22× exp

(

−3× 10

20

)

+ 0.34× exp

(

−3× 10

70

)

= 0.27 (44)

As stated by Equations41 and42, the nugget effect coregionalization matrixB3 will only be used
when evaluating cross-covariances at a single site.
This calculation is clearly rather simple, indicating thatwhile the calibration of the model was
complex, it is very easy to apply.

6. EVALUATION OF THE MARKOV-TYPE SCREENING HYPOTHESIS

In this section, we present an application of the use of the proposed covariance model. While
showing the general principles of the construction of the spatial covariance matrix, we also
evaluate the impact of accounting for different sets of other ground-motion intensities (e.g. spectral
accelerations at different sites or different periods) in the variance of the final prediction of one
ground-motion intensity at a given site. Models that involve conditioning on a smaller set of
variables rather than the full considered set are called Markov models. Journel [26] introduced a
Markov-type model to be used in the joint modeling of two random variablesZ1 andZ2, considering
the “screening” hypothesis stated as follows:

E [Z2(u)|Z1(u);Z1(u + h)] = E [Z2(u)|Z1(u)] (45)

In words, this hypothesis assumes that the dependence of thevariableZ2 on the primary variable
Z1 is limited to the co-located primary variable. The primary variableZ1 is the variable with the
larger correlation range of the two. Under this hypothesis,the spatial correlation between the two
variables can be shown to equal:

ρ12(h) = ρ12(0) · ρ1(h) (46)

Goda and Hong [1] proposed such a model to characterize the spatial correlation between
spectral accelerations at different periods (Z1 = lnSa(T1), Z2 = lnSa(T2), with T1 > T2). This is
consistent with the definition of the primary variable above, since we often observe larger correlation
ranges for higher periods. In the following, we evaluate theaccuracy of this screening hypothesis by
comparing predictions from the Markov dependence model to corresponding predictions from the
full linear model of coregionalization derived above.

6.1. Accuracy of the correlation computed using Markov approximations

The model presented in Equation46 is examined in this section. Figure10a shows a comparison
of the correlation coefficients obtained from the full linear model of coregionalization and from the
Markov model of Equation46, at T1 = 2s andT2 = 1s. The latter model can be considered as a
“reduced” coregionalization model, because it is still based on the previously developed LMC, but
only one of the periods is involved in the spatial decay model. Also plotted is the Equation46result
with T1 = 1s andT2 = 2s, for which one observes a slightly greater difference with the full LMC:
this is consistent with the rule that the primary period should be the larger one. One observes a very
good match between the two approaches over all separation distances.

However, as can be seen on Figure10b, this Markov approximation is not as good for periods
more widely separated (plotted are the cross-correlationscorresponding toT1 = 2s andT2 = 0.2s).
In such a case, using the full coregionalization model is thebetter option‡.

‡It should also be noted that the low values ofρ on Figure10b indicate that it might not be worth to consider any spatial
correlation effect in this case.
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Figure 10. Comparison between the correlation coefficient obtained with the full linear model of
coregionalization and the one computed from the reduced Markov-type model for: a) 2s and 1s; b) 2s and

0.2s.

6.2. Impact of the Markov approximations for computing conditional variances

While the accuracy of a Markov-type correlation approximation was discussed, it is also
important to study the resulting variance implied by such estimation. The first case considered
here is the situation where one observes spectral accelerations at various periods but at
one site, and wants to predict the spectral acceleration at asingle period at another
site. In other words, one desires to knowεsite A(T

∗) conditioned on the observations
{εsite B(T1), ..., εsite B(T

∗), ..., εsite B(Tn)}. A problem of interest is how var(εsite A(T
∗)|εsite B(T

∗))
compares to var(εsite A(T

∗)|εsite B(T1), ..., εsite B(T
∗), ..., εsite B(Tn)), which is an evaluation of the

amount of extra information brought by incorporating additional conditioning periods at a remote
site to assess the primary residual of interest. It can be theoretically shown that accounting for
multiple conditioning periods rather that a single one willreduce the variance ofεsite A(T

∗), thereby
resulting in an increase in the accuracy of the intensity estimates [16]. Due to the multivariate normal
distribution of theε’s, one can easily compute the presented conditional variances; denotingε1 the
set of residuals to be predicted, conditioned on the set of residualsε2, one can express their joint
distribution as follows:

[

ε1

ε2

]

∼ N

([

0

0

]

,

[

Σ11 Σ12

Σ21 Σ22

])

(47)

whereN (µ,Σ) is a multivariate normal distribution with mean vectorµ and covariance matrixΣ.
The covariance matrix is obtained using a spatial correlation model described earlier. Given this
model for the joint distribution, the distribution ofε1 conditional onε2 is obtained as follows:

ε1|ε2 ∼ N
(

Σ12Σ
−1
22 e,Σ11 −Σ12Σ

−1
22 Σ21

)

(48)

wheree is the vector of observed values ofε2 at the recording stations. As a further application, the
expected ground-motion intensities at all sites are then obtained by combining the median intensities
with the expected value of the residuals obtained from Equation 48. Denotingh the separation
distance between site A and site B, one can form the covariance matrices of interest to evaluate
var(εsite A(T

∗)|εsite B(T
∗)) = Σ11 −Σ12Σ

−1
22 Σ21 with:

{

Σ11 = Σ22 = [Css(0)] = 1
Σ12 = Σ21 = [Css(h)]

(49)

with Css(h) the covariance matrix coefficient corresponding to the periodT ∗. Similarly, in order to
estimate var(εsite A(T

∗)|εsite B(T1), ..., εsite B(T
∗), ..., εsite B(Tn)), the corresponding submatrices will
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Figure 11. Reduction in variance obtained by considering additional spectral periods at a remote site when
computing the variance at a given site of interest for: a) case 1; b) case 2.
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
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Figure 11a shows a plot of the relative variance reductionrcase 1 for different choices of the
primary periodT ∗, over a varying separation distanceh:

rcase 1= var(εsite A(T
∗)|εsite B(T

∗))− var(εsite A(T
∗)|εsite B(T1), ..., εsite B(T

∗), ..., εsite B(Tn)) (51)

with T ∗ chosen among the sample[0.1, 0.2, 0.5, 1, 2, 5, 7.5, 10], andT1 to Tn the remaining periods
of that sample. One observes thatrcase 1is equal to zero ath = 0, since site A and site B are at the
same location, and the two variances are equal to 0. Also,rcase 1tends to 0 ash tends to infinity,
because the conditional set of observations at a far away site does not provide any information about
the residual at the primary site. Overall, little variance reduction (less than 0.02) is achieved when
incorporating multiple periods in the conditional set of observations. Note that the Markov model
of Equation45 would produce no variance reduction, which is a close approximation of the more
precise result and thus indicates the reasonableness of a screening hypothesis in the joint modeling
of spectral accelerations.

A second case was investigated in a similar manner. The problem is now to predict the residual
εsite A(T1) conditioned on the residual at the same site but at a different period εsite A(T2), and
then to quantify the variance reduction generated by additionally considering the residual at the
conditioning period and at a remote siteεsite B(T2). Equation48 still applies, one will estimate
var(εsite A(T1)|εsite A(T2)) = Σ11 −Σ12Σ

−1
22 Σ21 with:







Σ11 = [C11(0)] = 1
Σ22 = [C22(0)] = 1
Σ12 = ΣT

21 = [C12(0)]
(52)

with C12(0) the covariance matrix coefficient corresponding to the periodsT1 andT2. Similarly, one
can compute var(εsite A(T1)|εsite A(T2), εsite B(T2)), denotingh the separation distance between site
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A and site B:














Σ11 = [C11(0)] = 1

Σ22 =

[

C22(0) C22(h)
C22(h) C22(0)

]

Σ12 = ΣT
21 = [C12(0), C12(h)]

(53)

A plot of the relative variance reductionrcase 2 for different choices of the primary periodT1 is
shown on Figure11b:

rcase 2= var(εsite A(T1)|εsite A(T2))− var(εsite A(T1)|εsite A(T2), εsite B(T2)) (54)

T1 was selected among the list of periods[0.1, 0.2, 0.5, 1, 2, 5, 7.5, 10], andT2 was chosen as the
closest inferior period toT1 in that same set (for the first period of the setT1 = 0.1s,T2 = 0.01s was
considered). Again,rcase 2has the same properties asrcase 1ash tends to 0 and to infinity. Even less
variance reduction is achieved as compared to the previously investigated case (rcase 2<< rcase 1),
which means that the estimation variance is not affected by the incorporation of the extra information
εsite B(T2). This again indicates the reasonableness of the screening hypothesis from Equation45.

7. SUMMARY

This research has presented various techniques to model thespatial correlation of spectral
accelerations at multiple periods. Quantifying this correlation was done with geostatistical tools
involving semivariogram modeling, a measure of spatial dissimilarity. Ground motions recordings
from eight earthquakes (Northridge, Chi-Chi, Tottori, Niigata, Parkfield, Chuetsu, Iwate, El Mayor
Cucapah) were used to compute empirical semivariograms of spectral acceleration residuals at
different periods.

Initial results were presented for independent fits of cross-semivariograms for each period pair,
using an exponential function characterized by a sill (asymptotic value of the semivariogram) and
a range (distance at which correlation is effectively zero). An automated least squares algorithm
was developed, with a robust estimation of the sill using a kernel method. This approach allows
evaluating a correlation coefficient between spectral accelerations at different periods and at
different sites.

This first result is informative, but is not compatible with the generation of simulated ground
motion maps, which requires a positive definite covariance matrix. Based on the direct fit results,
three underlying structures were identified (short- and long-range functions both accounting for the
spatial decay of the correlation as distance increases, as well as a nugget effect) that became inputs
to a linear model of coregionalization, equivalent to the modeling of each cross-semivariogram with
a linear combination of the three structures. Extending thesimple framework of the separable model
(in which only one range is used for all cross-semivariograms), the linear model of coregionalization
proved to be a reliable technique to fit many cross-covariances at once. The Goulard algorithm, used
to fit the model, is fast and easy to use, as it does not require any other input than the empirical
semivariograms and the set of basic structuresgl(h). The goodness of fit obtained with this new
method is comparable to the results from the initial direct semivariogram fitting. This allowed
generating a new admissible covariance model applicable for ground motion simulation purposes.
It can be viewed as an extension of empirical ground motion prediction models, which generalizes
the models to predict multivariate distributions of spectral accelerations at multiple periods and
locations, rather than only univariate distributions of single spectral accelerations. Using this model,
the correlation coefficient between any pair of spectral accelerations at different periods and at
different sites may also be easily retrieved as shown in a simple example.

The robustness of the model calibration approach was evaluated using a novel approach, by
simulating a synthetic set of ground motion data from the estimated cross-semivariogram model, and
attempting to re-estimate the model from the synthetic data. The estimated cross-semivariograms
obtained from the synthetic data were very similar to the model used to generate the data, indicating
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that the algorithm is able to accurately detect spatial correlation features from observed ground
motions.

The developed covariance model was then used to examine the validity of a Markovian screening
hypothesis in the case of ground motion residuals. We focused on a Markov model formulating
the cross-correlation coefficient as a product of the cross-correlation at a single site times the
spatial correlation coefficient of the highest period. Thisapproach proved to be compatible with
the developed coregionalization model, and can therefore be considered as a possible simplification
of the full linear model of coregionalization, as long as thetwo considered periods are relatively
close to one another.

Even though the calibration of this model and investigationof its implications were somewhat
complex, it should be emphasized that the model is very simple to use for making correlation
predictions. A user of this model only needs to evaluate Equation 42, with the needed coefficients
from TablesII to IV , to compute a correlation coefficient for spectral values attwo periods at a
specified separation distance. While this model is more general than most previous models that
considered only single-period correlations or used a Markov-type assumption to compute multi-
period correlations, the model proposed here is not significantly more complex to use than those
earlier models, and so should be a useful resource for those interested in predicting correlations of
spectral values at differing locations and periods.
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