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SUMMARY

Many seismic loss problems (such as disruption of distetbunfrastructure and losses to portfolios of
structures) are dependent upon the regional distributfograund-motion intensity, rather than intensity
at only a single site. Quantifying ground-motion over a migtdistributed region therefore requires
information on the correlation between the ground-motintensities at different sites during a single
event. The focus of the present study is to assess the spatialation between ground-motion spectral
accelerations at different periods. Ground motions froghieivell-recorded earthquakes were used to study
the spatial correlations. Based on obtained empiricaktation estimates, we propose a geostatistics-based
method to formulate a predictive model that is suitable forutation of spectral accelerations at multiple
sites and multiple periods, in the case of crustal earthegiakactive seismic regions. While the calibration
of this model and investigation of its implications were swhat complex, the model itself is very simple
to use for making correlation predictions. A user only needsvaluate a simple equation relying on three
sets of coefficients provided here, in order to compute aetaiion coefficient for spectral values at two
periods and at a specified separation distance. Thesesrasayjtthen be used in evaluating the seismic risk
of portfolios of structures with differing fundamental ets. Copyright© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Quantifying ground-motion over a spatially-distributegjion rather than at just a single site is of
interest for a variety of applications relating to risk ofrastructure or portfolios of properties.
This requires information on the correlation between tloeigd-motion intensities at different sites
during a single event. Researchers have previously egtihthé correlations between residuals of
spectral accelerations at the same spectral period at fieoatlit sites. But very fewl]] have studied
cross-correlations between residuals of spectral aatées at different periods (or more generally
between residuals of two different ground-motion intgnaieasures) at two different sites, which
becomes important, for instance, when assessing the riakpoftfolio of buildings with different
fundamental period<].

This research relies on the general framework of groundemanodels 6], that are defined as
follows: for an earthquakg at a sitei,

InY;; =InY;; + oijei; + 75, 1)
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whereY;; refers to the ground-motion parameter of interest (8,47") the spectral acceleration at
periodT’); Y;; denotes the predicted (by the ground-motion model) mediaurgl-motion intensity,

a function of various parameters such as magnitude, distgeciod and local-site conditions;
refers to the intra-event residual, a random variable ofmeeo and standard deviation one; and
7n; denotes the inter-event residual, also a random variablaeain zero and standard deviation
one. The standard deviations; and7; are included in the ground-motion model prediction and
depend on the spectral period of interest (in some modelg afe also a function of the earthquake
magnitude and the distance of the site from the rupture)arFgiven earthquakg, the inter-event
residual); computed at any particular period is a constant acrossadiths.

Previous studies have established that a vector of spatiidtributed intra-event residuals
€; = (€1, €25, ..., € follows a multivariate normal distributiorv]. Consequently, one can fully
define thee; by specifying its mean vector and the covariance betweepaals ofe;;’s. In our
particular case, the mean vectoregfis 0 and hence we only need to know the variance-covariance
matrix: for a given earthquakg

COV(Glj,Elj) i COV(Glj,an)
Y(eventj) = : : 2
COV(G,LJ‘7 61j) i COV(GnJ‘, an)

where coVey;, €;5) iS the covariance betweep;, the residual at sité due to earthquakg ande;;,
the residual at sitedue to earthquakg

Spatial modeling of earthquake intensities has been iigatst in the past by various researchers.
For instance, the recent work of Foulser-Piggott and St@ff8] aims at modeling the spatial
correlation forY = I,,, the Arias intensity. Esposito and lervolin®@][examined the spatial
correlation of PGA and PGV based on European earthquake @atgamodeling of the spatial
correlation of the residuals of a single spectral accetaraperiodY = S,(7T") has also been
addressed in previous contributioris 10-13], leading to predictive equations for the correlation
coefficient as a function of the period of interest and thexsgon distance between two considered
sites. The present work will generalize the modeling to ativariate framework that accounts for
several intensity measuré¢¥; = S,(T;)|i = 1, ...,n}, where less study has been done.

This study will begin with a presentation of geostatistmahcepts relevant to the spatial modeling
of correlations. SectioB will describe our first attempt at using empirical data tareate these
correlations, to illustrate the encountered limitationd &sues. An alternative technique will then
be introduced in Sectio# as an improved solution, and a predictive model for covaganill be
derived using it. Finally, as Goda and Horid proposed to use the single period result combined
with a Markov-type hypothesis to formulate a correlationdlofor the multi-period case, we
will also evaluate this hypothesis in the last section, imparison with the formulated model.
In addition to the results presented here, supporting inédion is available in a related project
report [L4].

In this  work, we used recorded ground-motion data  from the
Pacific =~ Earthquake  Engineering Research  (PEER) Center's A NCGdatabase
(http://peer. berkel ey. edu/ product s/ strong_ground_noti on_db. ht m ).

This database consists of recordings from many data cemteuosid the world, as documented at
the above referenced website. All conclusions are thezedpiplicable primarily for the crustal
earthquakes in active seismic regions represented in #tabdse. Figuré shows plots of the
station locations for eight earthquakes which have beersidered in this study: Northridge,
Chi-Chi, Tottori, Niigata, Parkfield, Chuetsu, Iwate, El W& Cucapah. In this study, we used the
Boore and Atkinson ground motion prediction modg]. [Furthermore, only recordings with a
Joyner-Boore distanc®;;, smaller than 200 km and within the lowest usable frequermit livere
considered. Tableprovides additional data regarding the selected eartreguak
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Figure 1. Locations of recordings from the eight consideadhquakes.

Table I. The eight considered earthquakes in the spatiegledion study

Name Location Year Magnitude Number of recordings
Northridge California 1994 6.7 152
Chi-Chi Taiwan 1999 7.6 401

Tottori Japan 2000 6.6 235
Niigata Japan 2004 6.6 365
Parkfield California 2004 6.0 90
Chuestu Japan 2007 6.8 403

lwate Japan 2008 6.9 280

El Mayor Cucapah  California 2010 7.2 154

2. GEOSTATISTICAL MODELING OF CORRELATIONS

Spatially distributed random variables are often desdribg a semivariogram, which is a very
popular tool in the geostatistics domairb[16]. The semivariogram is a so-called two-point statistic
that characterizes the spatial decorrelation or dissiityldts general formulation is given below
for a pair of locationsi, u’:

Y ) = 5 B [(Z(w) - Z(w)?] )

whereZ(u) is a random variable representing the value of interestcationu, E [ | denotes the
expectation, and(u, u’) is the semivariogram value.

Since one often does not possess several observations nflamavariable at a given pair of
sites, the assumption of stationarity has to be made in daewaluate Equatio: one will
typically retain that the semivariogram does not dependhersite locationsu, u’) but only on their
separation vectdi = u — u’. Thus, for a stationary random varialife for instancez = ¢(7'), the
semivariogram is defined as follows:

1) = 5 E[(Z(a +b) - Z(w)?] @)
This semivariogram function can be empirically estimatétthw
LY
() = 33 Z [#(t + 1) = 2(ua)]” ()

wherez denotes an observation from the random varighla,, a recording location from the data,
andN (h) the number of pairs at separation vedicavailable in the data.

Copyright© 2010 John Wiley & Sons, Ltd.
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4 CHRISTOPHE LOTH & JACK W. BAKER

Previous studies have indicated that the correlation streof residuals from ground motion
models was not dependent on the considered direction, asdh&eefore isotropicl] 11,13,17].
This translates in Equatiorsand5 by simply “removing” all vector notations, so that= | h||.

It should also be noted that in the practical computatiorhefgdemivariogram with Equatids it
is unlikely that two data points will be separated by the éxstanceh. Therefore, a tolerance
paramete\ will have to be considered such that for a given lag distanadl the pairs of points
separated by a distance included in the intefkal A, h + A] will contribute to the evaluation of
the empirical semivariogram(h).

Furthermore, the covariance function can be defined as:

C(h) =cov(Z(u), Z(u+h)) =E[(Z(u) —m)(Z(u+ h) —m)] (6)

wherem is the mean oZ(u) (and is also equal to the mean Bfu + h) under the stationarity
hypothesis). This spatial covariance is directly relatethe semivariogram function with:

C(h) = C(0) =~(h) 7
Similarly, it can be noted that the correlation coefficiendéfined as:
_cn)

Thus, semivariogram and covariance have “opposite” behsivihe covariance is a measure of
spatial similarity betweer¥ () and Z(u + k). While one could conduct a covariance study on
either one of those functions, the semivariogram is oftezigored in geostatistical practice, as it
does not require a prior estimation of the mean of the randelaifi.

In this research, we consider the cross-covariance steicfuresiduals of spectral acceleration
at multiple periods. This means that one needs to extendrévéops definitions to the multivariate
case in order to estimate all spatial cross-correlatiomsdvetween(T;) ande(7}), T; # T;. First,
the definition of the semivariogram can easily be generdliaghe multivariate case. Denoting two
stationary random variablgs = ¢(77) andZ, = ¢(T3), one defines their cross-semivariogram:

Y12(h) =E[(Z1(u+h) — Z1(u))(Z2(u + h) — Z2(u))] )
which may again be empirically evaluated with:

Ni2(h)
M2(h) = m Z:l [(z1(uq + h) = 21(1a))(22(ua +h) = 25(ua))] (10)

with Ni2(h) is the minimum number of available data pairs in the data eetz; and Z, (the
difference in the numbers of data for a period pair is duedettistence of a lowest usable frequency
for a given earthquake recording). Again, it should be nthatlthe previously explained definitions
9 andl10are true only for second order stationary random variabbesning:

E[(Zi(u) —m;)(Z;(u+h) —m;)] = C;;(h) Vi,jel,..,n,and for all locationsi, u +h
(11)
Equation7 will extend in the multivariate case, by defining the isotcopemivariogram matrix
functionI'(h) :

{ E[Z;(u)] = m; Vi € 1,...,n,and for all locations:

(B - b
L(h) =[v(W)] = | : (12)
_’Ynl(m o Ynn(h)
Similarly, one denotes the isotropic covariance matrixcfion C(h) as follows:
[C1i(h) - Cun(h)
Ch)=[Cym)]=1| + : (13)
_Cnl (h) T Grm(h)
Copyright© 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dy(2010)
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SPATIAL CROSS-CORRELATION OF MULTIPLE-PERIOD SPECTRAL BELERATIONS 5
whereC;; (h) is the covariance function betweéh = ¢(T;) andZ; = ¢(1};). With these notations,
one obtains the following relationship:

C(h) = C(0) —T'(h) (14)

These concepts will be the basis of the quantification of thagial correlation between pairs of
various spectral accelerations, presented in the follgwettions.

3. DIRECT SEMIVARIOGRAM FIT OF EMPIRICAL DATA
3.1. Computation of residuals
For each of the 8 selected earthquakes in this study, rdsidiese derived from Equatioh

«(T) = In Sa(T) — In Sa(T)
B o(T)

(15)

with In Sa(T) the recorded logarithmic spectral acceleration at pefigdSa(7) and o(T)
respectively the median spectral acceleration and Idgaiit standard deviation from the ground
motion model. Note that this computation does not take intmant the inter-event term, since it is
constant for a given earthquake and therefore does not #iffe@ctual correlation structure of the
intra-event residuals (a proof of this statement can bedanifil 3]).

3.2. Fitting technique

Geostatistics literature recommends a manual fit of thevsgiogram, warning against regression
methods that might misrepresent the actual informatiomigdeal by the semivariograni§]. Each
estimated point of the semivariogray(h) is subject to an error inherent to that point. This error will
vary with the considered separation distah¢c¢he extent of the region used in the semivariogram
calculation, etc. For these reasons, semivariogram fittamgot be reduced to a simple regression
problem. However, given the quantity of data to be analymdtié multivariate case (we consider 9
periods and 8 earthquakes, resulting in 360 different samagrams), it was deemed reasonable to
develop an automated fitting algorithm to speed up the pspeeslong as the result of the fit was
consistent with independently obtained manual fits.

Not any function can be chosen to fit an empirical semivagogrThe covariance function,
directly related to the semivariogram through Equatiormust be positive definite. This is due
to the fact that the variance of any linear combinatiorZofalues must be non-negative; in other
words, for any set of locations, and any set of weights,,, the covariance function must satisfy:

P

var (Z MQZ(ua)> =3 > wawsC (|lun — ugll) > 0 (16)

a=18=1

where var) denotes the variance.

In practice, one ensures positive definiteness by modelgggravariogram with a positive linear
combination of admissible semivariogram models. Theseiggible models include, but are not
limited to, the four following models. The exponential mbidedefined as:

0= 1o (22)] @

where ™ refers to the value from a modél,is the sill andR is the range of the semivariogram. The
sill of a bounded semivariogram is equal to the variancofior the exponential semivariogram,
it represents the value to whiéf{h) asymptotically converges dstends to infinity. The range is

then defined as the separation distaleg which#(h) is equal to 95% of the sill of the exponential
semivariogram. This means that the range represents tlaacésat which 95% of the correlation is
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Figure 2. a) Spherical, exponential and Gaussian semgrarios withS = 0.8 andR = 45. For the spherical

model, the range represents the distance at which 100% cbthelation is lost, whereas for the Gaussian

and exponential semivariograms, it represents the distahavhich 95% of the correlation is lost; b)

Empirical semivariogram and fitted exponential model ofribemalized residuals:) from the Northridge
earthquake data, &4 = T = 1s.

lost. The spherical model is defined as:

if h <R

ho1/(h\°
R 2\R
With this model, the sillS is attained at» = R. The third common semivariogram model is the

Gaussian model:
- —3h2
F(h) =S |1 —exp 2 (19)

The sill and the range of the Gaussian semivariogram areetkéis for the exponential variogram.
Finally, the nugget effect model is defined as:

3
2

y(h) = (18)

otherwise

w={§ 408

This semivariogram induces a complete lack of correlattaoa-zero separation distance, therefore
no range can be defined for the nugget effect. The first threévagogram models are shown in
Figure2a. The entire correlation structure of the variables of wtwdl be completely defined by
the semivariogram model, which itself depends only on threesponding sills and ranges. In this
work, we first assumed that each cross-semivariogyanassociated witla(7;) ande(T;) can be
modeled with an isotropic exponential function, such that:

Yij(h) = Sij {1 — exp (;jhﬂ (21)

j

where S;; is the sill andR;; the range. Figur€b shows the isotropic semivariogram function
computed for data from the Northridge earthquake, and alfatgponential model. This choice
is motivated by results obtained by researchers in the fdsi§], who observed an exponential
decay of the correlation coefficient in the univariate chsgeed, we know from Equatiohthat the
semivariogram and the covariance are related as follows:

Yij(h) = Ci(0) — Cy;(h) (22)

Copyright© 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dy(2010)
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SPATIAL CROSS-CORRELATION OF MULTIPLE-PERIOD SPECTRAL AELERATIONS 7

and by extending Equatiofi to the multivariate case, we obtain the following model fbe t
correlation coefficient:

pi) = @) exp (7 23
)

wherep;;(0) = C;;(0) = S;; if the considered variables have unit standard deviatitinsan be
noted that other functional forms for the correlation caéint have been used, such as the more
generals(h) = exp (—ah”) by Goda and Hongl]], wherea and 3 are constants (fof = 1, this
model is equivalent to the exponential functional form)oBoet al. L0] used a particular case of
this model withs = 0.5.

Previous studies have proposed empirical equations tagbtbe sill [7,12,18,19], as it is equal
to the covariance betweefil;) ande(7;) at the same sitei(= 0):

Sij = Ci;(0) (24)
Three methods were investigated in order to achieve a rastistation of the sill:

(i) adirect computation of’;;(0) of the empirical data;
(i) calculating the mode of the histogram of the semivarérg values themselves;
(i) arefinement of (ii) using a Gaussian kernel function.

The last approach proved to be the most robust one, and it é&s tetained in lieu of the
predictive model. Indeed, when fitting a least squares ssipg, it is critical to assess as correctly
as possible the value of the sill, in order to achieve a coastimate of the range.

The empirical estimation of with a kernel function relies on a discretization of the aked
semivariogram values, followed by a computation of a kewedfjhted function:

Yo =0,y1 = 0.01,...,5; = 0.01 ¢,...,y100 = 1

Kmaw )
‘ i) — us
kernel(i) = ,;,1 exp (W(’f)fy) hy
S =y, St r;llax(kerne(z‘)) = kerneli)

max

= 100 km, o = constant (25)

Variations of the constant did not have a significant impact on the final result of thewllue. In
this study, a value of = 0.1 has been used.

Once S is accurately determined, the range can be derived usinghtesl least squares
regression. With the exponential semivariogram modelptioblem can be linearized using a log
transformation:

—3h . q==3
s - —3h - B 5
'y(h)S{l exp( 7 )} = In (S —4(h)) = ah + b with { b— g (26)
The regression algorithm will evaluate the weighted sungobses, as a function of the range

WSS(R) = w(hi) [In (S — min {y(hy), S —0.01}) = In (S — (hs))]?

k
:Zk: hik [m(s — min {y(hy), § = 0.01}) - <(f3) i ““S)r

wherew(hy,) is a weighting function giving more importance to the snilgeparation distances (an
inverse distance weighting has been used here, such thaethbt on the error at lajy; is equal to
1/ht). The semivariogram values are constrained to be less¥han.01 in order for the logarithm
function to be well-defined. The value &f yielding the minimum of thig¥’SS is retained as the
range of the experimental semivariogram. It should be ntiatthis regression bears no intrisic
fundamental or theoretical meaning; it merely is a convetnveay to obtain satisfying fits for a
large amount of semivariograms.

(27)
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Figure 3. Direct cross-semivariogram fitting using the Nodge earthquake data fan = 1s and Ty =
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3.3. Observed results

Figure 3 shows the result of the kernel fitting for the cross-semagmam betweel; = 1s and
T, = 2.5s from the Northridge earthquake. The fitted semivariograoves to be a good match with
the data while also representing a likely outcome of a mafitiilg. The kernel fitting provides
accurate estimates of the sills for all period pairs of ie$gras shown in Figuré. It should be
noted that the sills af’}, = T are theoretically 1, but approximations in both the sentggam
values and the fitted semivariogram lead to results that err@necisely unity. Results for cross-
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T,=0.01s

T,=0.1s

T,=0.2s

T,=5s

Figure 5. Direct cross-semivariogram fits for six pairs afigas from the Northridge earthquake data.

semivariograms for several period pairs obtained withapjzroach are shown in FiguseHowever,
numerical instabilities may be encountered with residbalang low correlation, e.g. betweels
with very short and very long periods. These cross-senugasims are often just "noise” with an
almost zero sill and lead to irrelevant estimates of the eatige to a poor convergence of the
least squares regression. Thus, raw results of the diredivagogram fit have to be filtered, by
dismissing the data leading to low sills. After filtering thesults, we could observe clusters of
data in the range versus sill plane, where the observationlsl e distinguished with respect to
the value of the corresponding period pairs. It appearetddimess-semivariograms for two long
periods (approximatelyi}; > 1s, T> > 1s) have a higher range of around 40 km, while they show
a shorter range of approximately 25 km for two short peridds< 1s, 7> < 1s). The presence of
two structures of different range is indicated in Figérevhich show both short and long range
components. Furthermore, the very low ranges obtainedoat gariods (Figuré) tend to indicate
the presence of a so-called "nugget effect”, which meansahaore appropriate semivariogram
function in this case might be the one from Equatitth Indeed, the nugget semivariogram is
nothing but a limiting case of an exponential semivariogramose range tends to zero.

The 1999 Chi-Chi earthquake provides many recordings aund it one of the most useful
events for this study. The direct semivariogram fitting téghe gives adequate representation of
the data. The results did not show two different spatiakcstmes as was the case for the Northridge
earthquake, but longer semivariogram ranges were noticaddrage, meaning that the correlation
between spectral accelerations generally holds for lodigéances.

Similar work was performed for the aforementioned six otbarthquakes. The same quality
of fit could be observed, although the empirical semivadogs did not demonstrate such a clear
exponential trend in some cases, possibly due to the relik of data (e.g., for Parkfield and
El Mayor). While a simple average of the sills and ranges alleearthquakes may be proposed
for the development of a predictive model, some limitatipressent the use of these results for the
formulation of the covariance matrix.

Copyright© 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dy(2010)
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3.4. Limitations

The direct semivariogram fit developed in this study proweokt a useful tool to evaluate the spatial
correlation of the empirical data. One may very well use ¢hesults to estimate any correlation
coefficient between spectral acceleration at two diffepamiods at two different sites. However, a
more general objective of this study was to formulate a ptedi model for the covariance matrix
of a given set ot’s, based on these estimations and Equatién

However, forC to be an acceptable covariance matrix, the same conditiposifive definiteness
as in the univariate case (see Equati@) must be satisfied: the variance of any weighted linear
combination of. variables ap sites must be non-negative. This results in the followirggireement
for the multivariate case[)]:

n o n p

var (Z Z“gzi(ua)> =33 wiwlCij (Jlua — ugl)) = 0 (28)

i=1 a=1 i=1 j=1 a=1B=1

wherew! is the weight associated with the value &f at locationu,,. Unfortunately, the direct
semivariogram fitting approach described above takes nb soastraint into account when
evaluating empirical sills and ranges, and thus will nodileea positive definite covariance matrix in
most cases. It is possible to “fix” this matrix by merely chiauggts eigenvalues to make it positive
definite ( R1]: section 6.2). This is achieved by performing an eigengalecomposition of?, such
that:

C =QAQ” (29)

where each column df) is the eigenvectog; of C and A is the diagonal matrix whose diagonal
elements are the corresponding eigenvalues, Ag..= \;. The eigenvalue matriA is then
transformed intaA* by changing the negative coefficientsito

A ifXA >0

+ _ (2 1

Ay = { 0 if A <0 (30)

Finally, AT is recombined with the eigenvector mat€xto obtain the positive definite matri&:
Ct=QATQ” (31)
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We have observed that only minor changes need to be madefitiedecovariance matrix in order
to transform it into a positive definite one (i.€;" ~ C).

While modifying the eigenvalues is relatively easy to doddies not allow much control on
how much the covariance matrix will be changed. It also makesficult to access the “new”
actual values of the ranges of the different cross-senuigeaims. Another approach involves the
computation of cross-covariance terms from convolutidegrals of the direct covariance®?],
such thatC;;(h) = [, pi(u)p;(u+ h)du. Although this approach will lead to valid models, it
makes it quite difficult to fit the cross-covariance coefiiteto empirical data.

An alternative solution to ensure positive definiteness ispose a single range for all direct and
cross-semivariograms. The covariance matrix functiohlv@tome:

C(h) = p(h) - C(0) (32)

where p(h) is a scalar function (for instance in the present cagé) = exp(—3h/R)). This
formulation of the covariance matrix function is called tbeparable model2B]. For the full
covariance matrix to be positive definite in this case, one drdy to ensure that the covariance
matrix at a single sit€(0) is positive definite. This is a much simpler task than engutire full
covariance for the number of period$imes the number of sitesto be positive definite, sindg(0)

is only defined for the number of periods Unfortunately, fitting a single range to the data is not
possible, as it does not reflect the underlying structuresodtered in this section. The next section
will introduce an extension of this separable model thatinaarporate more than one range.

4. THE LINEAR MODEL OF COREGIONALIZATION

While independently fitting each empirical semivariogranaymnot provide an admissible
correlation model, it does give some insight into the spatferacteristics of the considered
variables. From the direct semivariogram fits developedHherNorthridge earthquake especially,
we noticed clear contributions of three different struetaia short range component acting on small
periods and a large range component acting on longer peidsdsell as a nugget effect for very
short periods. To take the effect of multiple spatial scais account, a model was considered
that assumes all variables to be linear combinations of #meesbasic structural components.
Analytically, for a given set o mean-zero random variablég,, Z,, ..., Z,,) [19]:

L ny
Zi(u) =YY Vi) Vi=1,..n (33)
=0 k=1
with
e E[Vi(u)] =0
/ caq(h) ifk=FkKandl =1
e cov(Vi(u), YV} (u+h)) = { Ol( ) otherwise

This is the so-called linear model of coregionalizationisTinodel has become a widely used tool
in multivariate geostatistics. The decompositionZofnto independent components yields the
following formulation of the semivariogram matrix (in theoitropic case):

L
I'(h)=> B'g'(h) (34)
=0

where B! are the coregionalization matrices agidh) are admissible semivariogram functions
chosen a priori by the user. One can note that the case-06 corresponds to the separable model
of Equation32. The coregionalization matrices can be interpreted asfapeantributions to the sill

or variance of each structugé(h) . It can be shown that in order to ensure the positive defiaiten
of the covariance matrix, one only needs to provide posi&finite B! matrices.
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4.1. Fitting technique

Goulard and Voltz24] proposed an automated algorithm to fit a Linear Model of Gmnealization
(LMC) in a positive definite manner. Its objective is to mirm@® a weighted sum of squares
comparable to the one presented in Equafign

K N, N,

wss =353 wlin) - s () = g () (35)

0,0
k=1 i=1 j=1 v

where#;; (hi) denotes the value of the semivariogram modglih,) is the actual semivariogram
empirical valuew(hy) the weight at laghi, o; the observed standard deviation Bf = €(T;)
(here,o; = 1). The WSS is simply a weighted sum of the standardized squared erergeen
the empirical semivariogram and the model, over all peraus all discrete separation distances.
The Goulard algorithm has become popular in multivariatesgggistics involving coregionalization
studies, as it provides a fast and elegant way to fit all cemessriograms while ensuring the
positive definiteness of the resulting covariance matrix.

The algorithm is executed as follows:

1. Initialize theL + 1 coregionalization matriceB' with any values.
2. Remove one of the + 1 semivariogram modelg{ (k)) and compute the difference between
the initial empirical model and the LMC deprived of thig structure:

L
AT (hy) =T(he) = > Blg!(hx) (36)
=0
1+l

3. Compute the symmetric matrix:

w(hi) - A, T (i) - g" (hi) (37)

] =

Gy, =
k=1

4. Obtain the spectral decomposition®@f, = QloAloQg. Set all negative eigenvalues to 0 by
forming: G,, = QIOA;: Q% WhereAI is A;, with all the negative diagonal terms changed to
0 (this is similar to what was discussed in Equatidfso 31).

5. Compute the new coregionalization matrix corresponttrtgel " structure:

“l G;
O w(he) - [gl (k)]

6. Incrementy < Ig+ 1 (Ip + 0if Iy > L) and loop over steps 2 to 5 until'S:S is smaller than
a user-specified threshold.

lo

(38)

This algorithm is equivalent to fitting one structure at adito the empirical data, while ensuring
positive definiteness of each coregionalization matrixtep €. The procedure is not guaranteed
to converge in theory, but the experience has shown thatljogitam almost always converges
whatever the initial choice of the coregionalization nes at step 11[6]. We were able to confirm
this experience with the ground motion data considered here

The first step in fitting a coregionalization model is to ch@asset of basic structurg$(h). At
this point, insights from the earlier direct semivariogréis are useful to identify which structures
should be included in the model. While one could consider dehthat includes all the different
exponential functions previously fitted for each periodrpiiis better to minimize the number
of structures to simplify both calculation and later inteption. Thus, we propose to keep one
short range exponential function (of 20 kilometers) andlong range exponential function (of 70
kilometers), as well as a nugget (constant) component, aclile semivariogram matrix function

Copyright© 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dy(2010)
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Figure 7. Northridge earthquake cross-semivariogramaidd using the Linear Model of Coregionaliza-
tion.

can be expressed as:

r'(h) =B! <1 — exp (%)) +B? <1 — exp <7—3(;L>> + B? (39)

This choice is motivated by the observations obtained from direct semivariogram fits. The
values of 20 and 70 km were picked based on the analysis of gied8ed earthquakes, in order
for all semivariogram ranges to fall approximately withimese boundaries. The addition of a
nugget semivariogram is to further ensure an adequate fiball separation distances for shorter
periods. The retained weighting was the same as for thetdernivariogram fitting, such that
w(hk) = ]./hk

4.2. Observed results

All results have to be checked visually in order to ensure aeptable model. We present here
the fitting of a linear model of coregionalization to the engal semivariograms previously
examined. FigureZ shows plots of the cross-semivariograms from the Nortleridgrthquake,
where we can observe that the coregionalization model reatciuite well with the observed
data. However, we noted a relatively high value of &S compared to the other earthquakes.
This is mainly explained by the noise in the empirical semidgrams, which can be seen for
instance on the bottom-right plot of the semivariogram®or= 7> = 5s. We also noticed a good
fit for distances smaller than 50 km, while the larger distanshow much more noise in the
empirical semivariogram and a poorer fit. Even so, the weiffitting is not sensitive to these
large distance values and so provides a robust estimatitireafata at short distances. The values
of the coefficients of the coregionalization matrices over different period pairs show that the
short range matriBB! makes a larger contribution to the semivariogram at smaibgs, while the
long range matrixB? has a more significant impact on large periods. This resiiit &yreement
with the observations made in the direct semivariogram fit.

Direct semivariogram fits of the Chi-Chi earthquake redislishowed a somewhat different
spatial behavior, in the sense that we could not identify stroictures as clearly as with the
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Figure 8. Chi-Chi earthquake cross-semivariogram obthirsng the Linear Model of Coregionalization
for 71 = 1s andTy = 2s.

Northridge earthquake. However, it has been observedhbatame linear coregionalization model
used with the Northridge data still provided very accurate @f every semivariogram, mainly
because the observed ranges in the direct semivariogranerié also within 20 to 70 kilometers.
Figure 8 shows the fitted cross-semivariogram between 1s and 2satatahe coregionalization
model provides a good fit of the empirical data, particulatldistances of less than 50 km.

Other earthquakes were investigated, and the linear mdaeregionalization lead once again
to high quality semivariogram fits. It was observed that thkei@s of the coregionalization matrices
look quite similar from earthquake to earthquake, excepthe high periods of the Northridge
earthquake > 3s), because those motions were recorded on analog instrapentsing much
of the long-period data to be unusable. While the presenaife interevent variability in the
spatial correlation has been previously established bya@i, the lack of systematically differing
patterns between these cases suggests that this data setod@eovide evidence to build a model
that varies by region, or by earthquake magnitude. This ¢ddbserved variation is not proof that
no such trends exist, but rather that if they exist they abntls@nough that they cannot be detected
using currently available earthquake strong motion dalt@. individual results for each event will
be incorporated in the proposed predictive equation.

4.3. Consistency

To verify the robustness of this fitting procedure, the erogircovariance matrix functions
developed for the Chi-Chi earthquake were used to generdéta via Monte-Carlo simulations
at the locations of the recordings from the same Chi-Chihgaidke. From the simulated
values, another model of coregionalization was fit, and @megh to the original model of
coregionalization which the simulations were based on. Asuee of the difference between the
initial coregionalization matrices and the ones fitted ®dlenerated data was defined as follows:

SR _ Pl 1
ALI{R - B'L'Qnitial,ij - Bgitted,ij
A%'g: Bigzitial,ij - B];itted,ij (40)
Aij = Binitial,ij - Bfitted,ij
Copyright© 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dy(2010)
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Figure 9. Average over the considered earthquakes of the simyeB! (a), long rangéB? (b) and nugget
effect B3 (c) coregionalization matrices.

Very little differences were observed (il& |, |A57| and|A7"Y| were all less thaf.1 for all 4, j),
which indicates the robustness and unbiasedness of ting fitiethod. Similar numerical results are
provided in [L4] to further quantify this conclusion.

4.4. Observations

Extending the simple framework of the separable model, itheat model of coregionalization
proved to be a reliable technique to fit many cross-covaegrat once. The Goulard algorithm
is both fast and easy to use, as it requires only the empsgraivariograms and the set of basic
structuresy!(h). The goodness of fit obtained with this new method is compertbthe results
from the direct semivariogram fitting, but the linear modektoregionalization also provides an
admissible model for simulation purposes because theipmsiefiniteness of the full covariance
matrix for e’s having arbitrary periods and locations is ensured.

We next use the fitted coregionalization models to build @igtive equation for the covariance
matrix functionC(h) at lagh.

5. FORMULATION OF A PREDICTIVE MODEL

5.1. Predictive model for the covariance

From all investigated earthquake data, we propose a mogedttict the covariance matrix function
C(h) from a sampling of nine periods ranging from 0.01 to 10 sesphy averaging all the fitted
coregionalization matrices over the various earthquakes resulting matrices are plotted in Figure
0.

One can extract any subsample of periods and use the comdisgocoregionalization sub-
matrices for simulation purposes. If one wants to considegréod that is not included here, linear
interpolation between periods can be used as long as thévpodefiniteness of the resulting
coregionalization matrices is verified. If the resultingregionalization matrix is not positive
definite, then setting the eigenvalues of the non-positigénide matrix to 0 will lead to an
admissible model (see the procedure described in Equalibius31).

The semivariogram matrix function is first modeled using &pn39 with the coregionalization
matricesB! andB2. The covariance matrix functio@ (k) can be obtained from the semivariogram
matrix with Equationl4 by noting that:

C(0)= lim T'(h)=B'+B?+B? (41)

h—+oco
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Table Il. Short range coregionalization matdx!

Period(s) 001 01 02 05 1 2 5 7.5 10

0.01 0.30

0.1 0.24 0.27

0.2 0.23 0.19 0.26 sym.

0.5 0.22 013 0.19 0.32

1 0.16 0.08 0.12 0.23 0.32

2 0.07 0 0.04 014 022 0.33

5 0.03 0 0 0.09 0.13 0.23 0.34

7.5 0 0 0 0.06 0.09 019 029 0.30

10 0 0 0 0.04 007 016 024 025 0.24

Table Ill. Long range coregionalization matrig?

Period(s) 001 01 02 05 1 2 5 75 10

0.01 0.31

01 0.26 0.29

0.2 0.27 022 0.29 sym.

05 024 015 0.24 0.33

1 0.17 0.07 015 0.27 0.38

2 0.11 0 0.09 023 034 044

5 0.08 0 0.03 0.17 0.23 0.33 045

7.5 0.06 0 0.02 014 019 029 042 047

10 0.05 -0.03 0 0.14 0.21 032 042 047 054

Table IV. Nugget effect coregionalization matrig?

Period (s) 001 0.1 0.2 05 1 2 5 7.5 10

0.01 0.38

01 0.36 0.43

0.2 035 035 045 sym.

05 0.17 013 0.11 0.35

1 0.04 0 -0.04 0.20 0.30

2 0.04 0.02 -0.02 0.06 0.14 0.22

5 0 0 -0.04 0.02 0.09 012 0.21

7.5 0.03 002 -0.02 0.04 0.12 013 0.17 0.23

10 0.08 0.08 003 0.02 004 0.09 013 0.10 0.22

which yields the following simple formulation:

—3h —3h
= B! — ) +B? — | +B*T)— 42
e =Brex (5t )+ Brew () + BT 2)
whereZ; ¢ is the indicator function equal tbat h = 0 and0 otherwise.

Note that due to fitting approximations and the fact that tlagahal terms of Equatiofl are not
exactly one, the resulting coregionalization matricesnfithe Goulard fitting algorithm have been
standardized such that:

(43)

Bl
l ij
Bij —
X

1 2 3 1 2 3
(VBE+BZ+B7) x (/B + B}, + BY,)

The standardizeB' matrices are provided in Tablésto IV for a set of nine periods.

TThis standardization formula is simply obtained by diviglithe covariance matrix coefficients by the product of the
standard deviations at the two considered periods, since: /C;;(0) = /B, + B + B3,
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5.2. Example

Consider the covariance betwelerta(1s) at site A andn Sa(2s) at site B in a given earthquake,
where sites A and B are separated by a distanée-ofl0 kilometers. One reads in Tabldsandlll
thatBi, ,, = 0.22 andB?, ,, = 0.34, and substitutes these values in Equati@ro obtain:

C12(10) = 0.22 x exp (ﬂ) +0.34 x exp <M) =0.27 (44)
20 70
As stated by Equation$l and42, the nugget effect coregionalization matEX will only be used
when evaluating cross-covariances at a single site.
This calculation is clearly rather simple, indicating thetile the calibration of the model was
complex, it is very easy to apply.

6. EVALUATION OF THE MARKOV-TYPE SCREENING HYPOTHESIS

In this section, we present an application of the use of tlopgsed covariance model. While
showing the general principles of the construction of thatigp covariance matrix, we also
evaluate the impact of accounting for different sets of pgreund-motion intensities (e.g. spectral
accelerations at different sites or different periods)he variance of the final prediction of one
ground-motion intensity at a given site. Models that ineokonditioning on a smaller set of
variables rather than the full considered set are calleckamodels. Journel2f] introduced a
Markov-type model to be used in the joint modeling of two ramdvariables?; andZ,, considering
the “screening” hypothesis stated as follows:

E[Z5(u)|Z1(w); Z1(u + h)] = E [Z(u)| Z1 (u)] (45)

In words, this hypothesis assumes that the dependence véatlable 7, on the primary variable
7, is limited to the co-located primary variable. The primagrigble 7, is the variable with the
larger correlation range of the two. Under this hypothebis,spatial correlation between the two
variables can be shown to equal:

p12(h) = p12(0) - p1(h) (46)
Goda and Hong 1] proposed such a model to characterize the spatial cdoeldietween
spectral accelerations at different periods & In Sa(71), Zs = In Sa(T»), with Ty > T3). This is
consistent with the definition of the primary variable ah®irce we often observe larger correlation
ranges for higher periods. In the following, we evaluatedbeuracy of this screening hypothesis by
comparing predictions from the Markov dependence modebtoesponding predictions from the
full linear model of coregionalization derived above.

6.1. Accuracy of the correlation computed using Markov agjmations

The model presented in Equatidi is examined in this section. Figufi€a shows a comparison
of the correlation coefficients obtained from the full lineaodel of coregionalization and from the
Markov model of Equatior6, at 7) = 2s andT, = 1s. The latter model can be considered as a
“reduced” coregionalization model, because it is stilldzhen the previously developed LMC, but
only one of the periods is involved in the spatial decay mofélisio plotted is the Equatiof6 result
with 71 = 1s andT, = 2s, for which one observes a slightly greater difference wliid full LMC:
this is consistent with the rule that the primary period dticne the larger one. One observes a very
good match between the two approaches over all separastandes.

However, as can be seen on Figl, this Markov approximation is not as good for periods
more widely separated (plotted are the cross-correlatongsponding t@} = 2s andT, = 0.2s).
In such a case, using the full coregionalization model isogtéer optio.

fIt should also be noted that the low valuespain Figurel10b indicate that it might not be worth to consider any spatial
correlation effect in this case.
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Figure 10. Comparison between the correlation coefficiebtained with the full linear model of
coregionalization and the one computed from the reducedkdwatlype model for: a) 2s and 1s; b) 2s and
0.2s.

6.2. Impact of the Markov approximations for computing gbadal variances

While the accuracy of a Markov-type correlation approximatwas discussed, it is also
important to study the resulting variance implied by suctinesgtion. The first case considered
here is the situation where one observes spectral acdelesant various periods but at
one site, and wants to predict the spectral acceleration aingle period at another
site. In other words, one desires to knowiea(7*) conditioned on the observations
{esite B(T1), ..., €site B(T™), .., €site 8(T ) }- A problem of interest is how vdesie A(T™)|esite 8(T*))
compares to Vasite A(T™)|€site 8(T1), - .-, €site B(T™), - .-, €site (T ) ), Which is an evaluation of the
amount of extra information brought by incorporating aiaial conditioning periods at a remote
site to assess the primary residual of interest. It can ber¢fieally shown that accounting for
multiple conditioning periods rather that a single one vétluce the variance efje A(7™), thereby
resulting in an increase in the accuracy of the intensityreges [L6]. Due to the multivariate normal
distribution of thee’s, one can easily compute the presented conditional veegrdenoting; the
set of residuals to be predicted, conditioned on the setsiflualse,, one can express their joint

distribution as follows:
€ 0| X1 X2
R (MR S

whereN (u, ) is a multivariate normal distribution with mean vecioand covariance matrix.
The covariance matrix is obtained using a spatial coratamodel described earlier. Given this
model for the joint distribution, the distribution ef conditional ore, is obtained as follows:

61|62 ~ N (21222_218, 211 — 21222_21221) (48)

wheree is the vector of observed values«fat the recording stations. As a further application, the
expected ground-motion intensities at all sites are théained by combining the median intensities
with the expected value of the residuals obtained from BEquoat8. Denotingh the separation
distance between site A and site B, one can form the covariarairices of interest to evaluate
var (esie A(T*) |esite 8(T)) = B11 — X12355 oy with:

{ 3 =39 = [Css (0)]
212 == 221 == [Css(h)]

! (49)

with Cy(h) the covariance matrix coefficient corresponding to thequfi*. Similarly, in order to
estimate vafesie A(T™)|esite 8(11), ---, €site 8(T™), ..., €sie (11 ) ), the corresponding submatrices will
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Figure 11. Reduction in variance obtained by considerirdjtexhal spectral periods at a remote site when
computing the variance at a given site of interest for: agdad) case 2.

be:
Y11 =[Cs(0)] =1
—CH(O) ce Cs(0) - cm(o)'
E22 - - Css (0) Csn (0) (50)
sym. :
GILTL(O)
g = 251 = [C11(h), ..., C1s(h), ..., C1n(h)] _

Figure 11a shows a plot of the relative variance reductiQgse 1 for different choices of the
primary periodl’™, over a varying separation distance

Tcase 1= Var (esite A(T™) |€site B(T™)) — var (esite A(T™)|€site 8(T1), -, €site B(T™), -, €site 8(Th))  (B1)

with T* chosen among the samgiel, 0.2,0.5,1, 2,5, 7.5, 10], andT} to T;, the remaining periods
of that sample. One observes thalse 1iS equal to zero at = 0, since site A and site B are at the
same location, and the two variances are equal to 0. Algg, 1tends to 0 as tends to infinity,
because the conditional set of observations at a far anegsés not provide any information about
the residual at the primary site. Overall, little varianeduction (less than 0.02) is achieved when
incorporating multiple periods in the conditional set oelvations. Note that the Markov model
of Equation45 would produce no variance reduction, which is a close appration of the more
precise result and thus indicates the reasonableness tdengty hypothesis in the joint modeling
of spectral accelerations.

A second case was investigated in a similar manner. The gmold now to predict the residual
esie A(T1) conditioned on the residual at the same site but at a diffqueriod esjie A(7%), and
then to quantify the variance reduction generated by amditly considering the residual at the
conditioning period and at a remote sigeg(7>). Equation48 still applies, one will estimate
var (esie A(T1)|esite A(T2)) = 11 — E1235, oy With:

311 =[Cn(0)] =1
Yoo = [Caa(0)] =1 (52)
Yo = Xf = [C12(0)]

with C»(0) the covariance matrix coefficient corresponding to thequksiy andTs. Similarly, one
can compute Valesite a(71)|€site A(T2), €site 8(T12) ), denotingh the separation distance between site
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A and site B:
Y11 =[C11(0)] =1
022(0) ng(h)
P = [ 2 coo) ©9
Yo = = [C12(0), C12(h)]

A plot of the relative variance reductionase 2for different choices of the primary peridty, is
shown on Figuréd.1b:

Tcase 2= Var (€site A(Tl ) |€site A(TQ )) —var (Gsite A(Tl ) | €site A(TQ)v €site B(TQ)) (54)

T, was selected among the list of perigdsl, 0.2,0.5,1,2,5,7.5,10], andT> was chosen as the
closest inferior period t@; in that same set (for the first period of the gt= 0.1s, T, = 0.01s was
considered). Again;case 2has the same propertiesiagse 1ash tends to 0 and to infinity. Even less
variance reduction is achieved as compared to the preyiaugtstigated case dase 2<< 7case 7
which means that the estimation variance is not affectetidintcorporation of the extra information
esite 8(72). This again indicates the reasonableness of the screeppughesis from Equatiods.

7. SUMMARY

This research has presented various techniques to mode$pidwal correlation of spectral

accelerations at multiple periods. Quantifying this clatien was done with geostatistical tools
involving semivariogram modeling, a measure of spatiadidiflarity. Ground motions recordings

from eight earthquakes (Northridge, Chi-Chi, Tottori,d¥dita, Parkfield, Chuetsu, lwate, El Mayor
Cucapah) were used to compute empirical semivariogrampexdtial acceleration residuals at
different periods.

Initial results were presented for independent fits of esmswrivariograms for each period pair,
using an exponential function characterized by a sill (gsytic value of the semivariogram) and
a range (distance at which correlation is effectively zeAs) automated least squares algorithm
was developed, with a robust estimation of the sill using mélemethod. This approach allows
evaluating a correlation coefficient between spectral lacatons at different periods and at
different sites.

This first result is informative, but is not compatible withetgeneration of simulated ground
motion maps, which requires a positive definite covarianegrisn Based on the direct fit results,
three underlying structures were identified (short- andimange functions both accounting for the
spatial decay of the correlation as distance increasesethasva nugget effect) that became inputs
to a linear model of coregionalization, equivalent to thedelong of each cross-semivariogram with
a linear combination of the three structures. Extendingimple framework of the separable model
(in which only one range is used for all cross-semivariogrgthe linear model of coregionalization
proved to be a reliable technique to fit many cross-covaeaat once. The Goulard algorithm, used
to fit the model, is fast and easy to use, as it does not reqoyether input than the empirical
semivariograms and the set of basic structufés). The goodness of fit obtained with this new
method is comparable to the results from the initial diremnhivariogram fitting. This allowed
generating a new admissible covariance model applicablgrtmind motion simulation purposes.
It can be viewed as an extension of empirical ground motiedigtion models, which generalizes
the models to predict multivariate distributions of spaktaccelerations at multiple periods and
locations, rather than only univariate distributions oiggée spectral accelerations. Using this model,
the correlation coefficient between any pair of spectrakkrations at different periods and at
different sites may also be easily retrieved as shown in alsigxample.

The robustness of the model calibration approach was eealusing a novel approach, by
simulating a synthetic set of ground motion data from thierested cross-semivariogram model, and
attempting to re-estimate the model from the synthetic.dEtt@ estimated cross-semivariograms
obtained from the synthetic data were very similar to the @ehaded to generate the data, indicating
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that the algorithm is able to accurately detect spatialetation features from observed ground
motions.

The developed covariance model was then used to examinaligywof a Markovian screening
hypothesis in the case of ground motion residuals. We fatwsea Markov model formulating
the cross-correlation coefficient as a product of the comseelation at a single site times the
spatial correlation coefficient of the highest period. Taproach proved to be compatible with
the developed coregionalization model, and can therefeihsidered as a possible simplification
of the full linear model of coregionalization, as long as twe considered periods are relatively
close to one another.

Even though the calibration of this model and investigabbits implications were somewhat
complex, it should be emphasized that the model is very srpluse for making correlation
predictions. A user of this model only needs to evaluate Egud?2, with the needed coefficients
from Tablesll to IV, to compute a correlation coefficient for spectral valuesnat periods at a
specified separation distance. While this model is more rg¢niean most previous models that
considered only single-period correlations or used a Matigpe assumption to compute multi-
period correlations, the model proposed here is not sigmfig more complex to use than those
earlier models, and so should be a useful resource for tmbseested in predicting correlations of
spectral values at differing locations and periods.
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