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ABSTRACT: Earthquake engineering design requires an evaluation of the structure’s reliability over future
seismic loads. The structure’s reliability can itself be formulated as an “implicit” performance goal, such as a
specified annual probability of collapse, or a target probability of exceedance of a given level of Engineering De-
mand Parameter (EDP ). Design procedures typically evaluate achievement of this goal through some alternate
“explicit” check, which commonly specifies a design spectrum and associated structural response acceptance
criteria. Much discussion exists as to which design spectrum is the most appropriate for such analysis. In this
work, we show that the use of a specific Conditional Mean Spectrum (CMS) is a natural choice to perform
the explicit check of a target reliability goal. This determination is based on structural reliability techniques
that consider spectral accelerations at multiple modal periods as basic random variables predicting the EDP
response. The design point obtained with Inverse FORM methods is chosen as conditioning point to compute
the full design spectrum. In the case where there are multiple structural response parameters of interest, or it is
unknown what excitation frequencies are important to the structural response, it may be necessary to perform
analyses using multiple conditional mean spectra. It is shown that this approach is suitable for response spec-
trum methods where the structural response is evaluated as a combination of single mode participations, as well
as for the more complex case of nonlinear dynamic analyses which additionally take into account ground mo-
tion uncertainty (record-to-record variability). The definition of these design spectra fits naturally with explicit
structural performance assessments, and is thus relevant for the future refinement of seismic design codes.

1 INTRODUCTION

1.1 Motivation

Earthquake engineering design aims at achieving safe
structures based on the formulation of implicit per-
formance goals, which can be defined as a specified
annual probability of collapse, or a target probability
of exceedance pf of a given level edpf of Engineering
Demand Parameter (EDP ):

P (EDP > edpf in N years) = pf (1)

This is a “time specific” performance goal, meaning
that we look at the performance of a structure over a
given time span in the future. Such terminology ap-
plies for the particular case of collapse rate assess-
ment (Ibarra and Krawinkler 2005, Liel et al. 2009),
where one is interested in the probability of a struc-
tural collapse in a specific period of time. Even though
the intensity of a future earthquake may vary widely,
the earthquake loading is generally defined in build-
ing codes via a single response spectrum. If the build-
ing behaves acceptably when analyzed under that de-

sign spectrum, it is deemed to be safe in terms of an-
ticipated future performance under earthquake loads.
This analysis is an explicit design check, and can
be compared to the classical non-seismic approach
where demands from specific load combinations are
verified to be less than factored resistances (AISC
1999). The main challenge we address in this research
is the definition of an appropriate design spectrum to
use in the seismic design check, given that the re-
sponse spectra of future earthquakes will vary.

1.2 Current standards

Much discussion exists as to which design spectrum is
the most appropriate for structural performance eval-
uation. For instance, the Uniform Hazard Spectrum
(UHS), representing a consistent probability of ex-
ceedance of spectral acceleration amplitudes over all
periods, has been the main choice in the past. More
recently, Luco et al. (2007) have proposed to target a
uniform probability of collapse rather than a uniform
hazard, which has lead to the definition of the Uni-
form Risk Spectrum (URS). These two spectra are
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Figure 1: Target response spectra for a site subject to one earth-
quake per 50 years on a strike-slip fault, with M = 7, R =
10 km, Vs30 = 400 m/s, using the Boore and Atkinson (2008)
ground motion prediction equation.

shown on Figure 1, along with the piecewise linear
approximation used in one building code (SEI/ASCE
2010). In this research, we study these spectra from a
reliability perspective and present a more appropriate
alternative consisting of using less conservative Con-
ditional Mean Spectra (CMS).

1.3 Scope of this research

The examples presented here make the assumption
that the EDP of interest involved in Equation 1 is a
function of spectral accelerations at multiple periods:

EDP = f1([Sa(T1), ..., Sa(Tn)]) (2)

where Sa(Ti) denotes the spectral acceleration at pe-
riod Ti and T1, ..., Tn are spectral acceleration peri-
ods relevant to the structural response. This situation
is observed in the response spectrum method, where
the demand parameter is exactly determined by values
of spectral accelerations at modal periods (Der Ki-
ureghian 1981). A refinement of Equation 2 is consid-
ered in Equation 3 to account for ground motion vari-
ability (the value of the demand could still be random
even with fixed values of the spectral accelerations of
interest), relevant to nonlinear dynamic analysis:

EDP = f2([Sa(T1), ..., Sa(Tn)], δ) (3)

where δ is a random variable that represents the de-
mand variability not explained by the spectral accel-
erations. From this formulation, we may also define
a “loading specific” performance goal following the
time specific goal format from Equation 1:

P (EDP > edpf | [S̃a(T1), ..., S̃a(Tn)]) = pd (4)

In Equation 4, the probability of exceedance of the
demand level edpf is not measured over a spe-
cific time span but rather under a given ground
motion level specified by fixed spectral values
[S̃a(T1), ..., S̃a(Tn)]. Examples of this type of perfor-
mance goal can be found in ASCE 7-10 (SEI/ASCE
2010) where the objective is a probability pd = 10% of
collapse under the Maximum Considered Earthquake
(MCE), as well as in ASCE 43-05 (SEI/ASCE 2005),
which proposes two loading specific performance
goals (pd1 = 1% probability of unacceptable perfor-
mance under the Design Based Earthquake (DBE),
pd2 = 10% probability of unacceptable performance
under 1.5 times the DBE).

In this paper, we describe the above problem in
the framework of a structural reliability assessment
(Madsen et al. 2006). Viewed in this light, the de-
sign point associated with a reliability assessment is
a rational choice for deriving a design spectrum. To
illustrate how this approach would be used in a seis-
mic design context, the case of a building analyzed
using the response spectrum method is considered. In
this example, the spectral acceleration level from the
design point is seen to match a particular conditional
mean spectrum.

This paper will show that in the case of Equation
2, the appropriate spectrum to use is a Conditional
Mean Spectrum conditioned on a UHS amplitude at
a single period. In the case of Equation 3, the appro-
priate spectrum will also be a CMS, but conditioned
on a URS amplitude at a single period.

However, in both cases, when it is unknown what
excitation frequencies are important to the structural
response, it may be necessary to perform analyses us-
ing multiple conditional mean spectra. This will re-
quire more effort than a single analysis performed
using a uniform hazard spectrum, but the avoidance
of the conservatism associated with a single UHS or
URS will make the extra effort worthwhile in some
cases. These results provide a theoretical justification
for the use of the CMS in design checks. This ap-
proach has been intuitively identified as reasonable,
but not previously justified in depth.

Finally, it should be noted that while we present
a non-straightforward derivation of the target spectra,
the user would not need to reproduce any part of it and
could simply use the end results from the derivation.

2 PRESENTATION OF THE PROBLEM

2.1 Current standards

One of the key inputs in performance assessment
is the hazard analysis of various intensity measures
acting on the structure. Probabilistic Seismic Haz-
ard Analysis (PSHA) (McGuire 2004) is often con-
ducted to evaluate the level of spectral acceleration
Sa(T ) that is exceeded with a given annual proba-
bility p. This analysis can be repeated independently



for a number of periods, and the result is a Uniform
Hazard Spectrum (UHS) associated with the targeted
p. The use of the UHS is prescribed in several de-
sign guidelines (e.g. LATBSDC 2008, SFDBI 2010).
However, this approach is problematic for two main
reasons:

• It is unlikely to observe a ground motion hav-
ing such high level of spectral accelerations at
all periods, because the probability of observing
a ground motion exceeding the whole UHS spec-
trum is far less than the probability of observing
a ground motion exceeding a particular value of
that spectrum at a single period;

• In general, the choice of the targeted annual
probability p associated with the design UHS
cannot be directly related to any of the proba-
bilities pf or pd defined in our implicit perfor-
mance goals (Equations 1, 4). This spectrum is
only dependent on the seismic hazard at the site
of interest and is not linked with any structural
performance goal.

Luco et al. (2007) have proposed to address the sec-
ond issue by adjusting the UHS to target a specific
collapse probability, leading to the definition of the
Uniform Risk Spectrum (URS), which has become
the current standard in ASCE 7-10 (SEI/ASCE 2010).
This particular URS aims at achieving a uniform col-
lapse probability pf = 1% in 50 years for sites that are
not nearby an active fault (time specific goal), while
ensuring a probability of collapse pd = 10% under that
spectrum (loading specific goal). However, the URS is
built independently for each spectral period (the col-
lapse fragility depends on a single spectral accelera-
tion period), even though the structural performance
may depend on multiple spectral accelerations, and
therefore retains the first drawback mentioned for the
UHS.

The present contribution addresses this problem by
showing the derivation of a set of design spectra di-
rectly associated with performance goals following
Equations 1 and 4 with an EDP depending on multi-
ple spectral acceleration periods such as in Equations
2 and 3. The results can be considered as a multi-
period generalization of the Luco et al. approach.

2.2 Incorporation of joint hazard information

Since our implicit goals are defined in terms of the
EDP hazard rather than each individual intensity
measure hazard (Equations 1, 4), we need to know
the joint hazard of [Sa(T1), ..., Sa(Tn)] at our site of
interest. In general, this can be achieved with vector
PSHA (Bazzurro & Cornell 2002), which provides
the mean occurrence rate of a vector of spectral ac-
celerations at different periods. This result is simi-
lar to a joint probability density function, an example
of which is shown in Figure 2a. An important input

for the calculations will be the associated joint proba-
bility contours depicted in Figure 2b. These contours
are merely a 2D representation of the joint probabil-
ity density function. Each contour is a set of spectral
acceleration values having the same probability den-
sity, the center of the ellipses being the most probable
outcome. The angle of the ellipses is due to the corre-
lation of spectral accelerations at multiple periods.

In the present paper, we will illustrate results based
on the use of a single earthquake scenario (with M =
7, R = 10 km, Vs30 = 400 m/s, strike-slip fault) oc-
curring over a fixed time span of 50 years, using the
Boore & Atkinson (2008) ground motion prediction
equation. This simplifies the example calculations as
the joint distribution of spectral accelerations from a
single earthquake was shown to be a multivariate log-
normal distribution (Jayaram & Baker 2008).

3 DESIGN SPECTRA DERIVATION FROM
STRUCTURAL RELIABILITY THEORY

3.1 Relevance of the design point

Our approach involves techniques from structural reli-
ability theory, which have been used previously in the
context of earthquake engineering (Van De Lindt &
Niedzwecki 2000). We assume that structural perfor-
mance is related to spectral accelerations at multiple
periods (Equations 2 and 3). For each combination of
Sa’s, we can determine whether performance is ac-
ceptable or unacceptable (“safe” or “failed”), imply-
ing that we can find a failure boundary or limit state
as drawn on Figure 2b. The design point represents
the most likely values Sa∗(T1), ..., Sa

∗(Tn) that cause
failure to the structure, and can be computed using
First-Order Reliability Method (FORM). For this rea-
son, the design point is intuitively a relevant set of
spectral accelerations to be used in structural analysis
in order to ensure that the implicit goals are verified.
Section 4 further confirms this proposal with an appli-
cation of the response spectrum method. The follow-
ing will present how to compute this design point, and
detail the derivation of a full target spectrum based on
the design point values.

3.2 First-Order Reliability Method (FORM)

We first address the determination of a target spec-
trum for the time specific goal mentioned in Equation
1 by using a reliability problem involving a set of ran-
dom variables X = [Sa(T1), ..., Sa(Tn)] that defines a
failure function g(X) as:

g(X) = edpf −EDP (5)

The failure domain is defined as the set of X such that
g(X) < 0, g(X) > 0 corresponds to the safe domain,
and g(X) = 0 is the boundary between the two do-
mains. Coherently with the formulation of the time



Figure 2: Joint distribution (left) and corresponding joint contour (right) of spectral accelerations at T1 = 1 s and T2 = 0.3 s, for a
single scenario earthquake occuring in 50 years on a strike-slip fault with M = 7, R = 10 km, Vs30 = 400 m/s using the Boore and
Atkinson (2008) ground motion prediction equation, along with an example of a failure function.

specific performance goal, the failure probability can
then be quantified with:

pf = P (g(X) ≤ 0) =

∫
g(X)≤0

fX(x)dx (6)

with fX(x) the joint probability density function as-
sociated with the occurrence of x over N years (see
2.2).

The First-Order Reliability method (FORM) eval-
uates the design point x∗ with an iterative algorithm
working toward an estimation of the probability of
failure pf based on Equation 6. It uses a simplification
of the integrand by mapping the variables into a stan-
dard normal space (X → U), in order to obtain a stan-
dard normal probability density function fU(u) and a
new formulation of the failure function h(U) = g(X).
The main assumption is a linearization of the inte-
gration boundary g(X) = 0 in the standard normal
space (at h(U) = 0). The algorithm iterates to mini-
mize ∥u∥ subject to h(u) = 0. The solution obtained
from this optimization problem is denoted u∗. Once
u∗ is found1, a back-transformation into the original
space provides the desired design point x∗.

3.3 Inverse FORM

In our case, the time specific goal suggests that the
value of pf is imposed, whereas the value of edpf
included in the failure function g(X) (Equation 5)

1An interesting quantity that is extensively used in structural
reliability is the norm of the u∗ vector, also called the reliability
index β. This index informs on how safe the structure is: the
higher β is, the lower the probability of failure.

is unknown. We will therefore refer to the inverse
problem, which is the evaluation of edpf associated
with a known probability of exceedance pf , satisfy-
ing Equation 6. This is called “Inverse FORM” proce-
dure (IFORM), or “Environmental Contours” (Haver
& Winterstein 2008). It should be noted that in ad-
dition to the demand threshold edpf (which could be
estimated with a simple Monte-Carlo simulation of
EDP ), IFORM also provides with the coordinates
of the design point x∗ = [Sa∗(T1), ..., Sa

∗(Tn)] cor-
responding to the limit state defined by Equation 5.

3.4 Conditional Mean Spectra

An interesting result occurs in the case of a ran-
dom variable not explicitly included in the formu-
lation of the failure function. Suppose that X =
[Sa(T1), Sa(T2), Sa(T3)] with a failure function de-
fined as g(X) = 1 − Sa(T1) − Sa(T2). In this case,
Sa(T3) is a component of the input random vector X
but does not appear in the failure function. It can be
shown that the design point value Sa∗(T3) associated
with the spectral acceleration not included in the fail-
ure function is the mean value of Sa(T3) conditioned
on the design values of the two other spectral acceler-
ations [Sa∗(T1), Sa

∗(T2)].
This observation motivates the use of the Condi-

tional Mean Spectrum (Baker 2011) to compute a full
response spectrum. The Conditional Mean Spectrum
(CMS) associates at each period T the mean value of
the log spectral acceleration lnSa(T ) conditioned on
the design point values x∗ = [Sa∗(T1), ..., Sa

∗(Tn)].
This is done by using the multivariate normality prop-
erty of the residuals of lnSa(T ). The value of the log



spectral acceleration at any period T (including the
ones present in the design point) is evaluated by:

µlnSa(T )|x∗ = µlnSa(T )(M,R,T ) +Σ12Σ
−1
22 e (7)

where µlnSa(T )(M,R,T ) is the mean of lnSa at
period T from the ground motion model with
magnitude M and distance R, Σ12 the covari-
ance matrix between lnSa(T ) and the vector
[lnSa(T1), ..., lnSa(Tn)], Σ22 the covariance ma-
trix of [lnSa(T1), ..., lnSa(Tn)], and e the vector of
residuals of non-standardized design values (ei =
lnSa∗(Ti)− µlnSa(M,R,Ti)).

Section 4 presents an application of the design
point determination and resulting spectrum in the case
of response spectrum method.

4 RESPONSE SPECTRUM METHOD

4.1 General formulation

The response spectrum method estimates the seismic
demand with a rule, such as SRSS (Square Root of the
Sum of the Squares), for combining spectral values at
modal periods:

EDP =
√
α1Sa(T1)2 + ...+ αnSa(Tn)2 (8)

where the periods Ti’s and coefficients αi’s are deter-
mined by modal analysis. This can be seen as a partic-
ular case of Equation 2 applied to modal periods with
f1 as the SRSS function.

4.2 Single-degree-of-freedom example

It is interesting to look at the simple case where only
one spectral acceleration period is included in the
equation:

EDP =
√
α1Sa(T1)2 =

√
α1Sa(T1) (9)

Finding the design point in this reduced case is
straightforward from the hazard curve of Sa(T1),
since we will only need to find the spectral value
Sa∗(T1) that will produce the response edpf :

pf = P (EDP > edpf )

= P (
√
α1Sa(T1) >

√
α1Sa

∗(T1))

= P (Sa(T1) > Sa∗(T1))

(10)

In this particular case, Sa∗(T1) is therefore the Sa
with a probability of exceedance pf . The FORM cal-
culation using the demand from Equation 9 would
yield the same result, along with conditional mean
values for the spectral accelerations at other periods
conditioned on the value of Sa∗(T1) = SaUHS(T1),
as explained in Section 3.4. This motivates the use of
a CMS conditioned on the UHS spectral acceleration
at the first mode period.

Table 1: αi coefficients to compute the roof and second story
accelerations according to Equation 8

Roof 2nd story
α1 1.567 0.467
α2 0.131 0.155
α3 0.025 0.004
α4 0.004 0.008
α5 0.000 0.002

Table 2: Design spectral accelerations in g’s. The italicized val-
ues are conditional means.

Roof 2nd st. CMS CMS
design design UHS 1st 2nd

point point mode mode
Sa(T1) 0.659 0.434 0.677 0.677 0.364
Sa(T2) 1.133 1.616 1.644 0.932 1.644
Sa(T3) 1.187 1.654 2.090 0.988 1.653
Sa(T4) 1.140 1.585 2.259 0.961 1.574
Sa(T5) 1.103 1.524 2.326 0.936 1.516

4.3 Multiple-degree-of-freedom example

We now consider a uniform 5-story shear building
where all 5 modes have significant contribution to
the seismic demand, with constant lumped mass m =
100 kips/g and stiffness k = 31.54 kips/in for each
floor (see section 12.8 of Chopra 2011). We perform
a full reliability analysis to compute the roof acceler-
ation under the joint hazard from the scenario earth-
quake detailed in Section 2.2, using all modal contri-
butions and targeting a probability of failure pf = 1%.
The αi’s to be used in the SRSS formula from Equa-
tion 8 can be found in Table 1.

This yields a design point
[Sa∗roof (T1), ..., Sa

∗
roof (T5)], which is shown in

the first column of Table 2. As can be seen in Table
1, the roof acceleration is first mode dominated,
which is why we also consider the situation described
in Section 4.2 where one estimates the seismic
demand with the first mode CMS. In this case,
the design point will be the CMS conditioned on
Sa∗(T1)(= SaUHS(T1)) (fourth column of Table 2).

The analysis is repeated for the calculation of the
second story acceleration (the corresponding αi’s are
shown in the last column of Table 1), first using the
full 5 modes (yielding the design point given in the
second column of Table 2), and then the CMS condi-
tioned on Sa∗(T2) = SaUHS(T2) (last column of Ta-
ble 2), since this demand is second mode dominated.
Table 3 shows the estimated roof and second story ac-
celerations for all discussed spectra and a compari-
son with the UHS is also proposed. We observe that
the UHS significantly overestimates the true value of
the 5-mode demand. The first mode CMS provides an
adequate result for the roof acceleration (0.928g vs
0.943g) while the second mode CMS is better for the
second story acceleration (0.719g vs 0.727g).



Table 3: EDP values from each spectrum described in Table 2
Roof 2nd story

5 modes 0.943 0.727
UHS 1.099 0.839

1st mode CMS 0.928 0.601
2nd mode CMS 0.800 0.719
max CMS 0.928 0.719

4.4 Recommended design spectra and acceptance
criteria

The two single mode CMS are shown on Figure 3,
along with the two 5-mode CMS for the roof and
second story accelerations. As can be seen in Table
3, using the first mode CMS to compute the second
story acceleration yields a significant underestimation
of the true demand, and the similar conclusion is ob-
served when using the second mode CMS to obtain
the roof acceleration. Therefore, when one is unsure
of the relative participation of each mode in the fi-
nal demand calculation, the joint use of the two CMS
should be included in the evaluation of the demand.
This means that a design check will require two dif-
ferent spectra instead of a single UHS but the avoid-
ance of the conservatism of the UHS may make this
extra effort worthwhile. It should be noted that the use
of multiple conditional mean spectra has already been
suggested by Baker & Cornell (2006) and mentioned
in the Tall Building Initiative (PEER 2010), but not
carefully justified.

In practicality, using two spectra means that we
would compute a first demand edpCMS1 based on
the first mode CMS conditioned on SaUHS(T1), and
a second demand edpCMS2 from the second mode
CMS (conditioned on SaUHS(T2)). The final demand
would just be:

edp = max(edpCMS1, edpCMS2) (11)

This edp is then compared to admissible values in the
acceptance criteria.

5 INCORPORATION OF GROUND MOTION
VARIABILITY

5.1 Example

Estimating the seismic demand from nonlinear dy-
namic analysis is less straightforward than with the
response spectrum method, because the demand is
not only a function of the response spectrum but also
of the inherent record-to-record variability. This vari-
ability can be modeled as an additional random vari-
able δ following the notations from Equation 3. De-
noting the random vector X = [Sa(T1), ...Sa(Tn)], the
previous method can first be applied to solve the reli-
ability problem associated with the failure function:

g(X, δ) = edpf − f2(X, δ) (12)
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Figure 3: Single mode and 5-mode CMS for a time specific per-
formance goal.

resulting in a design point [Sa∗(T1), ..., Sa
∗(Tn), δ

∗]
verifying the time specific performance goal of Equa-
tion 1. This is an inverse FORM problem, since we
choose the value of pf , thus solving for the value
of edpf = f2([Sa

∗(T1), ..., Sa
∗(Tn)], δ

∗) . However,
there is no direct way to incorporate the value of δ∗
in the resulting spectrum.

To account for this variability, a loading specific
performance goal as described in Equation 4 is in-
volved, and can be written as:

pd = P (EDP > edpf |[S̃a(T1), ..., S̃a(Tn)])

= P (f2([S̃a(T1), ..., S̃a(Tn)], δ) > edpf )

(13)

where [S̃a(T1), ..., S̃a(Tn)] are the targeted design
spectral values to be determined. Studies of ground
motion variability (e.g., Cornell et al. 2002) have of-
ten shown that δ can be modeled as an independent
“error” term, meaning there exists a positive function
f̃1 such that:

f2(X, δ) = f̃1(X)eδ (14)

with δ normally distributed with mean zero and stan-
dard deviation σδ, independent from X. The formu-
lation of the loading specific performance goal from
Equation 13 becomes:

pd = P (f̃1([S̃a(T1), ..., S̃a(Tn)])e
δ > edpf ) (15)

which implies:

f̃1([S̃a(T1), ..., S̃a(Tn)]) = edpf e
σδΦ

−1(pd) (16)



with Φ−1 the standard normal inverse cumulative dis-
tribution function. Consequently, finding the design
spectral values [S̃a(T1), ..., S̃a(Tn)] is equivalent to
solving the reliability problem associated with the
failure function:

g̃(X) = ẽdpf − f̃1(X) (17)

with ẽdpf = edpf eσδΦ
−1(pd), where the resulting de-

sign point will correspond to the target spectral val-
ues [S̃a(T1), ..., S̃a(Tn)]. Note that this is a (direct)
FORM problem, since the value of ẽdpf is fixed 2.

5.2 Single mode responses

Similar to section 4.2 in the case of the response spec-
trum method, solving the above problem for a sin-
gle mode EDP provides some useful conclusions.
Without loss of generality (see Equation 10), let us
assume that EDP = f̃1(Sa(T1))e

δ = Sa(T1)e
δ. Fol-

lowing the procedure of section 5.1, we first need to
solve the reliability problem from Equation 12 de-
fined with the failure function:

g(Sa(T1), δ) = edpf − Sa(T1)e
δ (18)

For a given pf , inverse FORM will provide a de-
sign point [Sa∗(T1), δ

∗] and edpf = Sa∗(T1)e
δ∗ . But

the targeted spectral value S̃a(T1) is different from
Sa∗(T1), and rather determined through the definition
of the loading specific performance goal, which re-
duces to a FORM problem (Equation 17):

g̃(Sa(T1)) = edpf e
σδΦ

−1(pd) − Sa(T1) (19)

Since there is only one spectral acceleration involved,
the solution can be found by setting g̃ = 0 and solving
for Sa(T1), which gives:

S̃a(T1) = edpf e
σδΦ

−1(pd) (20)

This S̃a(T1) can be seen as a particular Uniform Risk
Spectrum (URS) value. Indeed, the definition of a
URS typically involves both types of performance
goals, for instance in ASCE 7-10 (SEI/ASCE 2010):
• the time specific goal is often a pf = 1% collapse

probability in 50 years,

• the loading specific goal can be a pd = 10% col-
lapse probability under the URS.

In our particular situation, the considered risk or per-
formance measure (collapse in the above case) is the
event EDP > edpf .

2If f2 is a linear function and if the random vector
[Sa(T1), ..., Sa(Tn), δ] follows a multivariate normal distribu-
tion, an omission sensitivity factor (Madsen 1988) may be used
instead of the combination of Inverse FORM and FORM. In our
case, the method would consist in removing the random variable
δ from the calculations by a modification of the FORM search
algorithm targeting a higher reliability index, which is equiva-
lent to decreasing the final probability of failure. However, there
is no closed-form solution associated with a nonlinear f2.
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Figure 4: Single mode CMS for time specific and loading spe-
cific performance goals.

5.3 Recommended design spectra and acceptance
criteria

Similar to the response spectrum method example,
we propose to use multiple Conditional Mean Spec-
tra conditioned on the appropriate URS amplitudes.
Each CMS will be conditioned on the URS value at a
spectral period of interest (participating in the EDP ).
An example of such CMS are plotted on Figure 4 as-
suming periods of interest of T1 = 1 s and T2 = 0.3 s.
This is less straightforward than the response spec-
trum method as there could be no explicit formula for
the EDP as a function of spectral accelerations. For
instance, higher periods than the first mode T1 may
be used as conditional values to account for nonlinear
effects (period elongation).

Acceptance criteria are also more complicated to
formulate than in the case of response spectrum
method, where only a time specific goal was consid-
ered, and the evaluated demand could simply be com-
pared to some acceptable value, implying a pf prob-
ability of failure over N years. In nonlinear dynamic
analysis, the choice of pd from the loading specific
goal should also be taken into account in the accep-
tance criteria. The lower the value of pd, the higher
the design spectral values will be, thus preventing any
meaningful comparison of the demand to some unre-
lated fixed capacity.

The acceptable capacity edpcapacity that would
normally be considered with the time specific
goal is still useful, but instead of comparing
edpdemand < edpcapacity, one should verify that the ra-
tio edpcapacity/edpdemand is greater than some accept-
able value, function of the chosen pd. This kind of ac-
ceptance criteria has been formulated in FEMA P695
(2009) as a “Collapse Margin Ratio” (CMR) of the



spectral acceleration at median collapse level over the
MCE spectral acceleration.

6 CONCLUSIONS

Low probability of failure under earthquake loading
is the main objective of seismic design, and can be
seen as an “implicit performance goal.” Since current
building codes consider that the structure is safe if it
has an acceptable behavior under analysis performed
using a single design spectrum (e.g. the Uniform Haz-
ard Spectrum or UHS, which targets a given level of
seismic hazard) the variability of the ground motion
shaking is ignored. The present research has demon-
strated how this problem could be termed within
a structural reliability framework, where the design
spectra are determined based on a pre-specified im-
plicit performance goal. A new set of design spectra
(CMS conditioned on an appropriate UHS amplitude
at specific periods) are first proposed in the case of
a performance goal associated with the exceedance
of an EDP of interest over some time period (time
specific performance goal). Examples of the deriva-
tion and use of these CMS were shown in the con-
text of response spectrum analyses, where the EDP
depends on several spectral acceleration periods, and
the influence of high mode contributions on the tar-
get spectra were examined. It should be noted that all
of the examples provided here assumed a joint log-
normal distribution of spectral accelerations at mul-
tiple periods (based on a single earthquake scenario
with fixed magnitude and distance), while the true
distribution of those contours should be determined
with vector PSHA. The proposed methodology was
then extended to consider implications for the more
complex case of nonlinear dynamic analysis, where
ground motion variability has to be accounted for.
Similar conclusions were drawn as multiple CMS are
proposed, each conditioned on an appropriate Uni-
form Risk Spectrum (URS) amplitude at a specific pe-
riod. This generalizes the simpler risk-targeted design
approach to consider design spectra associated with
multiple correlated Sa’s and a specified target prob-
ability of failure under a given ground motion level
(loading specific performance goal).
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