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Current design spectra, which approximate uniform hazard or risk spectra, are
known to have shortcomings, but no alternative has been proven superior for the
purposes of design checks. In this work, we use response spectrum method
analysis to show that the “design point” associated with a structural reliability
assessment is a rational choice for a design spectrum. When the response para-
meter of interest is sensitive to excitation at a particular period, the design point
corresponds to a conditional mean spectrum (CMS) conditioned on that period. In
the case where there are multiple structural response parameters of interest, or it is
unknown what excitation periods are important to the structural response, the
CMS can be used by considering multiple conditioning periods and taking
the maximum structural response from any of the spectra for design checks.
This observation is used to justify the CMS as a target response spectrum for
design checks. [DOI: 10.1193/041314EQS053M]

INTRODUCTION

The objective of seismic design is to ensure that structures will sustain future earthquake
shaking with a low probability of failure. Evaluating this probability is difficult, as significant
uncertainty in the potential future ground shaking exists. The present research will address
this objective in the framework of a structural reliability assessment, considering the analysis
of a building using the response spectrum method (Chopra 2011).

Most building codes require a response spectrum analysis to evaluate the behavior of
structures that are sensitive to multiple-mode excitations (e.g., section 12.9 in ASCE/SEI
2010). Individual mode responses are calculated using a design spectrum, and then super-
imposed using a combination rule such as square root of the sum of the squares (SRSS) or
complete quadratic combination (CQC; Rosenblueth 1951, Der Kiureghian 1981). This
design spectrum is commonly based on a uniform hazard spectrum, which is developed
by computing the spectral amplitude at each period that has a specified probability of
exceedance. This spectrum has been shown to produce conservative structural responses,
because occurrence of an extreme SaðTÞ (spectral acceleration at period T) amplitude at
a single period does not imply occurrence of equally extreme levels at all periods (Baker
and Cornell 2006).

Here we present a new approach to define a design spectrum for structural performance
assessment. Our objective is to formulate an explicit design check that verifies an implicit

a) Dept. of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020

Earthquake Spectra, Volume 31, No. 4, pages 2007–2026, November 2015; © 2015, Earthquake Engineering Research Institute
2007



performance goal. As an example of this terminology, the non-seismic load and resistance
factor design, or LRFD (e.g., AISC 1999), defines an implicit performance goal for structural
elements to have a low annual rate of failure. For instance, when considering member design,
such implicit goal can be:

EQ-TARGET;temp:intralink-;e1;41;591νðmember failureÞ ≤ 10�3 yr�1 (1)

where νð Þ is used to indicate the annual rate of the specified event occurring. The associated
LRFD explicit design check compares factored resistances and loads:

EQ-TARGET;temp:intralink-;e2;41;534γL ≤ ϕR (2)

where L is the nominal value for the load effect on the member, γ is the load factor, R is the
nominal value for the resistance of the member, and ϕ is the resistance factor. The factors γ
and ϕ are calibrated to account for the inherent uncertainties in the load and resistance effects.
An example of such a design check derivation can be found in Fisher et al. (1978) for the case
of principal fastening elements. The implicit performance goal of Equation 1 is anticipated to
be achieved if the inequality of Equation 2 is verified for a given member. In the following,
we formulate our general implicit performance goal as a low annual rate, νf , of exceeding a
given level of Engineering Demand Parameter (EDP) response, edpallowable:

EQ-TARGET;temp:intralink-;e3;41;404νðEDP > edpallowableÞ ≤ νf (3)

Evaluating this rate involves computing the rate of all possible levels of ground motion
intensity and the probability of exceeding edpallowable given each of those intensity values
(Jalayer and Cornell 2004). Rather than directly evaluating Equation 3, explicit design checks
are commonly conducted at specific intensity levels (ATC 2011, Bradley 2013). Similar to
Equation 2, the explicit design check can take the general form of an inequality:

EQ-TARGET;temp:intralink-;e4;41;312edpdemand ≤ edpallowable (4)

where edpdemand is the edp value obtained from a structural analysis using a particular design
spectrum. While the present work will focus on elastic response multimodal EDPs, a related
well-studied application of the problem is the assessment of the probability of structural
failure using nonlinear response history analysis (e.g., Ibarra and Krawinkler 2005, Liel
et al. 2009).

Our problem can be stated as follows: when defining an explicit design check
(Equation 4) for a structure’s multimodal response, how should we choose the response
spectrum to use in order for the implicit performance goal from Equation 3 to be verified?
We will present a structural reliability–based technique to obtain the so-called design point
and associated target spectrum corresponding to our implicit goal. We will show that a uni-
form hazard spectrum is typically a conservative target when multiple modes participate in
the response EDP, and that conditional mean spectra can overcome this conservatism.

QUANTIFICATION OF GROUND MOTION HAZARD

A key input in seismic reliability assessment is ground motion hazard analysis. Probabil-
istic seismic hazard analysis (PSHA; e.g., McGuire 2004) is conducted to evaluate the level
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of a spectral acceleration SaðTÞ that is exceeded with a given annual rate. This analysis can be
repeated independently for a number of periods, and the set of associated spectral accelera-
tion values forms the uniform hazard spectrum (UHS) associated with a targeted annual
exceedance rate νUHS. The response spectrum method is sometimes used with this UHS
specifying each individual modal response. However, this use of the UHS is problematic
for two main reasons:

• The probability of observing a ground motion whose spectrum exceeds the whole
UHS spectrum is typically far less than the probability of observing a ground motion
whose spectrum exceeds a particular value of that spectrum at a single period;

• The targeted annual exceedance rate νUHS associated with the UHS cannot be
generally related to the exceedance rate νf of a response level as defined in the
implicit performance goal of Equation 3. This spectrum is only dependent on
the ground motion hazard at the site of interest and is not linked with any structural
performance goal.

Both issues are also found in other types of structural analysis, such as response history
analysis. As an example of the second issue, several design guidelines (LATBSDC 2008,
SFDBI 2010) prescribe to conduct an explicit design check at two-thirds of a maximum
considered earthquake (MCE) level in order to achieve an implicit goal of a “low” annual
rate of collapse. While this MCE amplitude was defined as the minimum of a deterministic
spectrum (150% of the largest median shaking from characteristic earthquakes on all active
faults) and a UHS with νUHS ¼ 0.0004 yr�1 (equivalent to a probability of exceedance of 2%
in 50 years), the value of νUHS was not established based on any desired value of annual rate
of collapse. Luco et al. (2007) have proposed to adjust this MCE spectrum to target a specific
collapse rate, leading to the definition of the uniform risk spectrum (URS), resulting in a risk-
targetedMCER now used in ASCE 7-10 (ASCE/SEI 2010). This adjustment is done for each
structural period independently, and so still does not account for the fact that structural per-
formance may be related to spectral accelerations at multiple periods. The present research
addresses this problem by showing the derivation of a set of design spectra directly associated
with a more general implicit performance goal described in Equation 3.

Our work involves techniques from structural reliability theory, which have been used
previously in the context of earthquake engineering (Bazzurro et al. 1996, Der Kiureghian
1996, Der Kiureghian and Dakessian 1998, Van de Lindt and Niedzwecki 2000, Ellingwood
2001) Since our implicit goal is defined in terms of the rate of exceeding some EDP level
rather than a spectral acceleration level (Equation 3), we need to know the mean occurrence
rate λSaðT1Þ¼x1;…;SaðTnÞ¼xn of a vector of spectral accelerations at different periods
½SaðT1Þ;…; SaðTnÞ� being in the neighborhood of the values ½x1;…; xn�, which can be deter-
mined using vector PSHA (Bazzurro and Cornell 2002). This mean occurrence rate may be
characterized by its mean rate density (MRD); for instance in the case of n ¼ 2 periods, the
mean occurrence rate λSaðT1Þ∈½b11;b12�;SaðT2Þ∈½b21;b22� of events where b11 ≤ SaðT1Þ ≤ b12 and
b21 ≤ SaðT2Þ ≤ b22 can be determined as:

EQ-TARGET;temp:intralink-;e5;62;131λSaðT1Þ∈½b11;b12�;SaðT2Þ∈½b21;b22� ¼
ð
b22

b21

ð
b12

b11

MRDSaðT1Þ;SaðT2Þðx1; x2Þdx1dx2 (5)
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The MRD can be seen as a particular probability distribution function f SaðT1Þ;…;SaðTnÞ multi-
plied by a constant ν0 ¼ λSaðT1Þ≥0;…;SaðTnÞ≥0 corresponding to the rate of occurrence of non-
zero spectral acceleration values:

EQ-TARGET;temp:intralink-;e6;41;603MRDSaðT1Þ;…;SaðTnÞðx1;…; xnÞ ¼ ν0 f SaðT1Þ;…;SaðTnÞðx1;…; xnÞ (6)

In the present work, we assume the example building’s hazard comes from a strike-slip
fault at a distance of 10 km, producing only magnitude M ¼ 7 earthquakes at a mean rate of
ν0 ¼ 1∕50 yr�1. The building is assumed to be on soil with an average shear wave velocity in
the top 30 meters of VS30 ¼ 400m∕s. By assuming only a single earthquake scenario, the
PSHA calculations are much simplified, though the numerical results are still illustrative of
seismic hazard for cases of buildings located near an active fault (cases involving the con-
siderations of multiple earthquake sources can be found in Chapter 3 of Loth 2014). In this
single-earthquake-scenario case, the spectral accelerations at multiple periods follow a joint
lognormal distribution (Jayaram and Baker 2008), and so only means, standard deviations,
and pairwise correlation coefficients are needed for the ln Sa values of interest. We obtain the
median Sa’s and lognormal standard deviations σln Sa at each period of interest from the
Boore and Atkinson (2008) ground motion model, and correlation coefficients between per-
iods from Baker and Jayaram (2008). Figure 1a shows the distribution corresponding to the
joint lognormal probability density function of the vector [Sað1 sÞ; Sað0.3 sÞ�. An important
input for later calculations is the set of associated joint probability contours depicted in
Figure 1b. These contours are a two-dimensional (2-D) representation of the joint probability
density function. Each contour is a set of spectral acceleration values having the same

Figure 1. (a) Joint distribution and (b) corresponding joint contour of spectral accelerations
given occurrence of the scenario earthquake (M ¼ 7, R ¼ 10 km and VS30 ¼ 400m∕s) using
the Boore and Atkinson (2008) ground motion prediction equation. An example failure function
is also shown in (b), where the failure region is shaded.
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probability density, the center of the ellipses being the most probable outcome. The angle of
the ellipses is due to the correlation of spectral accelerations at multiple periods.

STRUCTURAL RELIABILITY THEORY AND DESIGN SPECTRA

FIRST-ORDER RELIABILITY METHOD (FORM)

We consider a reliability problem (Madsen et al. 2006) involving a set of random vari-
ables X ¼ ½SaðT1Þ;…; SaðTnÞ� that defines a failure function g as:

EQ-TARGET;temp:intralink-;e7;62;542gðXÞ ¼ edpf � EDPðXÞ (7)

where edpf is a fixed constant and EDPðXÞ is a function that computes the structural response
given values of the input spectral accelerations (e.g., a modal combination rule when using
the response spectrum method). The failure domain is the set of X such that gðXÞ < 0 (i.e., X
for which the structural demand is greater than edpf , as illustrated by the shaded region in
Figure 1b), gðXÞ > 0 is the safe domain, and gðXÞ ¼ 0 is the boundary between the two
domains. Based on Equation 7, the failure rate can then be quantified with:

EQ-TARGET;temp:intralink-;e8;62;440νf ¼ νðEDPðXÞ > edpf Þ ¼ νðgðXÞ < 0Þ ¼
ð
gðXÞ<0

MRDXðxÞdx (8)

with MRDXðxÞ the mean rate density function associated with X.

Using the first-order reliability method (FORM) to evaluate Equation 8, it is possible to
find a so-called “design point” x� ¼ ½Sa�ðT1Þ;…; Sa�ðTnÞ�, which represents the most likely
set of spectral acceleration values that will cause failure of the structure (Ditlevsen and
Madsen 1996). For this reason, we propose this design point to be the place where the explicit
design check is conducted.

FORM evaluates x� with an iterative algorithm working toward an estimation of the
failure rate νf based on Equation 8. It uses a simplification of the integral by mapping
the variables into a standard normal space (X → U), in order to obtain a standard normal
probability density function f UðuÞ and a new formulation of the failure function
hðUÞ ¼ gðXÞ. The algorithm iterates to find the minimization value of kuk, the norm of
u, given hðuÞ ¼ 0. The solution is denoted u�. The main approximation used in this approach
is a linearization of the failure function in the standard normal space at the design point
(i.e., at hðu�Þ ¼ 0). The norm of the u� vector, also called the reliability index β ¼ ku�k,
indicates how safe the structure is: the higher β, the lower the corresponding failure rate.
Once u� is found, a back-transformation into the original space provides the desired design
point x�. Figure 2 illustrates the steps involved in the FORM algorithm.

INVERSE FORM

In order for the design check in Equation 4 to be equivalent to verifying Equation 3, the
theoretical target value for edpdemand is chosen as edpdemand ¼ edpf where edpf is the EDP
level exceeded with rate νf :

EQ-TARGET;temp:intralink-;e9;62;116νðEDP > edpf Þ ¼ νf (9)
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Referring to Equation 8, when edpf is specified, the above section briefly outlines the use
of FORM to compute νf . Conversely, if νf is specified and a corresponding edpf is the quan-
tity of interest (i.e., “What is the demand level exceeded with rate νf ?”), the problem can be
solved using so-called “inverse FORM” (IFORM), or “environmental contours” (Haver and
Winterstein 2009). In addition to the demand threshold edpf , IFORM also provides the coor-
dinates of the design point x� ¼ ½Sa�ðT1Þ;…; Sa�ðTnÞ� corresponding to the limit state
defined by gðXÞ ¼ 0. Inverse FORM will be used below when evaluating the ability of var-
ious candidate response spectra to estimate an edp level exceeded with a given probability.

LINK TO THE CONDITIONAL MEAN SPECTRUM

An interesting result occurs in the case of a random variable not explicitly included in the
failure function. Suppose for example that X ¼ ½SaðT1Þ; SaðT2Þ; SaðT3Þ�, with a failure func-
tion defined as gðXÞ ¼ 1� SaðT1Þ � SaðT2Þ. In this case, SaðT3Þ is a component of the
input random vector X but does not appear in the failure function. We can still find the design
point for the three spectral accelerations x� ¼ ½Sa�ðT1Þ; Sa�ðT2Þ; Sa�ðT3Þ�, and it can be
shown (Chapter 3, Loth 2014) that the design point value Sa�ðT3Þ is the mean value of
SaðT3Þ conditioned on the design point values of the two other spectral accelera-
tions ½Sa�ðT1Þ; Sa�ðT2Þ�.

This observation motivates the use of the conditional mean spectrum (Baker 2011) to
compute a full response spectrum. The conditional mean spectrum (CMS) associates at
each period T the mean value of the log spectral acceleration, ln SaðTÞ, conditioned on a
particular design point value at a specific period Sa�ðT0Þ. This is done by using the multi-
variate normality property of the residuals of ln SaðTÞ. The value of the log spectral accel-
eration at any period T (including the ones present in the design point) is evaluated by:

EQ-TARGET;temp:intralink-;e10;41;144μln SaðTÞj ln Sa�ðT0Þ ¼ μln SaðM;R; TÞ þ ρðT ;T0Þσln SaðTÞ
�
ln Sa�ðT0Þ � μln SaðM;R; T0Þ

σln SaðT0Þ
�

(10)

Figure 2. Graphic illustration of the first-order reliability method: (a) joint contour of spectral
accelerations with failure function; (b) mapping of the variables into standard normal space -
X → U, gðXÞ → hðUÞ; (c) u� obtained by minimizing kuk such that hðuÞ ¼ 0, and linearization
of the failure function; (d): design point x� obtained by transforming u� back to the original space.

2012 C. LOTH AND J. W. BAKER



where μln SaðM;R;TÞ (resp. σln SaðTÞ) is the mean (resp. standard deviation) of ln Sa at period
T from a ground motion prediction equation for an earthquake with moment magnitude M
and distance R, and ρðT ; T0Þ is the correlation coefficient between the logarithmic spectral
accelerations at T and T0. Figure 3 shows an example of the CMS conditioned at T0 ¼ 1 s on
a spectral acceleration value of Sa�ð1 sÞ ¼ 1.02 g, for an earthquake with magnitude M ¼ 7,
distance R ¼ 10 km and recorded at a site with VS30 ¼ 400m∕s.

This spectrum is consistent with the structural reliability framework, because each CMS
ordinate corresponds to the design point value Sa�ðTÞ of a spectral acceleration at a period
not included in the failure function. This suggests that if the structure’s true failure function is
dependent on Sa at only a single period (or can be approximated as such), then the structure’s
design point is the CMS conditioned on that period. The general computation of this single
period CMS is convenient as it does not require the use of vector PSHA, but simply a mag-
nitude and distance available from deaggregation results (in the examples developed in this
paper, we simply use M and R from the chosen scenario earthquake). Furthermore, it should
be noted that the CMS calculation detailed in Equation 10 may be extended to compute a
“generalized CMS” conditioned on Sa at multiple periods (Jayaram et al. 2011; Appendix A,
Loth 2014). However, the CMS recommended in this paper will strictly be based on the
single period conditioning of Equation 10 (and unless otherwise specified, “CMS” will
thus refer to a single period conditioning). Demands estimated from the generalized
CMS will only be shown to measure the accuracy of the single period CMS. In the following
sections, we evaluate the use of a CMS conditioned at a modal period as a target response
spectrum.

Figure 3. CMS conditioned at T0 ¼ 1 s. The design point values Sa�ð1 sÞ is represented by the
triangle. The rest of the spectrum is obtained computing the mean conditioned on this value, based
on the same earthquake scenario from Figure 1.
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EXAMPLE ANALYSIS FOR A TWO-MODE EDP

In this section we consider example calculations using the response spectrum method, to
illustrate the link between implicit and explicit objectives, the information provided by the
design point, and the reasonableness of using the CMS as an approximate representation of
the design point.

We assume a response EDP equation that takes the form of an SRSS modal combination
rule from a response spectrum analysis:

EQ-TARGET;temp:intralink-;e11;41;542EDP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1SaðT1Þ2 þ α2SaðT2Þ2

q
(11)

with T1 and T2 the first and second mode periods, α1 and α2 positive constants. For this
example, we assume T1 ¼ 1s, T2 ¼ 0.3s, α1 ¼ 0.75, and α2 ¼ 0.25. Following Equation 7,
the failure function is:

EQ-TARGET;temp:intralink-;e12;41;465gðXÞ ¼ g

��
Sað1sÞ
Sað0.3sÞ

��
¼ edpf �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.75 Sað1sÞ2 þ 0.25 Sað0.3sÞ2

q
(12)

where edpf is the structural response amplitude to be specified based on Equation 9. With the
joint distribution of ½Sað1sÞ; Sað0.3sÞ� from Figure 1 and IFORM, we can find the design
point and the edpf value corresponding to a given νf .

For a target exceedance rate νf ¼ 0.0004 yr�1 (equivalent to a probability of exceedance
pf ¼ 2% in 50 years), Inverse FORM yields the design point Sa�ðT1Þ ¼ 0.81 g,
Sa�ðT2Þ ¼ 1.81 g, and setting gðXÞ ¼ 0 and substituting into Equation 12 gives:

EQ-TARGET;temp:intralink-;e13;41;339edpf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1Sa�ðT1Þ2 þ α2Sa�ðT2Þ2

q
¼ 1.14 (13)

Given the idealized nature of gðXÞ, this value is not physically interpretable, but is used
for later comparisons to approximate results. Figure 1b shows the plot of the failure function
along with the associated design point for this example.

While still considering the EDP to follow the functional form of Equation 11, we exam-
ine the case of a failure function with single mode participation. The failure function g1 only
involves the spectral acceleration at the first mode period:

EQ-TARGET;temp:intralink-;e14;41;220g1ðXÞ ¼ edpf 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1SaðT1Þ2

q
¼ edpf 1 �

ffiffiffiffiffi
α1

p
SaðT1Þ (14)

It is straightforward to notice that in this case, the actual value of α1 does not influence the
value of the design point for a given νf , since:

EQ-TARGET;temp:intralink-;e15;41;156νf ¼ νð ffiffiffiffiffi
α1

p
SaðT1Þ > edpf 1Þ ¼ νð ffiffiffiffiffi

α1
p

SaðT1Þ >
ffiffiffiffiffi
α1

p
Sa�1ðT1ÞÞ ¼ νðSaðT1Þ > Sa�1ðT1ÞÞ

(15)

where Sa�1ðT1Þ is the value of the design point at the first mode period associated with the
failure function g1. This value is simple to obtain from a standard hazard analysis by finding
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the SaðT1Þ exceeded with rate νf (note that this is the SaðT1Þ of the UHS with exceedance
rate νf ). Here, Sa�1ðT1Þ ¼ 1.02 g. SaðT2Þ is not present in Equation 14, so the design point
value at the second mode period Sa�1ðT2Þ comes from the CMS conditioned on Sa�1ðT1Þ. This
CMS, denoted CMS1, can be computed using Equation 10. We obtain Sa�1ðT2Þ ¼ 1.15 g.

With the simpler failure function g1, no structural reliability calculation is necessary to
find the design point (we only used the hazard curve for SaðT1Þ and computed a conditional
mean of SaðT2Þ). In cases where α1 ≫ α2 (which is the case for deformation-based EDPs
such as story drift ratios or roof displacement), g1 will be a good approximation of the ori-
ginal failure function g. They both would lead to approximately the same design points with
edpf ≈ edp (CMS1) (where edpðCMS1Þ) refers to the EDP demand evaluated with CMS1)
and we can obtain this response value without any FORM calculations. Using the design
point from Equation 14, and returning to the failure function of Equation 11, the estimate
of the EDP exceeded with 2% probability in 50 years is edpðCMS1Þ ¼ 1.05.

Similarly, we may define a second mode failure function g2 as:

EQ-TARGET;temp:intralink-;e16;62;456g2ðXÞ ¼ edpf 2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2SaðT2Þ2

q
¼ edpf 2 �

ffiffiffiffiffi
α2

p
SaðT2Þ (16)

Following the same reasoning, we obtain the design point Sa�2ðT1Þ ¼ 0.58g,
Sa�2ðT2Þ ¼ 1.97 g. This time, Sa�2ðT2Þ comes from the UHS with the exceedance rate νf ,
and Sa�2ðT1Þ is the conditional mean of SaðT1Þ conditioned on Sa�2ðT2Þ. The resulting
EDP response is edpðCMS2Þ ¼ 1.11, where CMS2 refers to the CMS conditioned on
Sa�2ðT2Þ. Figure 4 shows the FORM results for the two single mode responses associated
with the failure functions g1 and g2.

Figure 4. Limit state functions and design points for (a) the first-mode limit-state function of
Equation 14 and (b) the second-mode limit state function of Equation 16.
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For each failure function and associated design point, a target spectrum (CMS or general-
ized CMS) can be computed as detailed in the previous section. Figure 5 shows the target
spectra from the three failure functions considered above (Equations 12, 14, and 16), as well
as the UHS associated with the same exceedance rate νf . The EDP demand obtained from
using the UHS is edpðUHSÞ ¼ 1.32. In all cases, we observe that the design point spectra
lead to smaller spectral accelerations and thus smaller EDP demands than the UHS.

The above calculations point to several alternatives for the choice of a target response
spectrum. If one is willing to conduct the full reliability analysis with the true failure function
that is dependent on Sa at multiple periods, one should use the inverse FORM design point
and corresponding generalized CMS. For this example, the generalized CMS will yield a
single edp value of 1.14 (Equation 13), to be checked against the acceptable capacity
edpallowable (acceptance criterion in Equation 4). However, if one prefers not to do any relia-
bility calculations, two other alternatives may be considered. The first is to use a UHS with
the target exceedance rate, νf , but this will result in a considerable overestimation of the true
demand value (edpðUHSÞ ¼ 1.32 > 1.14). The second, which is our proposal, is to compute
(single period) CMS spectra conditioned upon the two periods of interest, compute the cor-
responding EDP responses edpðCMS1Þ and edpðCMS2Þ, and take the maximum of the two
as the demand value to be checked in the acceptance criterion. In this example, the single
mode approximation gives a reasonable estimate of the true response:

EQ-TARGET;temp:intralink-;e17;41;401edpdemand ¼ edpf|{z}
1.14

≈max ðedpðCMS1Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
1.05

; edpðCMS2Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
1.11

Þ (17)

Figure 5. Response spectra associated with the FORM calculations for the two-period EDP
example.
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It should be noted that the use of multiple conditional mean spectra in this manner has
been suggested by Baker and Cornell (2006) and is allowed in the Tall Buildings Initiative
Guidelines (PEER 2010). Even though this use of multiple CMS is becoming more common
in practice (e.g., Almufti et al. 2015), it has not previously been justified using reliability
theory. An additional benefit from using the CMS in a response spectrum method framework
is observed when considering that the CMS also aims at representing the spectrum from a
specific ground motion (as opposed to the UHS which is an envelope of spectral accelerations
exceeded from multiple ground motions).

Another approach to obtain a spectrum close to the generalized CMS with no reliability
calculation would consist in increasing the value of the single period CMS at periods
different than the conditioning period. As can be seen in Figure 5, by increasing the
value of the second mode CMS at the other period T1, we could obtain a spectrum closer
to the generalized CMS computed with g. This spectral “broadening” has been suggested
by past research (Carlton and Abrahamson 2014), but is not explicitly addressed in
this paper.

EXAMPLE ANALYSIS FOR A FIVE-STORY FRAME STRUCTURE

PROBLEM DESCRIPTION

In this example, we will show the results of a response spectrum analysis on a five-
story frame, and compare EDP predictions from a uniform hazard spectrum and our
reliability-based design spectrum. This structure is drawn from Section 12.8 of Chopra
(2011) and has been designed to have more higher-mode participation than a real five-
story building (it has a lumped mass 100 kips∕g and stiffness equal to 31.54 kips∕in
for each floor).

MODAL ANALYSIS

The mode shapes and modal periods for this structure can be obtained by solving the
eigenvalue problem:

EQ-TARGET;temp:intralink-;e18;62;272K� ω2M ¼ 0 (18)

where K is the stiffness matrix of the structure,M is the mass matrix, ω ¼ 2π∕T is a circular
frequency. Here we obtain:

EQ-TARGET;temp:intralink-;e19;62;216

8>>><
>>>:

ω1 ¼ 3.14 rad∕s
ω2 ¼ 9.17 rad∕s
ω3 ¼ 14.46 rad∕s
ω4 ¼ 18.57 rad∕s
ω5 ¼ 21.18 rad∕s

⇒

8>>><
>>>:

T1 ¼ 2.00 s

T2 ¼ 0.69 s

T3 ¼ 0.43 s

T4 ¼ 0.34 s

T5 ¼ 0.30 s

(19)

The associated mode shapes are:
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EQ-TARGET;temp:intralink-;e20;41;640

ϕ1 ¼

2
66664

0:170
0:326
0:456
0:549
0:597

3
77775; ϕ2 ¼

2
66664

�0:456
�0:597
�0:326
0:170
0:549

3
77775; ϕ3 ¼

2
66664

0:597
0:170
�0:549
�0:326
0:456

3
77775; ϕ4 ¼

2
66664

0:549
�0:456
�0:170
0:597
�0:326

3
77775;

ϕ5 ¼

2
66664

�0:326
0.549

�0:597
0:456
�0:167

3
77775 ð20Þ

where the jth component of each vector corresponds to the jth story of the structure. Using
Equation 20, the participation factors can be determined with:

EQ-TARGET;temp:intralink-;e21;41;469Γn ¼
ϕT
nMf1g
ϕT
nMϕn

¼
P

N
j¼1 mjϕjnP
N
j¼1 mjϕ

2
jn
⇒

8>>><
>>>:

Γ1 ¼ 2.0971

Γ2 ¼ �0.6602

Γ3 ¼ 0.3480

Γ4 ¼ 0.1938

Γ5 ¼ �0.0885

(21)

In the following, we calculate story forces. For each mode, the story forces are given by:

EQ-TARGET;temp:intralink-;e22;41;376Fjn ¼ mjΓnϕjnSaðTnÞ (22)

where j is the story, n is the mode, and SaðTnÞ is the spectral acceleration corresponding to the
nth modal period. The total story force1 is then determined using a combination rule such as
SRSS, which gives:

EQ-TARGET;temp:intralink-;e23;41;307Fstory j;SRSS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX5
n¼1

F2
jn

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX5
n¼1

αjnSaðTnÞ2
vuut (23)

where αjn ¼ ðmjΓnϕjnÞ2. We will consider these story forces as our EDPs of interest.
Equation 23 is similar in form to the simpler Equation 11.

In this example, we will examine the relative contribution of the higher modes by com-
paring the response quantities obtained with the design point calculations from two types of
failure functions:

EQ-TARGET;temp:intralink-;e24;41;182gj;5modesð½SaðTiÞ�i¼1…5Þ ¼ Ff ;5modes �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX5
n¼1

αjnSaðTnÞ2
vuut (24)

1 It should be noted that this computation of story forces is approximate, as based on a modal analysis that does not
predict actual floor accelerations. These floor accelerations may be more accurately estimated using methods
presented by Taghavi-Ardakan and Miranda (2006).
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EQ-TARGET;temp:intralink-;e25;62;640gj;2modesð½SaðT1Þ; SaðT2Þ�Þ ¼ Ff ;2modes �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αj1SaðT1Þ2 þ αj2SaðT2Þ2

q
(25)

with Ff ,. the force exceeded with a rate νf ¼ 0.0004 yr�1 particular to each failure function
and determined by the inverse FORM algorithm. Each of these failure functions will yield a
different generalized CMS to be used in the calculation of the final demand following
Equation 23. Calculations of the roof force (j ¼ 5, first-mode dominated) as well as the sec-
ond story force (j ¼ 2, second-mode dominated) are presented for the failure functions
defined in Equations 24 and 25. We may also avoid reliability calculations by computing
the simpler single period CMS for the first mode (CMS1) and the second mode (CMS2) as
presented in the previous sections. Results are summarized in Table 1 and discussed
further below.

It can be noted in Table 1 (column corresponding to five-mode FORM for the roof) that
jF51j > jF52j which confirms that the roof force is first mode dominated, while jF21j < jF22j
shows that the second story force has a higher second mode participation (column corre-
sponding to the five-mode FORM for the second story).

Table 1. Estimates of roof and second story forces exceeded with rate νf ¼ 0.0004 yr�1.
The true story force values from the full five-mode failure functions are shown in the bottom
row (79.5 kips for the roof, 61.7 kips for the second story) based on Equation 23. The first
five rows (SaðTiÞ’s) are spectral acceleration values (in g); the next five rows (Fjn’s) simply
compute the contribution of each mode n to the story j’s force based on Equation 22 (in
kips). The FORM design points are presented using a failure function only including all five
modes (Equation 24) or the first two modes (Equation 25). The spectral acceleration values
from the two single period CMS and the UHS are shown and do not depend on the EDP of
interest. Bold values are design point values associated with spectral accelerations included
in the failure function; italicized values represent conditional mean values equivalent to
design point values associated with accelerations not included in the failure function.

Roof (j ¼ 5) 2nd story (j ¼ 2)

FORM
(All 5
modes)

FORM
(First 2
modes) CMS1 CMS2 UHS

FORM
(All 5
modes)

FORM
(First 2
modes) CMS1 CMS2 UHS

SaðT1Þ 0.541 0.549 0.560 0.323 0.560 0.382 0.391
SaðT2Þ 1.022 0.981 0.837 1.383 1.383 1.357 1.352 (Same (Same (Same
SaðT3Þ 1.105 1.045 0.914 1.439 1.774 1.439 1.396 as as as
SaðT4Þ 1.075 1.019 0.900 1.391 1.916 1.399 1.344 roof) roof) roof)
SaðT5Þ 1.046 0.993 0.882 1.351 1.967 1.357 1.302
Fj1 67.8 68.7 70.1 40.4 70.1 26.1 26.8 38.3 22.1 38.3
Fj2 �37.0 �35.5 �30.3 �50.1 �50.1 53.5 53.3 33.0 54.6 54.6
Fj3 17.5 16.6 14.5 22.8 28.1 8.9 8.3 5.4 8.5 10.5
Fj4 �6.8 �6.4 �5.7 �8.8 �12.1 �12.4 �11.9 �8.0 �12.3 �16.9
Fj5 1.6 1.5 1.3 2.0 3.0 �6.6 �6.3 �4.3 �6.6 �9.6
Fstory j,SRSS 79.5 79.4 77.9 68.9 91.5 61.7 61.7 51.6 61.0 70.2
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COMPARISONS OF DESIGN SPECTRA AND RESPONSE QUANTITIES

Figure 6 shows the three main spectra associated with the roof force (the two generalized
CMS conditioned on the design points obtained from g5;5modes and g5;2modes, and CMS1).
They essentially match the UHS at the first mode period, and are lower than the UHS at
all other periods. Similarly, Figure 7 shows the spectra corresponding to the second
story force (the two generalized CMS conditioned on the design points obtained from
g2;5modes and g2;2modes, and CMS2), matching the UHS at the second mode period and
also lower elsewhere.

The “true” value of the seismic demands (edpf ) is determined by using the full reliability
analyses from both five-mode failure functions (gj;5modes), with one generalized CMS needed
for each EDP (j value). We obtain Froof ¼ 79.5kips and Fstory2 ¼ 61.7kips. The forces
obtained using g5;2modes and g2;2modes are almost equal to the ones taking into account all
five modes. The single mode approximations are also very close to the five-mode answers,
when considering the first mode for the roof force and the second mode for the second story
force. Therefore, as suggested in the previous sections, we can use the maximum of the
demands obtained from both single period CMS to estimate each design demand:

EQ-TARGET;temp:intralink-;e26;41;434

�
Froof ¼ 79.5 ≈maxðFroof ðCMS1Þ;Froof ðCMS2ÞÞ ¼ maxð77.9; 68.9Þ ¼ 77.9

Fstory2 ¼ 61.7 ≈maxðFstory2ðCMS1Þ;Fstory2ðCMS2ÞÞ ¼ maxð51.6; 61.0Þ ¼ 61.0
(26)

where Froof ðCMSÞ (resp. Fstory2ðCMSÞ) denotes the calculation of the roof (resp. second
story) force with Equation 23 using this particular CMS. The errors in EDPs estimated
from the single period CMS, relative to the true values, are 1% to 2%. However, as

Figure 6. Target spectra associated with the roof force demand.
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expected, the second mode (resp. first mode) alone is quite inaccurate for the roof (resp.
second story) force.

It can be anticipated from Figure 6 and Figure 7 that the CMS will also yield lower EDP
demands than the UHS. For example, in the case of the five-mode response, considerable
overestimation (around 15%) of the seismic demand is observed by using the UHS instead of
the calibrated generalized CMS, for both roof and second story forces.

IMPACT OF USING OTHER CONDITIONING PERIODS ON EDP ESTIMATION

In this simple response spectrum method case, the participation of known modal periods
are deterministically quantified. In other situations, such as nonlinear dynamic analysis, rele-
vant periods of interest for an EDP calculation may not be known or accurately estimated by
the user. In this final section, we show the limited impact of different choices of conditioning
periods TCond1, TCond2, to compute the single period CMS and the corresponding seismic
demands for the same example structure discussed above.

Figure 8a shows a contour plot of the relative reduction of the roof force, when estimated
as the maximum of the demands from the single period CMS associated with varying TCond1
and TCond2, with respect to the true value (from the generalized CMS using the five modal
periods), for a target exceedance rate νf ¼ 0.0004 yr�1. The single period CMS are optimal
when one of the periods is equal to the first mode period—this case has a 2% error relative to
the edp estimated from a full reliability analysis—but the resulting error is still less than 5% if
one of the conditioning periods is in the interval from 1.8 s to 2.1 s. Similarly, Figure 8b is a
similar plot for second story force, and shows that a CMS conditioned at the second mode
period is optimal and provides a 1% error relative to the full reliability analysis estimate, but
choosing one of the periods in the range from 0.65 s to 0.75 s leads to an error of 5% or less.

Figure 7. Target spectra associated with the second story force demand.
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Similar calculations were run for a higher failure rate (νf ¼ 0.002 yr�1), equivalent to a
more common ground motion level (1.2 standard deviations above the median Sa at the con-
ditioning period), and the resulting period intervals to maintain less than 5% error were broa-
dened somewhat: 1.7 s to 2.2 s and 0.6 s to 0.9 s for estimation of roof and second-floor
forces, respectively. These calculations are informative for the case of nonlinear response
history analysis, where the choice of optimal periods may not be clear a priori, because
they indicate that there is a relatively large range around the optimal periods that will produce
comparable results when estimating EDPs from conditional mean spectra.

RECOMMENDATIONS

The proposed study has shown the sufficiency of the use of CMS conditioned at modal
periods to accurately evaluate a multimodal EDP demand. In the particular example of story
accelerations, the joint use of first and second mode CMS provided satisfactory estimates of
the true multimodal values. However, in a more general case, one might for instance be
interested in EDPs, which may have significant contributions from even higher modes.
For that reason, we recommend to use multiple single period CMS conditioned at all
modal periods, as this will not require excessive additional effort once the modal analysis
is done. The estimated demand will then be:

EQ-TARGET;temp:intralink-;e27;41;145edpdemand ¼ maxfedpðCMS1Þ; edpðCMS2Þ;…; edpðCMSnÞg (27)

where edpðCMSiÞ is the demand computed using a CMS conditioned at the ith modal period.

Figure 8. Relative reduction in EDP estimation for the example structure using two single period
CMS conditioned on TCond1 and TCond2, with respect to the true value, for a probability of failure
of 2% in 50 years; (a): roof force error; (b): second story force error. The blue diamond represents
the two modal periods.
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Finally, in order to ensure the initial implicit performance goal νðEDP > edpallowableÞ ≤
νf (Equation 3), the explicit design check will consist in checking that the computed
edpdemand in Equation 27 is less than edpallowable (Equation 4).

CONCLUSIONS

Low probability of failure under earthquake loading is the main objective of seismic
design, and is referred to here as the “implicit performance goal.” Since most building
codes judge that a structure is safe if it has an acceptable behavior under an “explicit design
check” performed using a single design spectrum, (which typically approximates a uniform
hazard spectrum at present), the variability of the ground motion shaking is not treated con-
sistently with the goal. This paper has addressed this problem within a structural reliability
framework. Such analysis involves the characterization of the ground motion hazard by a
joint occurrence rate of spectral accelerations at multiple periods, the calculation of demands
associated with all plausible spectral acceleration (Sa) amplitudes, and the computation of a
“design point” indicating the Sa amplitudes most likely to cause failure of the system. This
design point is shown to be a natural fit with a single explicit design check to verify the
structure’s performance.

Unfortunately, exact computation of the design point requires a structural reliability and
vector probabilistic seismic hazard analysis calculations, which negates the benefit of using a
simple design check. This work thus identified that a simpler conditional mean spectrum
(CMS) is a close approximation of the design point, is easily computed, and does not require
any non-standard seismic hazard information. The approximating CMS is the one condi-
tioned upon a spectral period closely correlated with the engineering demand parameter
(EDP) of interest. Because multiple EDPs will in general be correlated with differing spectral
periods, more than one CMS may be needed as response spectra at which to perform design
checks. The explicit design check resulting from this approach consists in checking that the
seismic demands from each CMS are all less than the tolerable level. Examples of the deri-
vation and use of these CMS were shown here in the context of response spectrum analyses,
where the EDP of interest depends on several spectral accelerations at modal periods, and the
influence of multiple-mode contributions on the target spectra was examined. In the example
analysis of a five-story frame, less than a 2% error was observed using these multiple CMS
when estimating specific story forces, while the use of the UHS yielded a 15% overestimation
of the demand. For the particular case of response spectrum method analysis, we thus recom-
mend the use of multiple CMS conditioned at all modal periods, where the conditioning
spectral amplitude of each CMS corresponds to the spectral acceleration value exceeded
with the target demand exceedance rate.

These concepts may also be extended to the more complex case of nonlinear response
history analysis, where there is no explicit equation linking spectral acceleration amplitudes
with EDP levels, and thus no explicit spectral periods to use in computing conditional mean
spectra. However, the concept of using multiple CMS as design spectra, computing EDPs
from time histories matching each spectrum, and checking that responses associated with
each spectrum are tolerable, is still a rational approach and likely a good approximation
of the design point concept. Remaining challenges with application of this approach to
response history analysis are the consideration of record-to-record variability and modeling
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uncertainty, but both of these are tractable using the design point approach and are currently
under further study.
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