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ABSTRACT: This paper presents a procedure for using environmental contours and structural reliability
design points for the purpose of deriving seismic design response spectra for use in structural engineering
design checks. The proposed approach utilizes a vector-valued probabilistic seismic hazard analysis to
characterize the multivariate distribution of spectral accelerations at multiple periods that may be seen at a
given location, and a limit state function to predict failure of the considered system under a given level of
shaking. A reliability assessment is then performed to identify the design point - the response spectrum
with the highest probability of causing structural failure. This is proposed as the spectrum for which
engineering design checks can be performed to evaluate performance of a given structure. While the
full structural reliability analysis would not be performed in any practical application, this analysis does
provide three major insights into appropriate response spectra to use in engineering evaluations. First,
when the structure’s limit state function is dependent on a spectral acceleration at a single period, this
approach produces risk-targeted spectral accelerations consistent with those recently adopted in several
building codes. Second, the design point spectrum can be approximated by a Conditional Mean Spectrum
(conditioned at the spectral period most closely related to the structure’s failure). This motivates recent
proposals to use the Conditional Mean Spectrum for engineering design checks. Third, the design point
spectrum will vary depending upon the structural limit state of interest, meaning that multiple Conditional
Mean Spectra will be needed in practical analysis cases where multiple engineering checks are performed
(though this can be avoided, at the expense of conservatism, by using a uniform risk spectrum). With the
above three observations, this work thus adds theoretical support for several recent advances in seismic
hazard characterization.

This paper develops a procedure for using envi-
ronmental contours and structural reliability design
points to formulate improved design spectra for use
in assessing the performance of buildings under
earthquakes. Most seismic building codes and de-
sign guidelines are based on implicit performance
goals that structures should achieve. Despite the
significant uncertainty in future ground motion oc-
currence, building codes commonly check a struc-
ture’s behavior under a single level of earthquake
loading, quantified with a design spectrum. How-
ever, this explicit design check is often not defined
with respect to the performance goals.

The objective of this paper is to provide the link

between the explicit design check and the implicit
performance goals. Using structural reliability ap-
proaches, with environmental contours of spectral
accelerations at multiple periods, a justification of
the use of multiple conditional mean spectra (CMS)
(Baker, 2011) for design checks is detailed. More
specifically, it is shown that exceedance levels of
particular engineering demand parameters (EDP)
can be estimated with a small number of structural
analyses based on the calibrated CMS.

1. DESCRIPTION OF THE PROBLEM
For a structure located a given site, we intend to es-
timate the value ed p f , the level of EDP exceeded
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with a given annual rate ν f . This is an important
quantity in the context of structural performance
assessments, where we might want structures to
achieve performance goals such as an annual ex-
ceedance rate of a given ed pallowable being less than
ν f . In this case, we would simply need to verify that
ed p f is less than ed pallowable, this inequality being
seen as an explicit design check of the performance
goal. The estimation of ed p f may be achieved by
conducting Probabilistic Seismic Demand Analy-
sis (PSDA) (Shome and Cornell, 1999), which pro-
vides the exceedance rates of all EDP levels based
on a large number of structural analyses at varying
ground motion intensity levels. However, this ap-
proach may require too much computational effort
for the current purpose. Alternatively, we want to
determine one target response spectrum that can be
used in a structural analysis to more directly deter-
mine the value ed p f .

We quantify the ground motion at a given site
with a set of spectral accelerations Sa at vari-
ous periods T1,...,Tn, and denote the vector X =
[Sa(T1), ...,Sa(Tn)]. The EDP of interest corre-
sponds here to an implicit function of X, with ad-
ditional variability corresponding to the structural
response uncertainty given X. Section 2 will first
examine how to quantify the joint distribution of X
and how to use this information to estimate EDP
exceedance levels. While this first approach will
initially assume EDP to be an explicit function of
X, two key simplifications will be introduced in
section 3 to consider the general case of EDP as
an unknown function of X. A brief explanation of
the incorporation of structural response uncertainty
is shown in section 4, and a performance assess-
ment of a tall structure using the calibrated CMS is
described in section 5.

2. ENVIRONMENTAL CONTOURS WITH
VECTOR-VALUED SEISMIC HAZARD

2.1. Quantification of the seismic hazard
When considering a single spectral acceleration
Sa(T ) at period T , accounting for the aggregation
of various possible earthquake scenarios is clas-
sically achieved by conducting Probabilistic Seis-
mic Hazard Analysis (PSHA) (McGuire, 2004).
The main result of such an approach is a hazard

curve, which provides MRESa(T )(x), the mean rate
of Sa(T ) exceeding the value x. Using the MRE, we
may also define a mean rate density (MRD) by dif-
ferentiating the MRE and taking the absolute value.
Either the MRD or the MRE can be used to quan-
tify the rate of occurrence of spectral acceleration
values within a specified interval.

In this paper, we are interested in using the
joint hazard associated with a vector of spectral
accelerations at multiple periods. The joint dis-
tribution of a vector of spectral accelerations X =
[Sa(T1), ...,Sa(Tn)] can be obtained using Vector-
valued PSHA (VPSHA) (Bazzurro and Cornell,
2002). Similar to scalar PSHA, we can character-
ize this joint distribution with a multivariate MRD
of the vector X. For instance, in the case of n =
2 periods, the mean occurrence rate ν(Sa(T1) ∈
[b11,b12],Sa(T2) ∈ [b21,b22]) of events where both
b11 ≤ Sa(T1) ≤ b12 and b21 ≤ Sa(T2) ≤ b22 can be
determined as:

ν(Sa(T1) ∈ [b11,b12],Sa(T2) ∈ [b21,b22])

=
∫ b22

b21

∫ b12

b11

MRDSa(T1),Sa(T2)(x1,x2)dx1dx2 (1)

An exact computation of a multivariate MRD
may not be tractable when considering many spec-
tral acceleration periods (typically, for n ≥ 4), or
when there are many possible earthquake sources.
Therefore, a simpler method has been proposed and
referred to as an indirect approach to VPSHA (Baz-
zurro et al., 2010), where the results from a single
Sa deaggregation (Bazzurro and Cornell, 1999) are
jointly used with a marginal hazard curve in order
to obtain the desired MRD with a reduced computa-
tional effort. For example, a two-period MRD will
be given as:

MRDSa(T1),Sa(T2)(x1,x2)

≈MRDSa(T1)(x1)
∫∫

fSa(T2)|Sa(T1),M,R(x2|x1,m,r)×

fM,R|Sa(T1)(m,r|x1)dmdr (2)

where fM,R|Sa(T1)(m,r|x1) is the joint probability
density function (pdf) of magnitude and distance
given occurrence of Sa(T1) = x1, obtained from
deaggregation, and fSa(T2)|Sa(T1),M,R(x2|x1,m,r) is

2



12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
Vancouver, Canada, July 12-15, 2015

the conditional pdf of Sa(T2) given Sa(T1), m and
r. This pdf can be evaluated using the joint log-
normality of [Sa(T1),Sa(T2)] for a given magnitude
and distance.

It should be noted that this formula is not sym-
metric in Sa(T1) and Sa(T2), unlike the exact com-
putation from the direct approach. In Equation 2,
Sa(T1) is the conditioning variable, while Sa(T2)
is the conditioned variable. This indirect approach
formulation introduces small errors in the marginal
distribution of the conditioned variable, but the
marginal distribution of the conditioning variable is
preserved.

Example of 2-IM MRD calculation
In this section, we show an example of VPSHA
results carried out at a site in Berkeley (latitude:
37.87o, longitude: −122.29o, average shear wave
velocity in the top 30 meters Vs30 = 300 m/s), us-
ing the USGS model for seismic sources (Petersen
et al., 2008) and the Chiou and Youngs (2008)
ground motion prediction equation. Events with
moment magnitudes ranging from 4.5 to 8.5 and
source-to-site distances from 0 to 200 km were con-
sidered. VPSHA code from Barbosa (2011) has
been used to compute the joint mean rate density
of spectral accelerations at periods T1 = 1s and
T2 = 0.3s. Figure 1 shows the contours of the ob-
tained joint MRD with Sa(1s) as the conditioning
variable.

2.2. Incorporation of VPSHA distributions in a
structural reliability framework

Given this hazard information, we now consider
a structural response function of spectral acceler-
ations at periods T1 = 1s and T2 = 0.3s:

EDP =
√

α1Sa(T1)2 +α2Sa(T2)2 (3)

Note that this EDP functional form was previously
used as an example in Loth and Baker (2014). Here,
we retain the values α1 = 0.75 and α2 = 0.25.

For a given ν f , we seek the value of ed p f
(the EDP level exceeded with rate ν f ), using a
calibrated response spectrum, which will here be
characterized by a particular vector value for X,
[Sa∗(T1),Sa∗(T2)], also referred to as the “design

point”. In particular, from a structural reliability
perspective, this design point should correspond to
the most likely realization of X yielding the de-
sired EDP value. Using the joint mean rate density
of [Sa(T1),Sa(T2)] from VPSHA, we can directly
quantify EDP exceedence rates with numerical in-
tegration. More precisely, we define the associated
failure function as:

g(X) = ed p f −
√

α1Sa(T1)2 +α2Sa(T2)2 (4)

with X = [Sa(T1),Sa(T2)]. Note that by definition,
the function g(X) must verify:

ν f =
∫∫

g(X)≤0
MRDSa(T1),Sa(T2)(x1,x2)dx1dx2 (5)

This equation is used to find the value for ed p f ,
with a trial and error approach.

Using the obtained value for ed p f , we can also
compute the failure contour defined as the set of
[Sa(T1),Sa(T2)] values producing g(X) = 0. The
associated design point [Sa∗(T1),Sa∗(T2)], by def-
inition the most likely set of spectral acceleration
values causing “failure”, is the point having the
highest mean rate density on the failure contour:

[Sa∗(T1),Sa∗(T2)]= argmax
g(X)=0

MRDSa(T1),Sa(T2)(x1,x2)

(6)
This solution can be determined using a simple trial
and error approach, by searching all g(X) = 0 val-
ues. This type of optimization problem is a particu-
lar example of environmental contours (Haver and
Winterstein, 2009), which provide reliability-based
demand exceedance levels.

Figure 1 shows the failure function and design
point for the example problem for a ν f value of
0.0004 yr−1 (equivalent to an occurrence probabil-
ity of 2% in 50 years). The shaded region repre-
sents the area where

√
α1Sa(T1)2 +α2Sa(T2)2 >

ed p f . The obtained value for ed p f is 1.691, and the
corresponding design point is [Sa∗(T1),Sa∗(T2)] =
[1.760g,1.464g].

While this approach can be used for any type of
EDP functional form, an analytical equation will
generally not be known in practice (i.e., it will result
from structural analysis software). The next section
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Figure 1: Two-period failure function g(X) and associ-
ated design point [Sa∗(T1), Sa∗(T2)]

will show how to remediate to this issue by a sim-
plification of the failure function. Another simpli-
fication of the joint distribution of X will also be
detailed.

3. PROPOSED SIMPLIFICATIONS
In the previous section, we illustrated how to use
environmental contours with a joint distribution of
spectral accelerations to estimate a seismic demand
level exceeded with a particular annual rate. This
approach is limited to cases where EDP is an ex-
plicit function of X. The first simplification we pro-
pose will allow us to address cases where the EDP
functional form is unknown (only spectral acceler-
ation periods of interest are known). The second
simplification will discuss a simplified model for
the joint spectral acceleration hazard, correspond-
ing to a simplified version of VPSHA that iden-
tifies multiple single event scenarios. The use of
these single event scenarios should provide compa-
rable seismic demands as the ones obtained using
the VPSHA joint spectral acceleration hazard.

3.1. Simplification 1: Single period failure func-
tion

The first simplification we propose is to replace
g with single period failure failure functions gi,
i ∈ {1, ...,n}, which depend only on Sa(Ti). In the
context of the two-period EDP example from Equa-

tion 3, we define:{
g1(X) = x1 f −Sa(T1)
g2(X) = x2 f −Sa(T2)

(7)

where x1 f and x2 f are constants obtained by target-
ing the same rate ν(gi ≤ 0) = ν f for i ∈ {1,2}. The
corresponding design points are denoted:

[Sa∗i (T1),Sa∗i (T2)]= argmax
gi(X)=0

MRDSa(T1),Sa(T2)(x1,x2)

(8)
As detailed in Loth and Baker (2014), we may use
g1 and g2 to approximate the initial failure func-
tion g. We then evaluate seismic demands based on
Equation 3 with the obtained single period design
points:

ed pi =
√

α1Sa∗i (T1)2 +α2Sa∗i (T2)2 (9)

and obtain the following approximation:

ed p f ≈max{ed p1,ed p2} (10)

Figure 2 depicts the single period examples.

Figure 2: Simplification 1: single period failure
functions and associated design points; (a): g1,
[Sa∗1(T1),Sa∗1(T2)]; (b):g2, [Sa∗2(T1),Sa∗2(T2)]

This approximation is critical as the problem can
now be solved with no knowledge of the actual
EDP functional form, by using scalar PSHA. For
instance, g1(X) = 0 corresponds to Sa(T1) = x1 f
where x1 f is the spectral acceleration value ex-
ceeded with rate ν f , obtained with the hazard curve
for Sa(T1) (i.e., x1 f will satisfy MRESa(T1)(x1 f ) =
ν f ). Similarly, using MRESa(T2), g2(X) = 0 can
theoretically be determined as Sa(T2) = x2 f where
MRESa(T2)(x2 f ) = ν f . The point [x1 f ,x2 f ], which
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can be seen as a UHS point associated with the ex-
ceedence rate ν f , is shown in Figure 2. We ob-
serve that while the UHS point lies precisely on
the g1(X) = 0 contour (i.e., Sa∗1(T1) = x1 f , Figure
2a), it is slightly above the g2(X) = 0 contour (i.e.,
Sa∗2(T2) < x2 f , Figure 2b). This error originates
from the fact that in the indirect approach (Equation
2) used here, Sa(T1) is the conditioning variable,
while Sa(T2) is the conditioned variable. Therefore,
the marginal distribution of Sa(T2) is approximate
whereas the marginal distribution of Sa(T1) is pre-
served. It should be noted that these discrepancies
are also due to the binning of the various random
variables (Sa, M, R). The quantification of these
various sources of error has been studied by Baz-
zurro et al. (2010).

3.2. Simplification 2: Single event scenarios
The second simplification complements the first by
considering an approximation of the MRD from
VPSHA with multiple joint lognormal distribu-
tions, corresponding to MRD’s from single event
scenarios.

3.2.1. Objective
While using numerical integration with environ-
mental contours provides fairly accurate results, it
is rather complicated to carry out. Ideally, we
would like to be able to conduct reliability calcu-
lations with an analytical representation of the joint
MRD from VPSHA, such as the approach detailed
in Loth and Baker (2014). A first potential solution
would be to transform the full joint MRD from VP-
SHA to the standard normal space (see Appendix
B.2. in Melchers, 1999). This approach is rather
complex and may generate significant approxima-
tion in the computation of the transformed joint dis-
tribution. However, for the present applications, the
joint distribution is only needed at high amplitude
Sa values associated with structural failures. For
such Sa values, we might be able to fit a joint log-
normal distribution to the VPSHA contours, which
will further simplify the estimation of seismic de-
mands. In this section, we show how to approxi-
mate the joint MRD from VPHSA by multiple sin-
gle event MRD’s.

3.2.2. Single event approximations based on
deaggregation

The proposed fitting approach is based on deaggre-
gation results. First, we obtain the Sa(T1) value
x1 f exceeded with a given rate ν f , and conduct
deaggregation at this exceedance level to obtain the
mean magnitude M1 and distance R1. Let us denote
“event 1” the earthquake scenario with magnitude
M1 and distance R1, associated with a rate of occur-
rence ν1. The value for ν1 is determined such that
the single event distribution associated with event 1
provides the same exceedance rate ν f for x1 f . This
can be achieved by using the integration method de-
scribed in the previous section to the single event
MRD of event 1. This results in fixing ν1 as the ratio
of ν f divided by the probability of Sa(T1) exceed-
ing x1 f given the occurrence of event 1, which can
be computed from the chosen ground motion pre-
diction equation. We obtain M1 = 6.98, R1 = 4 km,
ν1 = 0.0103 yr−1. Similarly, we define “event 2”,
based on the deaggregation results for Sa(T2) at the
amplitude x2 f . Event 2’s characteristics are M2 =
6.64, R2 = 6 km, and ν2 = 0.0389 yr−1. These
events represent an approximation of the full earth-
quake hazard (accounting for all sources) at the site
of interest. Figure 3 shows contours corresponding
to the demand of Equation 3 with the rate of ex-
ceedance ν f = 0.0004 yr−1.

Figure 3: Simplification 2: single event distribution
fitting; (a): event 1; (b): event 2.

3.3. Practical implications of the two simplifica-
tions for seismic demand estimations

Using both simplifications (i.e., the single period
failure functions and the joint hazard from single
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event scenarios), the computation of the seismic de-
mand ed p f is further simplified by choosing the
single period failure function corresponding to the
spectral acceleration at which the single event MRD
is fitted. In practice, this amounts to evaluating
ed p f as the maximum of the seismic demands ob-
tained with multiple CMS conditioned on the UHS
amplitudes xi f . Using multiple CMS as described is
thus implicitly accounting for the underlying joint
spectral acceleration hazard.

In the developed example, ed p1 is thus evaluated
using the MRD from event 1 with the failure func-
tion g1. Equivalently, ed p1 can be obtained using
the CMS conditioned at 1s on x1 f based on event
1’s magnitude and distance. Similarly, ed p2, eval-
uated using the MRD from event 2 with the failure
function g2, can be obtained using the CMS con-
ditioned at 0.3s on x2 f based on event 2’s magni-
tude and distance. Here, we obtain ed p1 = 1.617,
and ed p2 = 1.459. An estimate of ed p f is finally
computed by taking the maximum of the two seis-
mic demands: we get ed p f ≈ 1.617, which is al-
most equal to the value of 1.691 found in section
2.2 using the numerical integration of the full VP-
SHA distribution.

4. INCORPORATION OF STRUCTURAL
RESPONSE UNCERTAINTY

We first discuss a theoretical approach to account
for structural response uncertainty in the previously
described environmental contours. We then show
an adaptation of the calibration of the CMS, condi-
tioned on risk-targeted spectral acceleration ampli-
tudes.

4.1. Theoretical considerations
In order to incorporate the presence of structural re-
sponse uncertainty, the considered EDP will gen-
erally be expressed as a function of a level of re-
sponse spectrum and a structural response uncer-
tainty given that spectrum. EDP|X is now con-
sidered as a lognormal random variable, with fixed
logarithmic standard deviation σ∆. This assumption
is consistent with commonly observed response
history analyses results (for instance, with drift de-
mands (Shome and Cornell, 1999)). Due to this
additional variability, we define a new type of per-

formance goal to estimate ed p f , where we target a
specific level of performance given a fixed response
spectrum, characterized by X = xd:

P(EDP > ed p f |X = xd) = pd (11)

with pd a given probability. Target spectra are
then calibrated by solving Equation 11 for xd , us-
ing the structural reliability techniques presented in
this section. More details of this approach can be
found in Loth (2014).

4.2. Adapted CMS calibration accounting for
structural response uncertainty

Given ν f , pd , and σ∆, the calibration of the CMS
conditioned at Ti will be based on the corresponding
risk-targeted spectral accelerations SaRT(Ti), which
can be obtained by solving Equation 11 assuming
EDP to be a function of only Sa(Ti). Note that
this approach to compute a risk-targeted spectral
acceleration is also suggested in section 21.2.1.2 of
ASCE 7-10 (ASCE/SEI, 2010).

The next section will show an application of the
use of these calibrated CMS to the estimation of
EDP exceedance levels of a high rise structure.

5. EXAMPLE & COMPARISONS
5.1. Considered case study
In this section, we summarize results from realis-
tic performance assessments of a MDOF structure
based on the use of multiple CMS. The obtained re-
sults are validated against PSDA results developed
for the same case study by Lin (2012).

The considered structure is a 20-story reinforced
concrete moment frame designed for the FEMA
P695 project (2009), in which it has the ID 1020.
The structural model accounts for cyclic and in-
cycle strength deterioration as well as stiffness de-
terioration. The building is assumed to be located
at a real site in Palo Alto (latitude: 122.143o W,
longitude: 37.442o N, shear wave velocity: Vs30 =
400 m/s). It should be noted that this structure was
designed for a different site, located in Northern
Los Angeles (Haselton et al., 2010).

We will consider two different EDP’s: the maxi-
mum story drift ratio over all stories (SDR), and the
peak floor acceleration at the 15th story (PFA(15)).
Given ν f = 0.001 yr−1, we estimate sdr f and
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pfa(15)
f as theoretically defined by the demand lev-

els exceeded with rate ν f .

5.2. Approach
The procedure used in this example was proposed
in Loth (2014). For a calibration at pd = 0.5, which
is retained here, it consists in the following steps:
(1) Identify a set of periods T1, ...,Tn relevant to
the EDP of interest; (2) Obtain the hazard curves
for Sa(Ti) at the site, and compute the risk-targeted
SaRT(Ti) at each period Ti, for a chosen value for
pd; (3) Compute the corresponding CMSi condi-
tioned on SaRT(Ti); (4) Select and scale ground mo-
tion records for each CMSi; (5) Conduct response
history analyses, and compute the geometric means
of responses associated with each CMS; (6) Esti-
mate ed p f as the maximum of the geometric means
obtained with each CMS.

5.3. Results

For both SDR and PFA(15), the same set of periods
of interest will be retained: the first three modal
periods T1 = 2.63s, T2 = 0.85s, T3 = 0.46s, and
an elongated period of TL = 6.31s obtained from a
pushover analysis (see Chapter 5 in Loth (2014)).
Three modal periods were selected here because
we expect PFA(15) to have significant high mode
participation. Enough modal periods should gen-
erally be considered to account for sufficient mass
participation (for instance, ASCE/SEI (2010) rec-
ommends 90% for response spectrum method), es-
pecially when considering higher mode dominated
EDP’s. An elongated period was also included to
account for the inelastic effect lengthening the pe-
riod of the structure. The first four rows of Table
1 show the obtained SDR and PFA(15) values for
the four considered CMS. We observe that the story
drift generally appears to be first mode dominated,
as CMS conditioned at T1 leads to the highest de-
mand (sdr f ≈ 1.8%), while the other CMS provide
lower values. In the case of PFA(15), the CMS lead-
ing to the highest responses is the one conditioned
on the third modal period T3 (pfa(15)

f ≈ 0.40g). This
is an expected result, as floor accelerations of high
rise buildings are often driven by higher mode ef-
fects.

Table 1: Summary of the response history analyses re-
sults (SDR and PFA(15)) for the EDP-based assessment
with pd = 0.5.

T [s] SDR[%] PFA(15)[g]
0.45 0.9 0.40

geomean 0.85 1.4 0.34
from CMS at 2.63 1.8 0.26

6.31 1.5 0.25
ed p f 1.8 0.40

5.4. Comparison with PSDA
Lin’s PSDA data provides values for sdr f ranging
from 1.6% to 1.9% 1, which is in good agreement
with our results (1.8%). Similarly, for PFA(15), our
estimate for pfa(15)

f is 0.40g, whereas Lin’s esti-
mates lie between 0.40g and 0.43g. This external
analysis further confirms the accuracy of obtained
values for sdr f and pfa(15)

f , and the adequacy of the
proposed use of multiple CMS.

6. CONCLUSIONS
We have first described the definition and computa-
tion of joint mean rate density of spectral accelera-
tions at multiple periods using vector-valued prob-
abilistic seismic hazard analysis (VPSHA). While
standard PSHA provides occurrence rates of a spec-
tral acceleration at a single period, VPSHA allows
the quantification of seismic demands influenced by
spectral accelerations at multiple periods. A re-
liability assessment, based on environmental con-
tours, of an example structure characterized with
a known EDP function of spectral accelerations at
two distinct periods was shown, using a numerical
integration of the corresponding VPSHA distribu-
tion. We then proposed two key simplifications: (1)
an approximation of the multivariate failure func-
tion with multiple univariate failure functions; (2)
an approximation of the VPSHA distribution with
the use of multiple single event scenarios. The joint
application of these two simplifications is shown
to be equivalent to the use of multiple CMS con-
ditioned at periods of interest for the considered

1Lin obtained slightly different values when integrating
nonlinear response history analysis results using ground mo-
tion records selected from various target spectra.
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structural demand. The incorporation of structural
response uncertainty can be achieved by condition-
ing the CMS on risk-targeted spectral amplitudes.
Results from a performance assessment of a 20-
story building using these CMS are shown.

Future work may consist of analyzing joint
MRD’s from VPSHA corresponding to different
sites with various seismic regimes, along with more
complex structures and EDP’s. This might result in
the need to use a higher number of CMS. However,
recent work (e.g., Carlton and Abrahamson, 2014;
Loth, 2014) seems to indicate that a reduced num-
ber of "broadened" CMS (i.e., CMS with increased
amplitudes over some period range) may be consid-
ered instead, which will reduce the effort involved
with this approach.
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