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SUMMARY

In many parts of the world, earthquakes threaten regional infrastructure systems. For modeling risk using
stochastic earthquake catalogs, random variables include rupture location and the damage state of different
components. Thus, there is an infinite set of possible damage maps that a risk modeler could evaluate
in an event-based probabilistic loss model. Even a finite but large number of damage maps may not be
practical, because many network performance measures are computationally expensive. Here we show a
computationally-efficient method for selecting a subset of damage maps, corresponding ground-motion
intensity maps, and associated occurrence rates that reasonably estimates the full distribution of the ground-
motion intensity and a target performance measure using optimization. The method chooses a subset of
maps and associated annual rates of occurrence that minimizes the error in estimating the distribution of a
network performance measure as well as the marginal distributions of ground-motion intensity exceedance.
The joint distribution of the ground-motion intensity is implicitly included in the objective function of the
optimization problem via the network performance measure. We then show how to tune the optimization
parameters based on consistency checks related to the network performance measure and the ground motion
hazard. We illustrate the proposed method with a case study of the San Francisco Bay Area road network to
estimate the exceedance curve of the average percentage change in morning commute trip time. This work
facilitates expanded and risk-consistent studies of the impacts of infrastructure networks on regional seismic
risk and resiliency. Copyright c© 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Infrastructure systems play a critical role in the ability of a region to recover after an earthquake;
damages can have massive social and economic consequences [1–4]. Researchers conventionally
assess the seismic risk of an infrastructure system using event-based methods: primarily by
modeling the seismic hazard using simulated scenario earthquakes [e.g., 1, 5, 6] or using Monte
Carlo simulation (MCS) of various earthquake events (defined by source and magnitude) as part
of an event-based probabilistic loss estimation model [e.g., 7–12]. With a better understanding of
risk, steps toward risk mitigation can be taken such as insuring against supply chain disruptions or
retrofitting water pipelines or bridges.

Event-based methods are the standard approaches for assessing infrastructure seismic risk
because the link between earthquake ground motions and network performance measures is often
not possible to express in a closed form. Event-based methods involve probabilistically generating
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ground-motion intensity maps considering rupture scenarios that could occur in the region.
Conditioned on the ground-motion intensity, damage is probabilistically sampled at all network
components of interest. Since various random variables including magnitude, rupture location, and
damage states of system components must be sampled, there is an infinite set of possible damage
maps to evaluate. At the same time, computing the earthquake impacts on the infrastructure system,
whose numerical results we will call network performance measures, often requires computationally
expensive calculations. Thus, to make the event-based method computationally feasible, researchers
must choose a reduced set of damage maps and associated ground-motion intensity maps to model.

Previous work on efficient simulation of events draws on statistical techniques. For example,
since the earthquakes of greatest interest tend to be very rare, importance sampling is often used
to minimize the number of events to evaluate by preferentially sampling important events, such as
large magnitude earthquakes [10]. Jayaram and Baker [12] expanded on the importance sampling
of magnitudes to also importance sample within-event residuals and then used K-Means clustering,
a common clustering algorithm, to further reduce the number of ground-motion intensity maps. For
a case study, Han and Davidson [13], however, found higher errors between hazard estimates using
the clustering method and numerical integration results, than between their proposed optimization
method and numerical integration results. In the work by Han and Davidson, the authors combined
an event-based framework with optimization to select ground-motion intensity maps. Most recently,
an optimization-based technique has been proposed to select damage maps, but the work is limited to
a single ground-motion intensity scenario; the optimization formulation does not explicitly consider
consistency with the input distributions of the ground-motion intensity or network performance [14].

Here we show a computationally-efficient method for selecting a subset of damage maps,
corresponding ground-motion intensity maps, and associated occurrence rates using optimization
that reasonably estimates the full distribution of a target performance measure and the ground-
motion intensity. From a set of candidate damage and ground-motion intensity maps and
corresponding realizations of network performance, the optimization problem involves choosing
a reduced set of damage and ground-motion intensity maps and associated annual rates of
occurrence that minimizes the differences between the marginal ground-motion intensity and
network performance loss exceedance curves of this set and an extensively-sampled baseline set
over a range of return periods of interest. The optimization procedure implicitly includes the joint
distribution of the ground-motion intensity via the network performance measure. While the result
of the method is choosing a set of representative damage maps and associated occurrence rates, the
method also selects ground-motion intensity maps, since each damage map necessarily corresponds
to a ground-motion intensity map, and furthermore, consistency with the ground-motion intensity
maps is part of the objective function for choosing the subset.

Conceptually, an event-based framework estimates a loss exceedance curve by the superposition
of each event’s loss exceedance curve (of a rectangular block-like form, because this “curve”
corresponds to only one value and occurrence rate) (top row of Figure 1); the proposed optimization
procedure selects a subset of these “blocks”, which are re-sized because of the new annual
occurrence rates from the optimization, to stack together for a new estimated loss exceedance curve
(bottom row of Figure 1). The line made by the outer edge of blocks from an extensively-sampled
set (top row of Figure 1) corresponds to a dotted line in Figure 3. Similarly, the line made by the
outer edge of the blocks from a chosen subset (bottom row of Figure 1) corresponds to a solid line
in Figure 3.

To enable this optimization-based approach, we introduce two classes of network performance
measures, proxy measures and target measures. The optimization procedure uses a proxy measure,
since proxy measures “serve as indirect measures of a given variable or process and are often used
because of relative ease of measurement or understanding” [15]. In contrast, target performance
measures may be very computationally expensive. We choose a proxy performance measure to
represent the target performance measure by combining “soft” knowledge, such as engineering
experience, and an empirical method. Since the considered proxy network performance measure
depends on the joint distribution of the ground-motion intensity, the proxy measure provides
additional assurance that not only the target performance measure, but also the joint distribution
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Figure 1. Conceptual depiction of loss exceedance curves from an event-based framework for a hypothetical
example. For all subfigures, the X axis is X= Performance measure and the Y axis is the Annual rate of
exceedance, λX>x. The top row corresponds to an extensively-sampled event set including corresponding
ground-motion intensity and damage maps. The bottom row corresponds to a subset of k maps selected with

the proposed optimization-based method, including re-weighting the occurrence rates, wj′ , of each map.

of the ground-motion intensity, will be reasonably estimated. The joint distribution of the ground-
motion intensity refers to the rates of simultaneously exceeding certain ground-motion intensity
measure values at more than one site. Finally, we describe a series of checks, a preliminary version
of which we proposed in [16], to tune the model parameters to produce a final set of damage and
ground-motion intensity maps. We also test that the final set is reasonably representative of an
extensively-sampled baseline set of maps across various dimensions.

To illustrate the proposed method, we assess the seismic risk to the San Francisco Bay Area road
network with an event-based probabilistic loss estimation model. We show that by choosing maps
based on spectral acceleration and a proxy performance measure (percentage of bridges damaged
region-wide) in the objective function, we achieve low error for a more computationally intensive
target performance measure (average percentage change in morning commute travel time).

Although the proposed framework requires formulating the optimization problem for the desired
application and calculating proxy network performance measures for selecting a subset of damage
and ground-motion intensity maps, the time invested in map selection is greatly outweighed by the
expected savings in overall computational time for the risk analysis. The result is a more accurate
and efficient probabilistic infrastructure network risk assessment.

We first discuss the components of the risk framework: ground-motion intensity maps, damage
maps, and network performance measures and risk analysis (Section 2). In Section 3, we
describe a damage and ground-motion intensity map selection problem and present two alternative
optimization-based formulations. We also detail how error is measured. In Section 4, we analyze
map selection results using the proposed framework, as applied to a case study of the San Francisco
Bay Area highway and local road network. Finally, in Sections 5 and 6, we discuss the sensitivity
of the results and possible extensions.

2. RISK FRAMEWORK

We perform an infrastructure network risk assessment in an event-based framework from earthquake
scenarios to the final calculation of the network performance in three stages (e.g., Figure 2). First,
we start with a set of earthquake scenarios based on a seismic source model, and then we generate
ground-motion intensity maps (e.g., Figure 2(a)). Next, we sample realizations of damage maps
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Figure 2. Illustration of the risk framework for one earthquake scenario including: (a) One-second spectral
acceleration (ground-motion intensity) map with earthquake rupture, (b) bridge (component) damage map,

(c) travel time increase (network performance measure) values.

(e.g., Figure 2(b)) and corresponding levels of functionality for the corresponding parts of the
network. Finally, we compute the network performance (e.g., Figure 2(c)). At each stage, multiple
realizations are possible, which will be discussed below. For illustration in Figure 2, we have shown
one realization per stage.

This general risk analysis framework is common in academic literature and in practice [7, 8,
12, 13, 17]. However, the last step, network performance, has varying treatment. For insurance
applications, the loss calculated in the last step is simply the insured loss. This paper extends the
prior work by detailing how to use optimization as part of a full risk framework to select a subset
of maps for computing a target network performance measure and corresponding annual rates of
occurrence. These values enable a risk assessment of network performance losses.

2.1. Ground-motion intensity maps

We now describe how to produce a set of maps with ground-motion intensity realizations at each
location of interest in a region and corresponding occurrence rates that reasonably capture the
joint distribution of the ground-motion intensity. First, we generate Q earthquake scenarios from a
seismic source model. The seismic source model specifies the rates at which earthquakes of specified
magnitudes, locations, and faulting types will occur. This set of earthquake scenarios is comparable
to a stochastic event catalogue in the insurance industry.

Second, for each earthquake scenario in the seismic source model, we use an empirical ground
motion prediction equation (GMPE) to model the resulting intensity at each location of interest [e.g.,
18–21]. The GMPE predicts the mean of the log ground-motion intensity, lnY (Mq, Riq, Vs30,i, . . .)
and ground-motion intensity within- and between-event residual standard deviations, which are
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denoted by σiq and τq respectively, for the ith site where i = 1, . . . , n in the qth earthquake scenario
where q = 1, . . . , Q, Mq is the moment magnitude of the qth scenario, Riq is the closest horizontal
distance from the surface projection of the fault plane to location i, and Vs30,i is the average shear
wave velocity down to 30m at the ith location.

Then, for each of the Q earthquake scenarios, we sample b realizations of the spatially-correlated
ground-motion intensity residual terms. Readers are referred to [13] for a survey of sampling
methods. Once residuals are sampled, the total log ground-motion intensity (Y ) is computed as

lnYij = lnY (Mj , Rij , Vs30,i, . . .) + σijεij + τjηj (1)

where j is the ground-motion intensity map index (j = 1, . . . ,m where m = Q× b), εij is the
normalized within-event residual in lnY representing location-to-location variability and ηj is the
normalized between-event residual in lnY and the other parameters are defined above. Both εij and
ηj are normal random variables with zero mean and unit standard deviation. The vector of εij can be
modeled by a spatially-correlated multivariate normal distribution [e.g., 22] and the ηj by a standard
univariate normal distribution.

The result is a set of m ground-motion intensity maps (e.g., Figure 2(a)). Since we simulate
an equal number (b) of ground-motion intensity maps per earthquake scenario, the annual rate
of occurrence for the jth ground-motion intensity map is the original rate of occurrence of the
earthquake scenario, divided by b. We denote the final result as wj .

2.2. Damage maps

Calculating network performance risk requires assessing the structural response of relevant
structures in the network to future earthquakes. The link between ground-motion intensity and
structural response is often provided by fragility functions. Fragility functions express, for example,
P (DSi ≥ dsς |Yij = y). We assume one component, such as a bridge, per site location, so we will
identify both components and site locations via the index i. Using that notation, DSi is a discrete
random variable whose value represents the damage state for the ith component and ds is a damage
state threshold of interest. The damage state is conditioned on a realization, y, of the random variable
Yij , the ground-motion intensity at the ith site and jth ground-motion intensity map. Researchers
have calibrated fragility functions using historical post-earthquake data [e.g., 23], experimental and
analytical results [e.g., 24], hybrid approaches, and expert opinion. Note that like the ground motion
intensities, the damage states can be sampled from a joint distribution that includes correlation, such
as due to similarities in design or construction practices [e.g., 25, 26].

By sampling a damage state for each component, with probabilities obtained from the fragility
functions given the ground-motion intensity, we produce a damage map (e.g., Figure 2(b)). The
damage map has a realization of the damage state of each relevant component. This sampling
process can be repeated multiple times to simulate multiple damage maps per ground-motion
intensity map. For example, if equal numbers of damage maps are sampled per ground-motion
intensity map (c damage maps per ground-motion intensity map), the weight of the j′th damage
map should be adjusted accordingly to wj′ , where wj′ =

wj

c , and j′ = 1, . . . , J .
Functional percentage relationships link the component damage to the functionality of network

elements. For example, in a road network, when a bridge collapses, the traffic flow capacity of
the road it carries and it crosses can be modeled as reduced to zero. These relationships are often
derived from a combination of observation and expert opinion, often due to data scarcity [27].
Furthermore, the relationships are typically deterministic for a certain component damage state and
restoration time [27]. Thus, in this paper, each damage map corresponds to a functionality state for
every element of the network.

2.3. Network performance measures and risk analysis

The final step for the event-based risk analysis is to evaluate the network performance measure, X .
We consider various network performance measures, each of which is a scalar quantity per damage
map. For road networks, two common performance measures are connectivity [6, 28] and flow
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6 M. MILLER AND J. BAKER

capacity [29]. In order of increasing general computational cost, other measures to capture road
network performance include the percentage of bridges damaged, weighted-shortest path between
locations of interest [1], fixed-demand travel-time [10–13], morning or evening peak commute
time, economic impacts from increased travel time and bridge repairs [10], and mode-destination
accessibility [30]. Fixed-demand travel time delay and its variants have become particularly popular
in current literature (e.g., Figure 2(c)). For power networks, connectivity is also a common network
performance measure [31]. Recently, power network researchers have introduced other measures
such as serviceability ratio [32], power system flow [33], and recovery time of the electrical
network [34]. Researchers have also used connectivity to measure the reliability of water networks
with alternative measures including flow capacity, entropy-based measures, nodal demands, and the
total number of component failures system-wide [5, 35, 36].

Once the chosen performance measure is computed for each damage map, understanding the
exceedance rate of different levels of performance is a common goal. The annual rate, λ, of
exceeding some threshold of network performance is estimated by summing the occurrence rates of
all damage maps in which the performance measure exceeds the threshold:

λX≥x =

J∑
j′=1

wj′I(xj′ ≥ x) (2)

where x is a network performance measure threshold of interest and xj′ is the network performance
realization for the j′th damage map. The variable wj′ is the occurrence rate of the j′th damage map
as introduced above. The indicator function I evaluates to 1 if the argument, xj′ ≥ x, is true, and
0 otherwise. By evaluating λ at different threshold values, we derive an exceedance curve. In the
results below, we will evaluate exceedance curves not only for the performance measure (X), but
also for the ground-motion intensity measure (Y ).

3. SELECTING A SUBSET OF MAPS

3.1. Damage and ground-motion intensity map selection problem

We now aim to choose a set of k damage maps and corresponding ground-motion intensity maps,
each with a corresponding adjusted annual rate of occurrence wj′ , from a set of J candidate
maps that provides a good representation of the earthquake hazard and performance risk. In other
words, we want to approximate the profile of the loss exceedance curves of the ground-motion
shaking intensity and performance measures. We do this by choosing a subset of damage maps
and corresponding ground-motion intensity maps that minimizes the differences between the loss
exceedance curves of an extensively-sampled baseline set and resulting subset over a range of return
periods of interest. This region corresponds to error (shaded in Figure 3). This can be expressed as:

minimize

α‖diag(λ)
−1

(λ−Ψw)‖1 + (1− α)

ν∑
i=1

‖ diag(λ)
−1

(λ−Θiw)‖1 (3a)

subject to
Card(w) ≤ k, (3b)
0 ≤ w, (3c)

with variable w ∈ RJ×1. Here each element of w, wj′ , represents the adjusted annual occurrence
rate for the j′th damage map and corresponding ground-motion intensity map. The Card(w) denotes
the cardinality (number of non-zero elements) of the vector w. The ‖‖1 represent the L1-norm,
which is simply the sum of absolute values of the vector. The vector 0 ∈ RJ×1 is the vector of
zeros. The vector λ is a vector of constants, λ1, . . . , λR; the elements of this vector represent the
annualized exceedance rates, corresponding to R discretized return period values, where the vector
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Figure 3. Relationship of error between the subset and the extensively-sampled baseline set of maps for
(a) the empirical ground-motion intensity exceedance curves, and (b) the empirical performance measure
exceedance curves. The solid line represents an example subset of maps chosen by optimization and the
dotted line represents an extensively-sampled baseline set of maps. The grey-colored regions are related to
the error and show where the curves differ; the optimization objective function minimizes the sum of the

vertical distances between the curves.

element corresponding to the rth return period equals 1
λr

. The matrix diag(λ)
−1 is a matrix with

all zeros except on the diagonals. Also, Ψ ∈ RR×J is a matrix of constants, where for each entry
of the matrix, ψr,j′ = I{xj′ ≥ x̃r}. The constant x̃r is the performance measure at the rth return
period from an extensively-sampled set of damage maps (λr = λX≥x̃r

). Similarly, Θi ∈ RR×J is
a matrix of constants corresponding to the ith site used in the objective function, where for each
entry of the matrix, θi,r,j′ = I{yij′ ≥ ỹir} for i denoting the indices of sites at which the objective
function will be minimized (i = 1, . . . , ν, where ν is less than or equal to n, the total number of
sites of interest). The constant ỹir is the ground-motion intensity value at the rth return period from
an extensively-sampled set of ground-motion intensity maps (i.e., λr = λY≥ỹir ). Furthermore, the
factor α in the objective function controls the contribution from the ground-motion intensity versus
the performance measure.

The objective function (3a) minimizes the gaps between the exceedance rate curves from the
baseline set and from the subset; each site considered in the objective function contributes a ground-
motion intensity exceedance rate curve and the whole system also contributes one performance
measure exceedance rate curve. Multiplying these values by diag(λ)

−1 in the objective function
forces lower errors at larger return periods, typically of greatest engineering interest. The second
term of the objective function (3a), which sums up values related to the ground-motion intensity
over all sites, corresponds to the objective function and definition of the error, as expressed
as a constraint, in [13]. However, our new formulation includes an additional term related to
the relatively computationally-cheap proxy performance measure (first term of (3a)), and the
contribution factor α. It also differs from most recent work in [14], because although the objective
function in that work also contains a contribution factor and two terms, it considers marginal
distributions of bridge damage state and the covariance in the bridge damage between pairs of
bridges. In this work, we instead explore the use of the ground-motion intensity distributions as
one part of the objective function. Moreover, we have also introduced a condensed form of the
objective function and constraints, as compared to the more verbose mixed-boolean form in these
other studies.
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8 M. MILLER AND J. BAKER

The first constraint (3b) specifies that the number of maps in the subset equals k. The second
constraint (3c) limits the value of each wj′ to be non-negative, which is consistent with the physical
interpretation of annual occurrence rates.

Since the objective function and the second constraint are linear functions of the variables and
constants—but there is a constraint on the cardinality of the set—this is an example of a convex
problem with a cardinality constraint, which is nonconvex and NP-hard [37]. One general approach
for solving this type of problem is branch-and-bound methods, which find a global solution to
nonconvex problems by calculating upper and lower bounds on the optimal value for smaller and
smaller parts of the domain of the random variables [38, 39]. They maintain a provable upper
and lower bound on the optimal value. While in the worst case the computational time grows
exponentially with the number of random variables, in practice, the problem can require less
computational effort [40]. The problem can also be solved through heuristics, as we will now
discuss.

3.2. Alternative ground-motion intensity map selection: relaxed problem with convex constraints

To solve this problem more efficiently, we consider a convex relaxation of the map selection problem
by replacing the nonconvex cardinality constraint (3b) with the convex constraints that the sum of
the wj′ is less than or equal to wtot, where the constant wtot is the sum of the original annual
occurrence rates of all J input maps. In other words,

minimize

α‖diag(λ)
−1

(λ−Ψw)‖1 + (1− α)

ν∑
i=1

‖ diag(λ)
−1

(λ−Θiw)‖1 (4a)

subject to
‖w‖1 ≤ wtot, (4b)
0 ≤ w, (4c)

where the parameters and variables are defined above.
This problem is now a convex optimization, because the objective function and the new constraint

on w are linear; it is an example of linear programming. One possible method for solving this basic
linear programming problem is an interior point solver [40, 41]. An optimal value is guaranteed to
exist [40]. Furthermore, the value of the objective function using these relaxed constraints provides
a lower bound on the optimal value of the original formulation (3a) [40]. For testing the quality of
the results, an upper bound on the original formulation (3a) could be found by a feasible solution;
readers are referred to [40, 42] for more details.

However, the solution to this problem is different from the original formulation (3a), because
there could be more than k non-zero values. We adopt the heuristic method from Joshi and Boyd
[43] to use the solution of the relaxed problem to select a subset. The maps with the k largest
weights are selected and then renormalized so that the sum of the k new occurrence rates equals the
cumulative annual rate of the input set of maps, wtot. For example, when k = 25 for the case study
described below, the size of the preliminary set of non-zero weight values is about three times larger
than the final set using the heuristic. Upon implementation, the results are reasonably consistent
with the baseline set and the errors using the original formulation. However, when the cardinality of
the subset is very small, the chosen set of maps and corresponding annual occurrence rates tend to
correspond to high error. We illustrate both trends in Section 4. Readers may also consider replacing
wtot with a generic parameter and adjusting its value to force the number of non-zero wj′ values
to be less than k; the map selection problem here has parallels to the sparse signal reconstruction
problem in Electrical Engineering [37].

3.3. Evaluation of error in the selected subset

We now evaluate the error in the estimation of exceedance rates between the selected subset of
ground-motion intensity maps and the baseline set. A simple approach is to compute the value of
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GROUND-MOTION INTENSITY AND DAMAGE MAP SELECTION USING OPTIMIZATION 9

the relevant term of the objective function of the optimization formulation. Alternatively, Han and
Davidson [13] defined a Mean Hazard Curve Error (MHCE) for the ground-motion intensity as
follows:

MHCE =
1

nR

R∑
r=1

n∑
i=1

∣∣∣∣ ỹir − ˆ̃yir
ỹir

∣∣∣∣ , (5)

where ˆ̃yir is the estimated ground-motion intensity using the selected subset of maps for the rth

return period and ith site and the other variables have been defined above. This equation sums the
normalized differences in the ground-motion intensity estimated from the subset and the baseline
set over sites and return periods (Figure 3(a)).

We extend this error metric to evaluate the error in performance measure exceedance curves
between the subset and the baseline set. This Mean Performance Measure Curve Error (MPMCE)
is defined as

MPMCE =
1

R

R∑
r=1

∣∣∣∣ x̃r − ˆ̃xr
x̃r

∣∣∣∣ , (6)

where ˆ̃xr is the estimated performance measure value using the selected subset of maps for the rth

return period and the other variables have been defined above (Figure 3(b)).

4. CASE STUDY

We illustrate the subset selection method with a case study assessing the seismic risk to the San
Francisco Bay Area highway and local road network, as measured by the change in morning
commute travel time for the 9-county region’s approximately 7 million people [44].

4.1. Dataset and models

4.1.1. Ground-motion intensity map models To generate a stochastic catalog of ground-motion
intensity maps, we use the OpenSHA Event Set Calculator [45]. This software outputs the mean,
lnYij , and standard deviation values,σij and τj , for all locations of interest for a specified seismic
source model and ground motion prediction equation. The intensity measure is the 5%-damped
pseudo absolute spectral acceleration (Sa) at a period 1s, which is the required input to the fragility
functions below. While our results use spectral acceleration, other intensity measures could be used
to characterize the ground motion as long as a corresponding ground motion prediction model and
spatial correlation model are available [e.g., 46]. We use the UCERF2 seismic source model [47],
Wald and Allen topographic slope model for the the shear wave velocity Vs30,i [48], and the Boore
and Atkinson [18] ground motion prediction equation. Using this seismic source model, which is
then discretized into a list of faults and a stratified list of magnitudes and rupture locations for each,
we obtain a set of 2110 earthquake events on active faults, and with annual occurrence rates greater
than or equal to 10−5.

We simulate the baseline set of maps by combining the mean terms from the Event Set Calculator
and spatially-correlated residual terms of the ground-motion intensity (using [22]) according to
the basic ground motion model (1). The baseline set has 5 residual realizations per ground motion
scenario, which results in 10,550 ground-motion intensity maps (e.g., Figure 2(a)). We also generate
two smaller sample sets of candidate ground-motion intensity maps that will be inputs to the
optimization problem: one set with one residual realization per ground motion scenario (2110 maps
total) and another with two residual realizations per ground motion scenario (4220 maps total).
These two sets represent computationally-feasible set sizes for the optimization problem, and also
enable testing the sensitivity of the optimization results to the input set size.

4.1.2. Damage maps We use a portfolio of 1743 highway bridges in the San Francisco Bay
Area, which includes all unique state-managed bridges in current operation on the road network
(illustrated in Figure 2(b)). The bridges were hand-matched to road segments in the case study
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network (major roads illustrated in Figure 2(c)). If a bridge collapses, the road segment it carries, as
well as that which it crosses, are modeled as closed. At the chosen point in time after the earthquake,
the REDARS methodology does not suggest modeling partial closures [27]. We do not include other
types of failures, such as road damage from liquefaction, that may damage the network.

To compute damage to the bridges, we use fragility functions of the following form:

P (DSi ≥ dsς |Yij = y) = Φ

(
ln y − λς,i

ξ

)
, (7)

where Φ is the standard normal cumulative distribution function, λς,i and ξ are respectively the
mean and standard deviation of the lnY value necessary to cause the ςth damage state to occur or
be exceeded, and y is a realization of the random variable Yij , the ground-motion intensity at the ith

site and jth ground-motion intensity map. The other variables are defined above.
The California Department of Transportation (Caltrans) provided the fragility function values λs,i

and ξ used in this study. The values are based on structural characteristics including number of spans
and structure age as detailed in [23].

Per ground-motion intensity map, we compute one damage map (e.g., Figure 2(b)), which has a
realization of the bridge damage state at each bridge location according to the fragility function (7).
The provided fragility functions do not consider correlation of the bridge capacities, but other
models could be used [e.g., 26].

Each bridge damage state maps directly to the traffic capacity on associated road segments. We
represent the road network by a directed graph G = (V,E), where V is a finite set of vertices
representing intersections and the set E, whose elements are edges representing road segments, is a
binary relation on V . Some edges (road segments) are matched to bridges, as described above. This
study considers the Metropolitan Transportation Commission (MTC) Travel Model One (version
0.3) of the San Francisco Bay Area transportation network where (|V |, |E|) = (11921, 32858)
including centroidal road segments and (|V |, |E|) = (9635, 24404) without. Centroidal links refer
to links that do not correspond to particular physical roads, but instead capture more subtle traffic
flows, such as from outside the study area, or the traffic flow to and from some minor local roads.
The model includes both highways and main local roads as well as the relevant trip demand data.
The travel origin-demand matrix for the latest run version, 2010 03 YYY, is from the MTC and is
divided based on population density into 34 super districts covering the 9-county San Francisco Bay
Area.

We use a functional percentage relationship to compute the traffic capacity of relevant road
segments. Based on discussions with Caltrans, we consider travel conditions one week after an
earthquake, since it is a critical period for decision making. For example, one week after most
events, bridges should have been inspected and surface damage should be repaired, but major
reconstruction would not have yet begun. According to our functional percentage relationship, at
this point in time, the bridges have one of two classes of functionality, zero traffic capacity and
full traffic capacity [27]. We can thus summarize the bridge damage using two mutually-exclusive
damage states dsς , dsdamaged and dsfunctional, which correspond to the common HAZUS extensive
or complete damage states and the none, slight, or moderate damage states respectively [27]. Thus,
the functional percentage relationship assigns zero traffic capacity on road segments that have at
least one bridge in the dsdamaged damage state, and full traffic capacity otherwise.

4.1.3. Target network performance measures We select the average change in morning commute
time under fixed travel demands, which is proportional to the commonly-used fixed-demand travel
delay for the same time period, as our target network performance measure. The morning commute
time period is defined as 6am to 10am on weekdays.

We estimate the trip time with the iterative traffic assignment (ITA) method [49], which has been
shown by [50] to be consistent with results from the commonly-used User Equilibrium (UE) method
and to better estimate driver behavior because intuitively it captures drivers’ choices of routes based
on what traffic situation they currently see. We implement ITA according to the recommendations
of [50] where the original demand matrix is divided into four parts, with 40%, 30%, 20%, and
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10% respectively of the total trips. To begin, the first part of the trips are assigned using Dijkstra’s
algorithm to find shortest paths where the non-negative edge weights are the free-flow travel time
(tf ). The resulting link flows (qa) are recorded for each link. Then, we update the travel time (ta) on
each link according to the commonly-used formula,

ta = tf

(
1 + 0.15

(
qa
cf

)4
)
, (8)

where cf is the flow capacity of the link and the other variables are defined above [51]. Thus, travel
time is a quartic function with link flow. Then, using these new free-flow times (ta) as the edge
weights, we use Dijkstra’s algorithm to assign the second part of the trips. We repeat this approach
until we have assigned all four parts of the trips.

We implement ITA in Python by leveraging the Python network analysis module NetworkX [52]
(with some base algorithms in C and FORTRAN). The final result is a target performance measure
and corresponding map (e.g., Figure 2(c)) per ground-motion intensity map.

4.1.4. Proxy network performance measures We now describe the selection of an appropriate proxy
performance measure that is computationally inexpensive yet correlated with the target performance
measure. We could select the performance measure by computing empirical correlation between
the target and each candidate proxy measure for a computationally tractable number of scenarios.
Another complementary strategy is to use other knowledge about the problem dynamics, such as in
this case that the travel time should be related to bridge damage since the only network damage we
are considering is directly related to bridges in a damaged state.

To select a proxy performance metric for the case study, we randomly choose 10 ground-motion
intensity maps and corresponding damage maps. For each damage map, we compute the values
of the following candidate proxy performance measures: percent of bridges damaged, percent
reduction in traffic flow capacity, and weighted-shortest path between locations of interest. Traffic
flow capacity captures the flow of vehicles that could travel on a damaged network between an origin
and destination, and weighted-shortest path refers to using Dijkstra’s algorithm to find shortest paths
on the damaged networks where the edge weights are the free-flow travel time (tf ) between different
superdistrict centroids. For more details, readers are referred to [53]. To illustrate sensitivity to the
initial set of scenarios, we provide the empirical 95th percentile (point-wise) confidence interval by
generating 100 realizations of 10 maps, sorting the empirical correlation values, and displaying the
5th and 95th percentile values (as well as the median) (Figure 4). We find that percent of bridges
damaged is the proxy performance measure that across different quantiles on the confidence interval
is most correlated with the target measure, which is corroborated by our engineering judgement.
While we have provided the confidence interval to show the relative robustness of the method, it
would not be calculated in practice because it is computationally expensive (namely requiring 100
sets of 10 evaluations of the target performance metric). We find that choosing just 10 random
ground-motion intensity values and testing empirical correlation values provides insight into which
proxy performance metric will be representative of the target performance metric. However, given
some variability, particularly below the 50th percentile values, this quantitative test should be
supplemented with engineering judgement as described above.

4.2. Map selection results and checks for consistency

In this section, we select the optimization parameters, describe the resulting final subset of ground
motion and damage maps, and then check the consistency of the results with the ground-motion
intensity and performance measure rates of exceedance.

4.2.1. Final map selection The optimization problem is solved using CVX, a Matlab package
for specifying and solving convex problems [54, 55], with the Gurobi Optimizer [56], for linear
and mixed integer programming. We select maps using both the original nonconvex problem and
the relaxed problem using convex constraints to compare their performance. The optimization
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Percent reduction in flow capacity
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Figure 4. Median (black dots) and empirical 95th percentile point-wise confidence interval of the empirical
correlation coefficient between candidate proxy performance measures and the target performance measure.

Percent of bridges damaged is most highly correlated.

problem (3) is solved using a linear programming-based parallel branch and bound algorithm. The
solver terminates (with an optimal result) when the gap between the lower and upper bounds of the
objective function is less than 0.1% of the upper bound [56] or after 30 million iterations, whichever
occurs first. Thus, in the numerical experiments here, the problem is solved using heuristics based on
convex optimization. The relaxed problem using convex constraints 4 is also solved using CVX with
the Gurobi Optimizer and terminates when an optimal solution is found. Supplementary information
about the final map selection can be found in Appendix D of [53]. Furthermore, to facilitate adoption
of the proposed methodology, Matlab implementations of both optimization-based map-selection
methods are available at http://purl.stanford.edu/wq017yv5965.

Next we set the relevant optimization parameters. In addition to the termination criteria, we
have five main parameters to choose: the relative importance of ground-motion intensity versus
the performance measure (α), the number of return periods (R), the number of sites at which the
objective function will be minimized (ν), the number of candidate damage maps and corresponding
ground-motion intensity maps (J) in general, which equals m for the case study since c = 1, and
the desired number of ground-motion intensity maps in the final subset (k).

We choose k = 25 maps as a near-lower-bound case of the number of maps selected. In Section 5
we will show results where k = 200 maps for comparison with prior work. With a small number of
maps desired in the subset compared to the number of random variables, which is the case when
k = 25, we find that the alternative optimization formulation using convex constraints performs
poorly. Since that method selects the scenarios with the k highest renormalized annual rates, it
excludes rare high intensity events, in practice, when the total number of maps (k) is very small. So,
for the results below, we will use the original formulation (3).

We then determine the α, R, ν, and J values empirically using grid search and computing the
value of an evaluation function for each parameter combination (to ensure like comparisons, the
evaluation function is 0.5 MHCE +0.5 MPMCE(proxy) with 1743 sites and 50 return periods).
Grid search is a standard way of selecting parameters by exhaustively searching through a manually-
specified subset of the parameter space. Note that while it may seem beneficial to use large values for
R, ν, and J , increasing the number of random variables makes convergence more challenging and
can thus potentially increase error. Furthermore, there can be overfitting that causes MPMCE(target)
to increase even as the objective function value decreases.

Via grid search, we determine our final set of parameters: (α,R, ν, J , k)= (0.56, 50, 12, 2110, 25).
The result of the original optimization problem (3) using these parameters is the final output:
25 damage maps, corresponding ground-motion intensity maps, and associated annual occurrence
rates.

We will use this subset as an illustration; other subsets could have been selected with a different
choice of parameter values or convergence criteria. Furthermore, since computational time depends
on the number of random variables, we find that in general, the choice of J should capture, at least,
the basic distribution of earthquake scenarios. The other parameter values can be explored using the
grid search approach above, which we illustrated further in [16]; one should include higher values
in the parameter space (and thus a higher number of random variables), while the computation is
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feasible. Finally, note that the consistency checks below also help with tuning the parameters. This
allows for leveraging any additional user expertise not captured in the optimization formulation.

4.2.2. Consistency checks We perform five checks: four to evaluate how well the chosen set of
ground-motion intensity maps and adjusted annual rates of occurrence represents the full joint
distribution of Sa, and then one to test how well the selected subset and rates represent the baseline
set of exceedance rates of the proxy performance measure.

1. Fault sources A possible pitfall is to primarily include events stemming from a major fault,
such as the San Andreas Fault. In contrast, our subset still contains a range of faults, with no
single fault contributing to more than 50% of the annual rate of occurrence. Furthermore, since
we constrain the ground-motion intensity maps inputted to the optimization to those with an
annual occurrence rate of at least 10−5, we automatically have reasonably active faults in the
final subset.

2. Magnitudes When we investigate the distribution of magnitudes, we see that the subset
underestimates the rates at particularly low magnitudes. This behavior is not surprising
because we have chosen to only match the exceedance curves between rates of 0.01 and 0.004
(return periods of 100 to 2500 years) and the low magnitude events are often more frequent,
thus outside of the target range. However, there is a general good correspondence [16].

3. Marginal distributions of ground-motion intensities After looking at magnitudes, we
compare the ground-motion intensity exceedance curves at individual sites. We compare
results at two sites where the main contributors to the hazard are expected to be different
(Figure 5(c)). The exceedance curves from the subset fit reasonably well with the results
from the baseline set, particularly between the return periods of 100 and 2500 years (e.g.,
Figure 5(a,d)). This qualitative verification is corroborated by our overall error metric MHCE
value (5), which averaged over all sites and 50 return periods is 30.3%. For determining the
size of a randomly-chosen set that, on average, gets the same error, readers can randomly
select different size sets of ground-motion intensity maps and damage maps, normalize the
wj′ , compute the error metrics, and compare [14].

4. Joint distributions of ground-motion intensities The optimization has not explicitly
considered the consistency of multivariate ground motion distributions when selecting the
subset of maps. However, we find that the realizations from the chosen subset and the baseline
set are plausible pairings (Figure 5(b)). This trend even appears for two sites where we might
expect poor results because they have very different contributions to their ground motion
hazard (Hayward Fault and San Andreas Fault, respectively, having major contributions).
Thus, the results suggest that the optimization problem implicitly considers joint ground
motion behavior because of the combination of minimizing error at each location individually
and minimizing error to a region-wide metric that depends on joint bridge damage, and thus
joint ground-motion intensities.

5. Proxy performance measure We see that the exceedance curve of the proxy performance
measure (2) using the selection results described in Section 4.2.1 reasonably fits the
exceedance curve of the baseline set (Figure 6(a)). This result corresponds to the summary
error value of MPMCE(proxy) = 7.1% over 50 return periods and all 1743 locations. We
do see that the subset underestimates the risk at return periods less than 100 years, which is
outside the range of interest for the case study. If these return periods were of interest, then
the return period parameters in the optimization could be adjusted accordingly.

If the results are not as consistent for another application, one might try adjusting the parameters,
for example, decreasing α to increase the contribution of fitting the marginal distributions of
the ground-motion intensities in the objective function (or vice versa for the opposite effect),
or increasing the total number of maps (k) used in the optimization. As the number of random
variables is increased, one may also need to increase the relative gap and/or increase the maximum
number of iterations associated with optimization termination. Thus, by following this step-by-step
procedure and making any necessary adjustments, the modeler can be reasonably confident of the
representativeness of the chosen subset for a seismic risk assessment of an infrastructure network.
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Performance measure MPMCE (%)
Morning commute travel time 2.7
Vehicle-miles traveled 1.8
Shortest paths 5.1

Table I. Mean performance measure curve error (MPMCE) for various target performance measures. All
results use the same subset of maps in the case study optimization result where the parameters are (α, R, ν,

J , k)= (0.56, 50, 12, 2110, 25).

4.2.3. Target performance measure results Although the goal of the proposed selection procedure is
to save computational time by not evaluating the target performance measure for the baseline set, for
illustration, we will now compare results between the selected subset and the baseline set to test our
set result. We find that the selected subset (ground-motion intensity maps, corresponding damage
maps and occurrence rates) produces a reasonable estimate (Figure 6(b)). This corresponds to
MPMCE(target) = 2.7% over 50 return periods. Also, as for the proxy measure, we observe that the
estimate is most accurate within the return periods of interest included in the optimization. It may not
be immediately obvious why MPMCE(target) is lower than MPMCE(proxy). This behavior stems
from the definition of MPMCE that involves a sum of normalized differences in the performance
metric between the exceedance curve from the baseline set compared to the exceedance curve from
the selected subset (Section 3.3). The proxy metric has a larger range of values in the return periods
of interest than the target metric so it comparably fares worse (Figure 6). For example, if we instead
include the target metric in the optimization formulation and test the subset on the proxy metric,
we find that the error on the target metric decreases (since it is included in the optimization and it
inherently has a lower range of values in the return periods of interest) while the error on the proxy
metric increases (since it is not included in the optimization and there is a large range of values in the
range of the return periods of interest). In conclusion, we see that the target performance measure
results have relatively low error, even when the subset of damage maps is chosen only by the proxy
performance measure and ground-motion intensity.

5. DISCUSSION

The case study demonstrates that an event-based approach to seismic risk analysis of a road network
using optimization is feasible. In the following section, we discuss sensitivity to the choice of a target
performance measure and the number of maps, as well as the role of numerically-calculated ground
motions.

5.1. Sensitivity to the choice of target performance measure

We repeated the subset evaluation procedure with various other target performance measures to
demonstrate that the performance of our method is not particularly sensitive to the choice of a target
performance measure. Table I shows the MPMCE(target) values for two alternative measures: (1)
the estimated vehicle-miles traveled based on the previously-described demand data from the MTC
and the ITA method and (2) the weighted shortest path between locations of interest (here: points
near the centroids of each of the 34 MTC superdistricts) according to the algorithm by [1] where
the edge weights for Dijkstra’s shortest path algorithm are the free-flow travel times, which we
also implement in Python using the NetworkX module. The results indicate that the results remain
relatively robust with a change of target performance measure.

5.2. Extension to other target number of maps

We have shown results for k = 25 maps in the case study to test the limits of our approach. A more
common choice of k in recent literature is around 200 maps [12, 13]. As expected, we see a reduction
in the error when k = 200. The MHCE drops from 30.3% to 14.9%, the MPMCE(proxy) from 7.1%
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Figure 5. Ground-motion intensity exceedance curve comparison between the subset of ground-motion
intensity maps where k = 25 and the baseline set: (a) marginal exceedance curve at site B, (b) bivariate
exceedance curve at sites A and B, (c) study map showing locations of sites A and B and major cities, and
(d) marginal exceedance curve at site A. The grey box in panels (a) and (d) mark the range of the return

periods of interest.

to 4.9%, and the MPMCE(target) from 2.7% to 0.9%. Visually we see a closer match of the subset
and baseline loss exceedance curves when k = 200, which corroborates these quantitative error
metrics. These results suggest that it is beneficial to increase k as much as is computationally feasible
for the final application of the chosen subset. However, reasonable results can still be achieved with
a relatively small number of maps.

In addition, when k = 200 maps, the original optimization problem and the alternative with
convex constraints select nearly identical subsets. Furthermore, the alternative finishes in a fraction
of the time (hundredths of a second versus 300 seconds on a 2.8GHz desktop computer using the
final parameters) and the result is guaranteed to be optimal with respect to the associated objective
function and constraints.

5.3. Role of numerically-calculated ground motions

We have considered a simulated set of ground motions using empirical ground motion models. This
framework could easily be adapted for a stochastic catalog of numerically simulated ground-motion
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Figure 6. Comparison of the performance measure exceedance curves between the subset of ground-motion
intensity maps where k = 25 and the baseline set for (a) the proxy performance measure (percentage of
bridges damaged), and (b) the target performance measure (percentage change in morning commute time).

The grey box marks the range of return periods of interest.

intensities such as hybrid-broadband simulations [e.g., 57]. By repeatedly simulating ground-motion
intensities at each location over a large number of rupture scenarios, the above analysis could be
repeated. While creating such a stochastic catalog is potentially computationally expensive, the
results could serve as useful validation of a seismic risk assessment using the empirical ground
motion models, or as an alternative to consider.

6. CONCLUSIONS

We have presented a computationally efficient method for selecting a subset of damage maps,
corresponding ground-motion intensity maps, and associated occurrence rates for a probabilistic
infrastructure network risk assessment using optimization. Through a case study of the San
Francisco Bay Area road network, we have demonstrated how to use the optimization formulation to
select a subset of damage maps (with corresponding ground-motion intensity maps and occurrence
rates) from a larger set of candidate maps. The problem minimizes the error in estimating the
marginal distributions of ground-motion intensity at individual locations as well as the distribution
of a proxy network performance measure (percentage of bridges damaged). The proxy performance
measure implicitly captures the joint distribution of the spectral acceleration in the optimization
objective function. Furthermore, we describe checks of consistency with the ground motion hazard
such as fault distribution and discuss the error in estimating the exceedance curve of the proxy
performance measure and of the target performance measure (percentage change in average morning
commute time). We have shown that the results from the subset are a good estimate of the results
from an extensively-sampled baseline set of maps. For subsets with a very small cardinality, as
used in the example and often desired in practice, the proposed optimization with a nonconvex
constraint performs performs better than the relaxed problem using a heuristic method. Using
the proposed approach, the researcher or decision maker can estimate the exceedance rates of a
target performance measure with a reduced subset of damage maps while still achieving reasonable
accuracy. This is significant, because many performance measures are extremely computationally
expensive to evaluate. Thus, this work can be used to transform a “what-if” scenario approach into
one using an event-based probabilistic loss estimation model for assessing risk efficiently. With
this improved understanding, researchers and policy makers can better mitigate risks and increase
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community resiliency. Additionally, this work aids emergency response planning by identifying a
small, but representative, set of scenarios to consider in planning exercises. Finally, this approach
can potentially be applied to efficiently analyze risk from other natural hazards impacting networks
such as wind or flooding, as well as to other networks such as power or water.
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