
1 INTRODUCTION 

Officials deciding how to mitigate risk to their life-
line networks, whether through maintenance, retro-
fitting, new construction, or other policies, face un-
certainty in network demands as well as capacity. 
Assessing risk for a network is yet more complex 
than that of a single site, because of interactions 
among network components. For example, there is 
no simple closed-form equation that can be eva-
luated to find network performance, such as maxi-
mum flow capacity, even if the ground motion in-
tensities at each location are known. A further 
complication is that the demands due to ground mo-
tions are correlated among a region, and similar 
bridge construction methods or codes can lead to a 
correlation among structural capacities too, as de-
scribed by Lee & Kiremidjian (2007) among others.  

A common choice for assessing network perfor-
mance is Monte Carlo Simulation (MCS), such as 
used by Crowley & Bommer (2006), and Jayaram & 
Baker (2010). However, this method does not direct-
ly determine which components or uncertainties 
have the most impact on the overall failure probabil-
ity, nor the most likely failure scenario.  

This paper proposes the use of the First-Order 
Reliability Method (FORM) to determine probabili-

ties of exceeding certain levels of performance loss 
in a sample San Francisco Bay Area (USA) trans-
portation network. FORM overcomes the limitations 
of MCS described above because it naturally pro-
vides a “design point,” i.e. most probable set of val-
ues of the random variables that causes a failure 
(Der Kiureghian 2005). However, the error in 
FORM increases with the nonlinearity of the prob-
lem and the number of random variables. Further-
more, FORM traditionally uses a closed-form limit 
state expression. The proposed approach overcomes 
some obstacles traditionally prohibiting researchers 
from using FORM for network reliability analyses. 

 First, the network is focused to 38 main links in 
the SF Bay Area. Second, careful mathematics ena-
ble the demand and capacity uncertainty to be cap-
tured by only two random variables per location, 
which is less than that required by some other analy-
sis approaches. The selected random variables are a) 
the natural logarithm of the spectral intensity de-
mand, ln aS , and b) a parameter that captures the 
combined effect of uncertainty in both the damage 
state and the flow capacity for a given demand, εT

. 
These two variables enable the calculation of traffic 
flow across each link. Using only the random va-
riables ln aS  and εT , total maximum network flow 
capacity can be estimated. The formulation pre-
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scribing joint distributions of ground motion intensities when computing lifeline network reliability. This pro-
posed approach provides probability distributions of network flow capacity given an earthquake, and also 
quantifies the importance of each lifeline component, which would allow system administrators to identify the 
most critical links in their lifeline systems and prioritize network upgrades. The example results indicate that 
neglecting the correlation of the ground motions can result in gross overestimation or underestimation of the 
probability of achieving a given system flow. 



sented is also carefully selected to create a smooth 
limit state function, which is critical for the gradient-
based algorithm used by FORM to find the design 
point. Third, the analysis captures the complex net-
work performance by linking to an external subrou-
tine that efficiently calculates the network flow at 
each iteration, while finding the design point. This 
subroutine takes the place of an explicit limit state 
function.  

In addition, this paper presents a multivariate 
seismic intensity model, which is crucial because 
FORM traditionally requires that the random va-
riables can be completely parameterized by a stan-
dard probability distribution. The seismic intensity 
in this paper is modeled as: 

ln( ) ln( ) σ ε τ η
ij ija a ij ij j jS S    (1) 

where Saij
is the spectral acceleration at a period of 

1s at site i during earthquake j, Saij
is the median 

predicted spectral acceleration that is a function of 
period, magnitude, distance, shear wave velocity, 
and other local conditions, and the other terms com-
prise residual terms as described by Jayaram & Bak-
er (2009). 

While researchers such as Jayaram & Baker 
(2008) have shown close matching of the residual 
terms to a normal distribution, the term ln aS , in 
contrast, is a nonlinear function of many variables, 
including magnitude and distance to the fault. There 
is no clear reason why the composite ln aS

 
values 

will follow any particular distribution, however re-
sults below indicate that a normal distribution pre-
dicts the log spectral intensity values well. The fol-
lowing sections describe how a 38-dimensional 
probability model can then be created to describe the 
joint distribution of ground shaking intensity at each 
component location. This result, combined with the 
previously described methods, allows for a risk as-
sessment of this sample network under a probabilis-
tic scenario of future earthquakes.  

2 DESCRIPTION OF MULTIVARIATE SEISMIC 
INTENSITY MODEL 

2.1 Simulation of ground motion fields 

Simulations of aS (1s) at all locations of interest 
were obtained using the following MCS procedure 
(Jayaram & Baker 2010). First, simulations of earth-
quakes of varying magnitudes on the active faults in 
the region are produced using appropriate magni-
tude–recurrence relationships (the Gutenberg–
Richter relationship and the characteristic earth-
quake model). The Boore & Atkinson (2008) 
ground-motion model is then used to obtain the 
ground-motion intensity medians and variances at 
the sites of interest for each of the simulated earth-
quakes. Finally, realizations of ground motion inten-

sities are obtained by combining the median intensi-
ties with values of inter-event residuals and spatial-
ly-correlated intra-event residuals from MCS. The 
spatial correlation is computed using the model pro-
posed by Jayaram & Baker (2009). The result is a 
set of tens of thousands of simulated ground motion 
fields that aim to capture all uncertainty in earth-
quake occurrence, size and resulting ground motion 
intensity. Because high intensities are generally 
more interesting than low intensities, the simulations 
were produced using importance sampling, so each 
realization has a weight that reflects the difference 
between the target and sampling distributions. The 
simulations are not directly usable for FORM analy-
sis but can be used to calibrate the needed multiva-
riate probability distribution, as described in the fol-
lowing section. 

2.2 Creation of multivariate seismic intensity model 

The model creation is broken into three parts: 1) se-
lecting a candidate distribution, 2) fitting the distri-
bution using the method of moments, and 3) testing 
the distribution with other candidate distributions in 
order to pick a final model. 

2.2.1 Distribution selection and fitting 
Candidate distributions for aS  at a given site in-
clude the Gumbel extreme value distribution, the 
exponential distribution, and the lognormal distribu-
tion. The sample mean and variance are calculated 
from 14,750 Monte Carlo simulations, for the pur-
poses of estimating distribution parameters. This 
calculation requires incorporating the importance 
sampling weight assigned to each simulation. For 
example, the mean is estimated as follows:  

14,750 14,750

ln
1 1

μ ln
a iS i a i

i i

w S w
 

   
    
   
   (2) 

where lnμ aS = mean of the natural logarithm of spec-
tral acceleration intensity; iw  = importance sam-
pling weight of the simulation i; and ln

iaS = natural 
logarithm of spectral acceleration intensity of simu-
lation i. 

The results indicate that the exponential distribu-
tion is a poor fit to both the empirical CDF and PDF 
curves. In contrast, the Gumbel distribution and the 
normal distribution visually match the empirical 
CDF and PDF plots. 

The Kolmogorov-Smirnov test (KS-test) is consi-
dered to provide an appropriate metric to determine 
which of two candidate distribution CDF curves had 
the least difference from the empirical CDF (Boes et 
al. 1974). The results indicate some sudden jumps in 
the empirical CDF at low ln aS

 
due to some large 

importance sampling weights for low intensity high 
frequency events. After smoothing to reduce the im-
pact of this artifact, the KS Statistic for one dimen-



sion suggests the normal distribution is the best can-
didate distribution for ln aS  values. 

2.2.2 Correlation coefficients 
Correlation between ln aS  values at each pair of 
bridge locations is computed using a sample correla-
tion coefficient that accounts for the importance 
sampling weights. Since the marginal distributions 
appear to be normally distributed, we make the mi-
nor assumption that the ln aS  values are multiva-
riate normal, and thus correlation coefficients are 
sufficient to completely describe the joint distribu-
tion. 

2.2.3 Results of distribution fitting 
The fitted distributions are tested to examine how 
closely the chosen bivariate joint distributions fit the 
empirical results.  
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Figure 1. Simulated lnSa1 vs. lnSa2 data (in dots), with shading 
indicating importance sampling weights. The contours of the 
Kernel estimate PDF are shown in thin lines, and contours of 
the estimated bivariate normal distribution are shown in thick 
lines. 
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Figure 2. Cumulative distribution function contours of the dis-
tributions shown in Figure 1. Kernel estimated contours are in 
thin lines and Normal distribution contours are in thick lines. 

 

Figure 1 shows ln aS
 
values at two different lo-

cations, i.e. 1ln aS  vs. 2ln aS , for individual earth-
quakes (one circle per simulation). The color gra-
dient indicates the importance sampling weight of 
each realization, which is important to consider 
when visualizing the data. The contour lines further 
help visualize the empirical results. As Figure 1 
shows, the candidate distribution relatively accurate-
ly defines the empirical results, including skew and 
correlation (tightness of the simulation results band). 
Figure 2 shows the close matching of the bivariate 
Normal CDF curves with the empirical ones. 

3 NETWORK CHARACTERISTICS 

3.1 Network description 

This paper uses an aggregated transportation net-
work of the San Francisco Bay Area (USA). The da-
ta is from Stergiou & Kiremidjian (2006) and in-
cludes network topology, bridge flow capacities, and 
the classification of each bridge into one of 28 HA-
ZUS bridge types (based on abutment type, number 
of spans, etc.). This paper analyzes flow between 
San Jose and Oakland, CA, indicated by asterisks in 
Figure 3. 

3.2 Network clustering 

Although the total Metropolitan Transportation 
Commission network contains 30,000+ links and 
10,000+ nodes, this study uses an aggregated net-
work topology with 38 total road segments, or links, 
each with bidirectsional flow. While FORM can in-
corporate more than 100 random variables in the au-
thors’ experience, which is more than some other 
analytical methods, all 30,000 links would be too 
many random variables for a viable FORM analysis.  

 
Figure 3. Aggregated SF Bay Area (USA) transportation net-
work map used for the analysis. 



The aggregated network topology, as shown in 
Figure 3, follows precedent (e.g., Wakabayashi and 
Kameda 1992), but includes extra links that capture 
the redundancy in the major North-South highways.  

There are 1,036 bridges in the detailed network, 
and each of the 38 simplified links contains numer-
ous bridges. This study uses one bridge per link to 
represent all the bridges on the link and thus reduce 
the complexity of the FORM analysis. The selection 
procedure is as follows: 

1. Determine bridges on each link 
2. Use the bridge classification and HAZUS data 

to find the bridge with the lowest mean capac-
ity 

3. In case of ties, choose the bridge with the 
highest mean demand from the model of 
ground motion intensities 

This procedure defines the network used for the 
study. Improving the analysis granularity by increas-
ing the number of links would lead to better estima-
tion of significant links, however the results are not 
sensitive to randomly choosing a different bridge 
along a given link when using the same link topolo-
gy. 

4 FORM-BASED ANALYSIS 

Performance metrics for transportation networks can 
be divided into three broad categories: travel delay 
cost, maximum flow capacity and connectivity 
(Chang 2010). In particular, maximum flow capacity 
is defined as the largest feasible flow between a pair 
of nodes, i.e. the source and sink. It is a function of 
network topology and capacity of each link, as de-
scribed by Ahuja et al. (1993). Maximum flow ca-
pacity is typically considered as the essential metric 
in evaluating the system serviceability when the 
damage state is specifically determined (Fenves & 
Law 1979). Thus, researchers, such as Lee et al. 
(2011), commonly use maximum flow capacity 
when evaluating the capacity of a transportation 
network in an evacuation scenario. Typically, max-
imum flow capacity is defined in the unit of vehicles 
per hour, i.e. veh/hr. 
 The main goal of the FORM-based analysis in this 
study is to compute the probability that maximum 
flow capacity between two cities in the San 
Francisco Bay Area is less than a certain threshold 
level. Thus, the problem formulation can be 
expressed as ( )a bP T t   where a bT   is the 
maximum flow capacity between cities a and b. For 
FORM analysis of a transportation network, the 
processes are divided into those at the component 
(link) and network levels. The random variables 
should capture uncertainties in both. 

4.1 Component Analysis: bridge traffic flow and 
random variables 

Traffic flow capacity at bridges is influenced by 
many factors including ground motion intensities, 
bridge capacities and the relationship between flow 
reduction and damage states. These values have in-
herent uncertainties that impact traffic flow capacity 
in bridges and consequently, the overall network 
performance. Thus, the flow capacity at each bridge 
should be formulated with random variables that 
capture the uncertainties. These random variables 
and their link to calculating traffic flow capacity will 
now be explained. 

In this paper, the uncertainties in the seismic de-
mand and capacity of bridges are considered at each 
bridge location. The uncertain spectral acceleration 
intensity, Sa, can be used as one class of random va-
riables in FORM. 

Next, the random variable for uncertainty in the 
seismic capacity of the structure should be deter-
mined. A first idea might be to assign a random va-
riable to each damage state for the bridges. However 
this formulation poses two hurdles for analysis using 
FORM. First, with a random variable for each dam-
age state for each bridge, the calculation error in 
FORM will increase as the number of random va-
riables increases because FORM is a method of li-
near approximation. Second, FORM typically im-
plements a gradient-based constraint optimization 
such as Hasofer-Lind Rackwitz-Fiessler (HL-RF) 
algorithm. However, gradient-based optimization 
fails if the failure surface exhibits characteristics of 
step functions due to discrete damage states. Thus, 
this analysis develops a method to minimize the 
number of random variables and make the gradient-
based FORM feasible while still capturing the un-
certainty in the bridge capacity.  
 The fragility of bridges is defined as the 
conditional probability of being in or exceeding a 
particular damage state, ,ids  given the spectral 
acceleration Sa : 

,ln ln
(exceeds | )

β
i

i

a a ds
i a a

ds

s S
P ds S s

 
    

  
 (3) 

where, ,a dsS  is the median value of spectral accele-
ration at which the bridge reaches the threshold of 
the damage state, ids ; and β

ids  
is the logarithmic 

standard deviation of the spectral acceleration of the 
damage state.  

HAZUS tabulates the reduced traffic flow capaci-
ty in bridges according to damage states and elapsed 
days. This analysis uses the results with a 3 day-long 
restoration period, i.e. functional flow capacities of 
100%, 100%, 60%, 5% and 2% for the damage 
states none ( 1ds ), slight ( 2ds ), moderate ( 3ds ), ex-
tensive ( 4ds ) and complete ( 5ds ) respectively (HA-
ZUS 2008).  



 
Figure 4. A representative bridge fragility curve and the cor-
responding definitions of the damage states. 

 
The probability of each damage state is computed 

by use of the fragilities as shown in Figure 4. Given 
the five damage state and flow capacity definitions 
by HAZUS, conditional mean flow capacity |μ

aT S , 
and conditional variance 2

|σ
aT S  given a aS s  is 

obtained as 

|
1

μ ( ) ( | )
ds

a

n

T S a i i a a
i

s T P ds S s
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     (5) 

where iT  is the flow capacity in the damage state 
ids . The traffic capacity T  can be expressed as a 

function of two random variables aS  and 
ε ~ (0,σ )T TN , assuming the normality of T given 

a aS s , as detailed in Eq. (6).  

|
|

σ ( )
μ ( ) ε

σ
a

a

T S a
T S a T

T

S
T S    (6) 

where σT  
is the maximum value of the conditional 

standard deviation function |σ ( )
aT S as . Note that the 

mean and variance of T given a aS s  in Eq. (6) 
match the conditional mean and variance obtained 
by Eq. (4) and Eq. (5). For the particular example in 
this study, the conditional variance function in Eq. 
(5) was fitted by a simple function of the conditional 
mean as follows for a convenient implementation: 

2
| | |σ ( ) α μ ( ) 1 μ ( )

a a aT S a T S a T S as s s       (7) 

where α  is the scaling constant identified during 
the fitting process.  

It is important to note that the bridge traffic ca-
pacity T is capped between 0 and 100%, which is the 
domain that is physically feasible. This capping does 
not affect the FORM process given a reasonable 
starting point, since FORM iterates towards the de-
sign point that is within the physically feasible do-
main. However, MCS is affected by the extreme re-

gions, in which the high variance in this example 
would cause values below 0 and above 100% with-
out capping. 

The approach outlined above describes the uncer-
tainty in the traffic capacity propagated from the un-
certainty in the seismic capacity (or damage state) 
by use of one random variable ε ~ (0,σ )T TN  for 
each bridge. Note that this paper does not consider 
the uncertainty in the functional traffic flow capacity 
for a known damage state and instead uses the de-
terministic values detailed in HAZUS (2002). 

In summary, Sa and εT  capture the traffic flow 
capacity T at each bridge in the network given the 
previously described modeling assumptions. 

4.2 Network Analysis: FORM as implemented in 
FERUM 

FORM analysis in this study is run through the Fi-
nite Element Reliability Using Matlab (FERUM) 
program within the MATLAB® shell (Der Kiureg-
hian et al. 2006). Instead of explicitly defining the 
evaluation function, FERUM is modified to call an 
external algorithm to calculate the maximum flow 
capacity for a given set of values of the random va-
riables. Specifically, a MATLAB® version of Boost 
Graph Library is used (Gleich 2008).  

The modified FERUM calculates not only the 
loss exceedance probabilities for the network as a 
whole, but also other measures to support decision-
making such as importance measures for each ran-
dom variable and sensitivity values for distribution 
and limit state parameters. 

5 RESULTS AND DISCUSSION 

This section presents computed probabilities of net-
work flow given a seismic event, and illustrates the 
importance of characterizing correlations in ground 
shaking intensities at multiple locations across a 
network.  

5.1 Lifeline risk assessment results 

The analysis results, as displayed in Figure 5, show 
that in almost all cases the network will be at or very 
near full capacity, which is 7,600 veh/hr in this ex-
ample. This is because the model includes a full dis-
tribution of future earthquakes, and most earth-
quakes cause very low intensity Sa values.  

The number of FORM iterations before conver-
gence varies depending on the starting point, but for 
the starting point used in this analysis, the average 
number of iterations is around 5. The total time av-
erages about 6 seconds using a personal computer 
with a 2.2 GHz processor and 2GB SDRAM.  



 
 
Figure 5. P(loss>x | earthquake) where x is the loss of maxi-
mum network flow between the start and end nodes. 

 
Verification of the analysis results with MCS is 

necessary for multiple reasons, including concerns 
that FORM might find a local minimum instead of 
the true design point. Figure 5 shows the similarity 
of the MCS and FORM results. One potential source 
of discrepancy is the problem formulation, where 
flow capacity is capped between 0% and 100%. 
However, due to high variance, it is possible for a 
value to be above 100%. This case is not reached in 
these FORM iterations since FORM narrows in on 
the design point and does not explore the extreme 
domains. MCS, by contrast, likely does sample from 
extremes where this capping occurs. The formula-
tion is a subject of continuing study, and it is hoped 
that the issue will be eliminated or confirmed to not 
affect computed results. The second reason, which 
likely has the largest impact, is that FORM implies 
the linearization of the limit state surface at the de-
sign point. The analysis shows that the surface has 
significant nonlinearity. The impact of nonlinearity 
will be thoroughly investigated in the future research 
by using the Second Order Reliability Method 
(SORM). 

The MCS results took much longer than FORM 
to converge, particularly for rare events. For exam-
ple, the MCS results for a 60% loss in flow (t=3,000 
veh/hr) were obtained in about 120 seconds. 

5.2 Network flow at different design points 

FORM, in contrast to MCS, naturally provides the 
design point, i.e. the most likely failure case, in ad-
dition to the probability of being in the failure do-
main. Figure 6 shows link flows associated with de-
sign points for two levels of network disruption, and 
indicate that the design points correspond to reduced 
link flows near the end node.  

 
 
Figure 6. Most probable flows at the design point are indicated 
by the thickness of the line for each link for a) 74% loss of 
maximum network flow, i.e. t=2,000 veh/hr, and b) 21% loss 
of maximum network flow, i.e. t=6,000 veh/hr. 
 

As will be shown in the next section, the links 
with the reduced flow capacity are similar to the 
ones with the highest importance factors. Further-
more, as might be expected, the design point for 
lower loss of network flow shows fewer links expe-
riencing reductions in flow capacity. 

5.3 Impact of correlations 

To determine the impact of a more accurate descrip-
tion of the high-dimensional probability distribu-
tions, the analysis is repeated for the case where 
marginal distributions of ln aS  at each location are 
unmodified, but correlations between all pairs of 
ln aS  are assumed to be zero. Figure 7 shows the 
dramatic difference in the computed network per-

(a) 

(b) 



formance if correlation in ground motion intensities 
is neglected. Disregarding correlation is not a “con-
servative” approximation, which might be preferred 
by officials determining if a network meets a certain 
maximum level of acceptable risk. The rate of ex-
ceeding a given flow disruption, particularly for 
large disruptions, diverges dramatically. 

The difference is not unexpected since the ground 
motion intensities contain both “primary” correla-
tion from the common-source effects in ln aS  and 
“secondary” correlation from the residual terms. As 
Park et al. (2007) found for residual correlations on-
ly, ignoring total correlation leads to overestimating 
the probability of exceedance at low loss levels and 
underestimating the probability at higher ones. 

 
 
Figure 7. P(loss>x | earthquake) where x is the relative to the 
case with more network flow loss of maximum network flow 
between the start and end nodes.  

5.4 Sensitivity and importance factors 

In addition to the most probable flows, FORM, in 
contrast to MCS, enables calculating sensitivity and 
importance factors. For example, the gamma impor-
tance factor vector (see Der Kiureghian 2005) quan-
tifies relative contribution of each random variable 
to the variability of the limit-state function with sta-
tistical dependence between random variables fully 
considered. In this example, the gamma vector helps 
highlight the bridges that most significantly impact 
the probability of being in the failure domain. As 
shown in Figure 8, random variables associated with 
four links near to the end node have relative high 
importance factors. At t=2,000 veh/hr, for example, 
these seismic demands at 4 links have importance 
factors between 0.32 and 0.66 while the next highest 
value is negligible. The factors for εT  are between 
0.32 and 0.15 for the four links discussed above 
and near 0 for other links. By comparing importance 
factor results for various node pairs, a similar analy-
sis could highlight bridges most significant for flow 
capacity levels in this SF Bay Area network regard-
less of origin and destination. 

  

 
 
Figure 8. The dotted links correspond to those with highest im-
portance vector values, at 74% loss of maximum network flow. 

6 CONCLUDING REMARKS 

6.1 Future work 

This study focuses exclusively on bridge damage 
due to ground shaking, and does not consider reduc-
tion in flow due to other damage, such as landslides 
or displacements across fault crossings. This is par-
tially to reduce the numerical complexity for FORM 
analysis, and partially because the results are in-
tended to illustrate the potential of this approach ra-
ther than provide an exact answer. The aggregated 
network also eliminates many damage mechanisms, 
and obscures the effect of drivers using local roads 
to detour around damaged stretches of highway. Fur-
ther analysis could incorporate a multi-scale ap-
proach to more accurately capture the effects of 
highway failures and rerouting onto local roads. The 
model could also be further improved by paramete-
rizing the effect of correlation of the structural ca-
pacity of the bridges, and research is currently in 
progress on this topic. Finally, further research will 
explore flow behavior under scenarios that include 
the simultaneous loading from many origin and des-
tination pairs. 

6.2 Summary 

The seismic intensity model developed in this paper 
results from an analysis of thousands of simulated 
earthquakes in the San Francisco Bay Area generat-
ed by MCS as described by Jayaram & Baker 
(2010). The Monte Carlo data are particularly well 
suited for this study because of the relative dearth of 
recordings of high-intensity earthquakes as well as 
the complexity of analytically characterizing ground 



motions across a whole region. These simulations 
are used to study joint distributions of spectral acce-
lerations at pairs of locations in the region. Analytic 
probability distributions are fit to the simulations, 
which allow for use of the data in closed-form relia-
bility methods.  
 The First Order Reliability Method transforms 
points to normal space to iterate to the most likely 
set of values of the random variables that would 
cause failure, which in this paper is loss of function-
al flow exceeding a minimum percentage loss. The 
probability of failure is computed from this “design 
point”. Since FORM requires a linearization of the 
limit state, error tends to increase with increasing 
random variables, which is why this paper uses 38 
links to represent the transportation network. Anoth-
er limitation is that the demand, capacity, and per-
formance metric must all be expressed analytically. 
This paper presents a methodology to express each 
in closed form, given various modeling assumptions 
including lognormal distributions and the 
ε ~ (0,σ )T TN  flow formulation. While MCS, in 
contrast, is less restrictive in the form of modeling 
parameters, it does not provide importance factors 
and design points as efficiently as FORM does. 

This paper provides an example calculation of 
maximum traffic flow capacity between select pairs 
of cities in the San Francisco Bay Area to estimate 
the effect of correlated hazards on the seismic relia-
bility of an infrastructure network and to demon-
strate the benefits and limitations of FORM for net-
work reliability analyses. A maximum flow capacity 
algorithm is integrated into the analysis to predict 
probability distributions of traffic flow capacity giv-
en an earthquake. The design point in FORM allows 
for identifying important uncertainties and network 
components. This information helps support the de-
cision of officials determining if and where to im-
prove their lifeline networks. 
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