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Abstract

Climate change is expected to increase the frequency and severity of many natural hazards.
In particular, coastal communities are often exposed to multiple hazards, exacerbated by
climate change. We present a methodology to quantify the increase in multi-hazard risk
due to climate change. The methodology includes a probabilistic description of independent
hazard pathways, defined as sets of individual and cascading hazards that are statistically
independent, run for multiple levels of climate change impact. We also quantify the risk
reduction from adaptation actions. The approach integrates probabilistic hazard analysis
and loss assessment. With this approach, we identify the hazards contributing most to risk
under multiple amounts of climate change. This methodology is applied to a case study
of residential housing in Alameda, California, USA, considering how sea level rise impacts
multiple hazards: earthquakes, coastal flooding, and tsunamis. For the case study location,
we identify that the highest annualized risk shifts from earthquakes to coastal flooding as
sea levels rise. We assess how different adaptation actions would reduce the risk today and
under sea level rise, highlighting the need to consider frequent and infrequent losses.

1 Introduction

Coastal communities are already seeing the impacts of climate change. As sea levels and
temperatures rise, so do the frequency and intensity of coastal hazards. Many individual
hazards are intensifying, including flooding (Hadipour et al., 2020; Buchanan et al., 2016),
hurricanes (Mousavi et al., 2011; Shepard et al., 2012), tsunamis (Alhamid et al., 2022;
Dura et al., 2021; Li et al., 2018; Sepúlveda et al., 2021), coastal erosion (Leatherman et al.,
2000; Gornitz, 1991), rising and emergent groundwater (Befus et al., 2020; Bosserelle et al.,
2022), and resulting increases in liquefaction induced by earthquakes (Grant et al., 2021).
This body of work serves to understand how the intensity of hazards are anticipated to
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increase in the coming decades.

Risk analysis is a useful tool to quantify how coastal communities will be affected by
increases in natural hazards. According to the IPCC, risk is the “potential for adverse
consequences for human or ecological systems” (Reisinger et al., 2023). In a risk analysis
context, risk is the combination of a hazard, the event that can cause damage; the exposure,
or the assets that may incur damage; and the vulnerability, or the likelihood and extent of
damage that may be incurred. While definitions of risk have varied in previous literature,
this work uses the IPCC definition of risk throughout.

Risk analyses are often based on probabilistic analyses of individual hazards (e.g.
Hadipour et al., 2020). This framework allows for incorporating underlying uncertainty
and utilizing event sets that contain an array of possible hazard scenarios. Beginning with
probabilistic seismic hazard analysis (e.g. Cornell, 1968), this method has been adapted
to many hazards, such as probabilistic tsunami hazard analysis (e.g. Park et al., 2018).
Flooding typically uses generalized extreme value and peaks over thresholds, though there
are many ways to make flood hazard maps, including physical or empirical modeling (e.g.
Morrison and Smith, 2002). These analyses are a useful basis of risk analysis, but often
neglect interactions and underestimate the risk to an area that faces more than one hazard.

In the context of a community, multi-hazard risk is the total risk to an asset of inter-
est from any hazard. Property owners, residents, and local governments are affected by loss
of property, lives, and functioning regardless of the cause. While much work has gone into
the qualitative classification of multi-hazard interactions, sparse quantitative studies do not
cover the full hazard space (Gill and Malamud, 2014; Opabola, 2024). Some frameworks
focus on cascading hazards alone, such as earthquake triggering tsunami, earthquake trig-
gering landslide, or flood triggering landslide (e.g. Sanderson et al., 2022; Dunant et al.,
2025; Kwag et al., 2019; Zhang and Zhang, 2017). Many current frameworks work toward
hazard coincidence modeling, though these are mostly limited to hypothetical or idealized
studies (Opabola, 2024; Iannacone et al., 2024; Schlumberger et al., 2024; De Angeli et al.,
2022; Otárola et al., 2024), or limited to a specific hazard coincidence scenario (e.g. Ming
et al., 2015). These studies tend to be limited to two interacting hazards, due in part to com-
putational limitations (Selva, 2013). Some studies consider spatial overlap of single-hazard
risk, termed multilayer single hazard by Gill and Malamud (2014). These studies are often
semi-qualitative, with risk indices (Kappes et al., 2012), and on an aggregate scale, whether
regional, national, or global (e.g. Boruff et al., 2005; Lung et al., 2013; Forzieri et al., 2016;
Skilodimou et al., 2019; Ballesteros and Esteves, 2021). Most similar to the present study,
Bell and Glade (2012) calculate multi-hazard risk in terms of loss of life from three haz-
ards which are assumed to be independent; while quantitative in nature, the framework is
not readily transferable to include cascading events or formalized for application in different
multi-hazard environments.

Efforts to include future climate conditions in hazard risk have focused on a single hazard
(Laurien et al., 2022), especially hazards most impacted by changing climate, such as tem-
perature, wind, rain, and flood (e.g. Vlachogiannis et al., 2022; Smits et al., 2024; Alhamid
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et al., 2022). However, as hazards are still commonly studied in isolation, direct comparisons
between risk in present and future climate are not available. Kafi et al. (2024) highlight a
need for more risk prediction and mitigation studies focusing on the category of weather and
climate extreme events. The gap remains for a probabilistic, multi-hazard risk assessment
that quantifies climate risk as the change in multi-hazard risk under climate change.

Multi-hazard frameworks also serve to inform adaptation actions. There are many
potential trade-offs between actions for different hazards, such as raised houses for flood
protection being more vulnerable to ground shaking in an earthquake (Goldwyn et al.,
2021). Few past works have considered interactions of hazards and vulnerability (Kappes
et al., 2012), many of which are necessary to include overlapping or coincident hazards in
risk analysis and adaptation action assessment. Past studies have considered adaptation and
protection costs, including retreat, seawall, and beach nourishment (Leatherman, 2001).
Another study on small island developing states considers hard protection, nature-based
solutions, retreat, and early warning (Martyr-Koller et al., 2021). The Coastal Impact and
Adaptation Model finds that retreat is more effective than protection for the majority of
global coastlines, with a large benefit of adaptation overall, and determines the populated
locations where protection is preferable to retreat (Diaz, 2016). Updated models and data
show that while the majority of coastlines should be retreated, the majority of population
(80%) is located on coastlines that have a higher cost-benefit from the protection strategy,
though this is noted to be sensitive to a change in the retreat cost parameter (Depsky et al.,
2023). All of these studies are at large scales, and relatively qualitative in their recommen-
dations, with broad categories of risk and limited quantitative assessment. The question
remains on a local level of how to consider the cost and trade-offs of different adaptation
actions, especially considering multiple hazards.

Sea level rise (SLR) risk has also been quantified from an economic perspective. Litera-
ture on SLR impacts is largely focused on coastal flooding or inundation without considering
storm events (e.g. Al-Mutairi et al., 2021). The economic loss studies have considered land
loss (Anthoff et al., 2010), depreciated land value (Diaz, 2016), land use (Prime et al.,
2015), indirect costs through impact on industries and GDP (Turner et al., 1995; Bosello
et al., 2012), and social vulnerability or people affected (Bosello et al., 2012; Felsenstein and
Lichter, 2014; Martyr-Koller et al., 2021). These studies are mostly on a country or global
scale (Darwin and Tol, 2001; Leatherman, 2001; Anthoff et al., 2010; Diaz, 2016). While
these studies are useful for large-scale economics, they do not translate down to household-
or individual-level impacts.

Multiple hazards can combine in various ways, physically and probabilistically, and
those relationships have been defined in many ways in the literature (e.g. Liu et al., 2016;
Tilloy et al., 2019; Zscheischler et al., 2020). In this work, a multi-hazard analysis refers to a
workflow that probabilistically combines multiple individual hazards in an area. Cascading
events are secondary hazards caused by an initial triggering event. Each cascading event,
such as earthquake-induced liquefaction, has a probability of occurrence conditioned on the
triggering event occurring.
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This paper addresses the highlighted gaps of asset-level multi-hazard risk analysis on a
community scale. We include multiple probabilistic hazards under climate change through a
risk analysis framework. This framework is general and can be applied to multiple climate
change measures and multiple downstream impacts on humans and the built environment.
We quantify climate risk as the increase in natural hazard risk between present-day and
future climate conditions. The framework can be used to identify the largest sources of risk
today and in future climates. We apply this framework to a case study of Alameda, CA,
USA to quantify sea level rise risk. Alameda is subjected to earthquake, coastal flooding,
and tsunami hazards. We find that Alameda’s primary risk is shifting from earthquake to
coastal flooding. Finally, we compare adaptation actions by their reduction in risk, showing
trade-offs between frequent and rare losses.

2 Methodology

Fig. 1 presents a general methodological overview. First, choose a location for study and
identify assets of interest that will be assessed, such as roadways, critical infrastructure,
buildings, or human life. Next, identify hazards that are relevant for both the location and
assets of interest. Some combinations of hazard and asset are not necessary to consider. For
example, heatwaves may be important for human health impacts or agriculture, but would
not damage buildings. Thus, the hazards chosen are informed by both the area of interest
and the assets of interest.

Fig. 1 Overview of the methodology for multi-hazard risk assessment under climate change. The three large
stacked panes denote multiple hazard pathways, ellipses denote intermediate metrics within each hazard
pathway, the arrow shape denotes a function within each hazard pathway, and rectangles denote multi-hazard
attributes. Numbers indicate section numbers where aspects of the methodology are discussed in more detail.
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Once we identify relevant hazards, we separate them into independent hazard pathways.
Independent hazard pathways are statistically independent combinations of hazards (with
associated cascading events), containing a probabilistic characterization of each hazard. We
define independent hazard pathways to synthesize qualitative multi-hazard works that con-
nect hazards through triggering and changing probabilities of additional hazards (e.g. Gill
and Malamud, 2014). In this framework, one hazard may be represented in multiple path-
ways. For example, a location may have near-field and far-field tsunami hazards from different
faults. The near-field tsunami would be represented as a cascading hazard from an earth-
quake, all in one independent hazard pathway. However, the far-field tsunami, generated
from seismic hazard not captured within the area of interest, would be its own independent
hazard pathway causing inundation alone.

For the next step shown in Fig. 1, hazard and risk analyses are performed in parallel for
each independent hazard pathway. This analysis includes the simulation of relevant infor-
mation about hazard, exposure, vulnerability, and risk. Hazard intensity and attributes of
the exposure feed into the vulnerability function, which returns a consequence. The hazard
rate and consequence together inform the risk. The interactions between hazard, exposure,
and vulnerability parameters highlight the need to select these data in concert. The rela-
tionships within an independent hazard pathway may be more complex depending on the
specific hazards included in that pathway and the number of cascading events.

The risk metrics from each of the independent hazard pathways are combined to quantify
the output multi-hazard risk. The entire simulation process is repeated for future climate
change amounts. As represented in Fig. 1, the climate change impact affects the hazard
portion of the analysis and outputs the climate risk from the multi-hazard risk metric. In
addition, the whole process is repeated under adaptation actions, which can affect haz-
ard, exposure, and/or vulnerability. The adaptation analysis quantifies potential adaptation
savings from the multi-hazard risk.

This methodology is generalizable to other hazards, exposed assets, and climate risk met-
rics. For example, any hazards that affect an area can be separated into independent hazard
pathways. Following the qualitative framework of Gill and Malamud (2014), cascading haz-
ards can be classified probabilistically following a primary event, in a chain of many hazards,
at times. Using this framework, the secondary hazard will have an increased probability from
its baseline. Hazards such as landslides may be repeated in multiple independent hazard
pathways such as flood or earthquake, which are independent triggers. In addition, multi-
ple types of assets can be considered. Residential buildings have a simple relationship on a
community scale, while networks such as roadways or power systems have a more complex
total consequence than a summation of component damage costs. Given the relevant vulner-
ability data, an output risk metric can be defined for any exposed assets of interest. Finally,
changes in hazards can be driven by factors beyond sea level rise, such as concentrations
of greenhouse gases, or changes in ocean or land temperature. The climate change metric
will depend largely on the availability of hazard models under these changes, and the conse-
quences of interest. For example, if human health impacts of wildfire smoke are of interest,
temperature and other atmospheric metrics can be used to quantify the changing hazard.
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2.1 Hazard

The hazard data are regional-scale probabilistic hazard scenarios. These scenarios cover the
region of interest and have associated rates and intensities. The hazard includes an inten-
sity measure, IM , and occurrence rate, λ. One pathway may consist of multiple intensity
measures related to multiple phenomena or multiple features of the hazard. In addition,
multiple IMs may be used to describe the hazard, either a single hazard or including cas-
cading effects.

Initially, a baseline analysis is run for present-day conditions. Then, the whole analysis is
re-run under multiple future climate conditions. Future climate conditions will be reflected
by changes in the hazard model. If hazard models are available under these future climate
conditions, they can be applied directly. If models for future climate conditions are not
available for some hazards, some assumption needs to be made about the change in that
hazard. For example, for liquefaction hazard, the change due to sea level rise comes from a
change in the depth to groundwater.

2.2 Exposure

The exposure data contains information about the assets of interest. These assets may be a
part of the built environment or population, such as houses, roadways, agriculture, or people.
Each asset has a location and attributes. The attributes are informed by the specific asset as
well as by the vulnerability relationships that are available, as discussed in the next section.
Some examples of necessary attributes may be the dollar value, the number of stories in
a building, the length of a roadway, or demographic information about people. Necessary
exposure attributes depend on the asset of interest, expected impacts from the natural
hazards, and vulnerability function. For example, for flooding, the presence of a basement
may be important, whereas for wildfire, the exterior cladding material may be more relevant.

The exposure data is ideally available at the asset level. However, attributes can be
approximated from larger-scale aggregated data. This method will produce accurate results
aggregated at the level of initial data, but is not precise at the asset level. One example is to
approximate the structural types of buildings from Hazus tables (FEMA, 2002), or to infer
resident demographic characteristics from neighborhood or city-level data.

2.3 Vulnerability

The vulnerability data characterize the susceptibility of assets to damage or another output
consequence metric of interest, when subjected to hazard scenarios. This step typically uti-
lizes a vulnerability function that inputs hazard intensity and outputs a consequence metric.
This consequence metric is often damage, but can be many other metrics. The vulnerability
function is defined as

C = fi,k(IM) (1)

where the consequence metric, C, is a function of the hazard intensity measure, IM . The
function depends on attributes of the asset, k. Each hazard pathway, i, has a different
vulnerability function as they are measured by a different IM and may cause different
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amounts of impact. Thus, the vulnerability specification requires information for each of the
hazards and assets considered in the analysis. In cases where cascading hazards exist, the
vulnerability functions should account for collective impacts from all hazards. This may be a
complex function that accounts for a vector of IMs from the primary and cascading hazards.

2.4 Risk analysis

Risk analysis determines the potential consequences of hazards on humans and the built
environment. The average annual value of the consequence metric, AAC, for a given hazard
pathway, i, at a specific asset, k, is defined as

AACi,k =

nscen,i∑
j=1

Ci,j,k · λi,j (2)

where j is the scenario from 1 to the total number of scenarios, nscen,i, for a given haz-
ard pathway, i. The consequence, C, of interest is defined for a specific hazard pathway, i,
scenario, j, and asset, k. The occurrence rate for each pathway and scenario is λi,j.

One limitation of the current framework is that coincidence of events from independent
hazard pathways is ignored. In combination with work that focuses on hazard coincidence,
this framework could be applied to consider event occurrence over time and capture the
frequency of coincidence. At present, neglecting coincidence of rare events is not expected
to contribute largely to total risk; however, as events become more frequent under climate
change, this limitation will have a larger impact.

At a community level, the consequence metric will be a function of individual asset Ck.
For some assets, the community C will be a summation of asset Ck, however, for other
interconnected systems, this function will be more complex. For example, damage to power
infrastructure may be measured by damages at the individual asset level, but the downstream
community metric of access to power will depend on the specific system function.

Community-level Ci,j is a function of the asset-level consequence metric, f({Ci,j,k | k ∈
nasset}) where {·} indicates the set of values for every asset in the inventory, nasset. [·] is the
indicator function, equal to 1 if true and 0 if false. Thus, the summation over all scenarios
will include the rate of each event that produces a Ci,j exceeding the threshold, C. This value
is summed over all hazards, nhazard, and all scenarios, nscen,i. Additionally, at the community
level, the average annual consequence metric is defined as

AACtotal =

nhazard∑
i=1

nscen,i∑
j=1

Ci,j · λi,j (3)

where total indicates that all hazards are included. The AACi can also be calculated for
each independent hazard pathway, i, so that the portion of AAC attributed to each hazard
pathway can be calculated as

AACnorm,i =
AACi

AACtotal

(4)

where the normalized value can be calculated for the entire community. Using the same

formulation at the asset level,
AACi,k

AACtotal,i,k

, gives the normalized contribution to annualized
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risk from each individual hazard at an asset level, AACnorm,i,k. This risk metric indicates the
portion of risk attributed to each hazard on the community and individual building level,
which can be used to guide intervention policies.

To calculate climate change risk, the analysis is re-run under future climate conditions,
either for amounts of SLR or global mean temperature increase. Then, the change in hazard
risk between the present-day baseline and the future climate condition is attributable to that
aspect of climate change. Thus, the annualized climate change risk metric is defined as

∆AACx = AACx − AAC0 (5)

where x is a particular measure of climate change impact, for example, degrees of warming or
meters of SLR, and AAC0 is the present-day average annual consequence metric. ∆ signifies
the change, so ∆AACx is the change in the average annual consequence metric at x amount
of climate change impact.

An exceedance curve can be constructed with the annual rates of exceedance, λc, for
given values of the consequence metric, c, at the community level. This rate is calculated as

λc =

nhazard∑
i=1

nscen,i∑
j=1

[Ci,j > c] · λi,j (6)

where c is the threshold consequence metric value, and Ci,j is the value for a given hazard
pathway, i and scenario, j, at the community level.

2.5 Adaptation actions

The final step in this workflow is to determine the efficacy of adaptation actions to reduce
natural hazard and climate risk. For this analysis, the first step is to identify potential
adaptations to reduce risk. These actions can reduce any aspect of the risk: hazard, exposure,
or vulnerability. For example, ground water level hazards could be reduced by pumping
groundwater. Exposure could be reduced by raising buildings so that they are not as easily
reached by flooding. Vulnerability could be reduced by retrofitting buildings so that they are
stronger and less likely to be damaged by earthquake ground shaking.

The efficacy of adaptation actions is quantified via the reduction in annualized risk, which
is the savings due to the adaptation at a given level of climate change impact, x, defined as

∆AACx,adapt = AACtotal,x − AACtotal,x,adapt (7)

where the AACtotal,x is the average annual consequence metric value for the entire asset
portfolio at a given level of climate change impact, and AACtotal,x,adapt is the same measure
under an adaptation action.

The consequence threshold defined in Eqn. 6 can be defined as a function of exceedance
rate, λ:

c(λ) = min{c | λc ≤ λ}. (8)

where c(λ) is the consequence value with an exceedance rate, λc, equal to or just below the
exceedance rate of interest, λ.
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The savings from an adaptation action can be quantified as the reduction in c(λ) using
the following equation,

∆c(λ) = cx(λ)− cx,adapt(λ) (9)

where ∆ indicates the change, cx(λ) is the consequence value at climate change impact, x,
and cx,adapt(λ) is the corresponding consequence under the same climate impact under some
adaptation action, adapt.

3 Case study

The case study of Alameda, CA, is set up as outlined in Section 2. Alameda is a low-lying and
largely residential island with a population of 75,000 (Fig. 2). It is prone to coastal flooding,
located near several active faults, and known to be susceptible to tsunami inundation from
far-field sources. Additionally, the artificial fill soil, indicated in the lighter portion of Fig.
2, is highly susceptible to liquefaction during ground shaking. The climate impact we assess
is sea level rise (SLR). While Alameda is exposed to pluvial (rainfall-induced) flooding, it
is not a concern at present-day (City of Alameda, 2019) and climate projections have low
agreement for precipitation in the San Francisco Bay region and show no clear trend of
increasing rainfall with SLR (U.S. Geological Survey). Thus, we neglect pluvial flooding in
this study, focusing on the risk from SLR specifically.

Fig. 2 Site map of Alameda, CA. Contours indicate smoothed 3m intervals of elevation from a mean sea
level datum. Color represents the geologic deposit, whether artificial fill or dune sand. The soil deposit map
is based on Witter et al. (2006).
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Following through Fig. 1 to define case-study-specific details, the asset of interest here is
residential housing. The three independent hazard pathways are earthquake, coastal flooding,
and tsunami. Table 1 provides details for each element of the data and simulation. The
details are provided for each of the independent hazard pathways. While coastal flooding
and tsunami have the same intensity measure, water depth, they have different vulnerability
functions that relate depth to damage. The exposure data necessary for each hazard also
varies; while all hazards need the location of buildings, earthquake utilizes the structural
type and year of construction and the water hazards require the number of stories. The
climate risk that we quantify is SLR risk, repeating analysis for 0.25 m intervals from 0 - 1.5
m SLR. The considered adaptation actions include managed retreat, raising buildings, and
seismic retrofit.

Table 1 Elements of each independent hazard pathway in the case study. Citations give the
sources of data or equations. Adaptation actions lists which actions affect each independent
hazard pathway.

Earthquake Coastal flooding Tsunami

Intensity
Measure

Peak ground acceleration
(pga), liquefaction
potential index (LPI)

Water depth (d) Water depth (d)

Exposure
Location, construction
year, structural type

Location, number
of stories, first
floor elevation

Location, number
of stories, first
floor elevation

Vulnerability
function

FEMA (2020);
Geyin and Maurer (2020)

Wing et al. (2020) Suppasri et al. (2013)

Climate change
impact

Depth to groundwater
(Barnard et al., 2019)

Water depth
(Vandever et al., 2017)

Water depth, see
Supplementary
Information

Adaptation
actions

Retrofit, managed retreat
Raising houses,
managed retreat

Raising houses,
managed retreat

Table 2 maps consequence metrics from the Methodology to those specific to the case
study. In general, the consequence of interest is loss ratio, LR, a unitless metric for the
portion of building replacement value, BRV that is damaged. Loss is defined as the product
of LR and BRV for each building. The community loss is the sum of losses over all residential
buildings. The community loss metric does not consider indirect losses or any nonlinear
effects of large total losses. Loss is measured in dollar values [USD]. The case study specific
metrics will be used for the remainder of the paper.

3.1 Hazard

The earthquake hazard consists of two components: ground shaking and cascading ground
failure, or liquefaction. Ground shaking intensity is measured in peak ground acceleration,
pga, and simulated with the python package pypsha (Sharma, 2023). Earthquake occurrence
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Table 2 Definitions of case-study-specific vulnerability and risk metrics related to each
general vulnerability and risk metric as defined in the Methodology.

General Methodology Case Study
Metric Definition Metric Definition
C Consequence metric (Eqn. 1) LR Loss ratio

AACi,k
Average annual
consequence (Eqn. 2)

AALRi,k Average annual loss ratio

AACtotal
Average annual
consequence (Eqn. 3)

AALtotal Average annual loss [USD]

AACnorm,i
Portion of AAC from
hazard i (Eqn. 4)

AALnorm,i
Portion of AAL from
hazard i

∆AACx
Annualized climate change
risk (Eqn. 5)

∆AALx
Annualized sea level rise
risk [USD]

λc
Annual rate of consequence
exceedance (Eqn. 6)

λl
Annual rate of loss
exceedance [yr−1]

∆AACx,adapt
Adaptation reduction in
AAC (Eqn. 7)

∆AALx,adapt
Adaptation savings of
AAL [USD]

c(λ)
Consequence metric for a
given exceedance rate (Eqn. 8)

l(λ)
Loss value for a
given exceedance rate [USD]

∆cx,adapt(λ)
Risk reduction due to
adaptation (Eqn. 9)

∆lx,adapt(λ)
Savings due to
adaptation [USD]

rates are from the Uniform California Earthquake Rupture Forecast, Version 2 (Field et al.,
2003). Three equally weighted ground motion models are considered (Abrahamson et al.,
2014; Boore et al., 2014; Chiou and Youngs, 2014), and ground motion spatial correlations
are included (Baker and Jayaram, 2008). This process outputs pga across the study area for
2423 simulated earthquake ruptures.

We use the liquefaction potential index (LPI) to quantify ground failure potential
(Iwasaki et al., 1978). LPI is calculated from empirical equations that are functions of soil
properties, ground shaking, and depth to groundwater. Two equally weighted equations are
considered (Moss et al., 2006; Boulanger and Idriss, 2014). The soil properties depend on
inputs from cone penetration tests (CPT), which have been performed across Alameda (U.S.
Geological Survey, 2002). The ground shaking is characterized by magnitude and pga, uti-
lizing the 2423 simulations of ground shaking. Depth to groundwater is obtained from the
Coastal Storm Modeling System for groundwater levels under sea level rise (Barnard et al.,
2019). Using these inputs, LPI is calculated at every CPT location. Artificial fill is expected
to exhibit higher liquefaction potential than neighboring, older dune sand (Holzer et al.,
2006). CPTs located in dune sand are separated from those in artificial fill based on USGS
maps (Witter et al., 2006). Regional analysis is performed on a two-dimensional plane to
interpolate LPI values at unknown locations. The regional aspect is performed with sequen-
tial Gaussian simulations, characterizing semi-variance versus separation distance with a
variogram, treating points within each geologic deposit separately (Fenwick et al., 2014;
Mongold and Baker, 2024). The variogram, which defines the spatial correlation structure,
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is calculated for each deposit type and each simulation, and values are filled in across the
study area based on that variogram. Each simulation produces a different map of LPI across
the area. The regional liquefaction hazard simulation is adapted from Mongold and Baker
(2024), with some adjustments for computational efficiency. Further details are published in
a code repository (See Data availability).

Coastal flooding hazard is adopted from the Adapting to Rising Tides maps (Vandever
et al., 2017). Adapting to Rising Tides utilizes a combination of hydrodynamic modeling data
and topographic data to determine the flood extents (Vandever et al., 2017). By utilizing
these maps, we reconstruct flood hazard curves for Alameda, filling in return periods that
are missing for each level of SLR. We find that water depth versus return period (RP)
is approximately log-linear, and interpolate using that relationship to obtain water depth
values at each location for each missing SLR-RP combination. For depths below known
measurements, we fill values of zero to avoid overestimation of risk.

Tsunami hazard is obtained from tsunami hazard maps (State of California, 2023). These
probabilistic maps represent return periods of 100, 200, 475, 975, 2475, and 3000 years. These
maps include the water depth, which is utilized as the sole parameter to describe the tsunami
hazard. Since these maps only represent present-day sea level, we assume a linear increase
in water depths with SLR. This is likely an underestimation, as the increase in tsunami
depths with SLR will be nonlinear due to wave propagation effects, but past studies have
made the same assumption (e.g. Li et al., 2018; Alhamid et al., 2022). Further details on
coastal flooding and tsunami hazard modeling under SLR are provided in the Supplementary
Information.

3.2 Exposure

The assets of interest are residential buildings in Alameda. Building locations, assessed build-
ing values, number of stories, and date of construction, are obtained from the Alameda
County Tax Assessor database (Alameda County Assessor’s Office, 2021). There is spatial
homogeneity of construction year and number of stories of buildings within the city, so miss-
ing data are filled in with nearest-neighbor interpolation of nearby buildings. The age of
the building is necessary to identify the code level for earthquake ground shaking damage
(FEMA, 2020). The number of stories is used within coastal flooding and tsunami vulnerabil-
ity functions. These exposure data are supplemented with data from the National Structures
Inventory which provides first-floor elevations, utilized to determine water depth from the
first-floor height (U.S. Army Corps of Engineers, 2024). To align with available vulnerabil-
ity functions, we limit the inventory to single-family and small construction, at most three
stories and four units.

Structural types must also be specified to apply vulnerability functions. Based on national
data, probabilities of structural type based on construction year are used to sample these
missing data (FEMA, 2002).

We consider a static building stock based on available present-day information, even for
the future sea-level-rise analyses.
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3.3 Vulnerability

To calculate losses due to ground shaking, Hazus fragility curves are used to sample damage
state, DS, of each building given pga. DS is then converted to loss ratio, LR, the repair
cost as a fraction of building value (FEMA, 2020). Losses from liquefaction are also calcu-
lated using a vulnerability function that relates LPI to LR (Geyin et al., 2020). Since the
liquefaction vulnerability function accounts for total loss, from ground shaking and ground
failure, the final loss ratio is taken as the maximum of the shaking and liquefaction values.

Flood vulnerability curves developed by Wing et al. (2020) are utilized to obtain loss ratio
due to coastal flooding. These curves provide probabilities of different levels of damage, and
are sampled for each building and flood scenario to get one simulation of loss. We generate
100 samples of damage for each flood scenario. For the rates of exceeding loss amounts, the
flood occurrence rates are divided by the number of samples taken, so that the summation
remains the same.

Tsunami vulnerability functions are from Suppasri et al. (2013). These are determined
to be the best fit for the case study area as they are calibrated from mostly wood-frame
buildings, which make up the majority of buildings in Alameda, and are separated by building
height, a known variable for our building stock. Damage states are mapped to loss ratios
based on analogous damage state definitions in Goda and De Risi (2017).

Loss is calculated as the LR times the assessed building value for each building. For all
hazards, total community loss is the sum of losses to each individual asset. This formula-
tion applies because residential building loss is not a system, but rather a sum of parts.
Loss exceedance curves are calculated for each individual hazard as well as for all hazards
combined using Eqn. 6. Further details on the vulnerability functions are discussed in the
Supplementary Information.

3.4 Risk analysis

The first output that can be considered from the analysis is the building-level present-day
average annual loss ratio (AALR0), calculated with Eqn. 2, shown in Fig. 3. The AALR
has contributions from all three considered hazards, and highlights the buildings with the
highest relative risk. At present, building-level AALR0,k in Alameda range from 0.02-0.045.
The largest values are in high-hazard areas on artificial fill soil and low elevations.

The second output is the regional-scale multi-hazard loss, shown under SLR. Fig. 4(a)
shows the loss exceedance curves, calculated using Eqn. 6, under present-day and 0.75 m
SLR. These results show that the largest impact from SLR comes at regional losses below
1 billion USD. It should be noted that much of this contribution is from frequent coastal
flooding events. Without additional adaptation actions, the frequent (including daily high-
tide) flooding would cause much of this residential infrastructure to incur repeated damage.

Fig. 4(b) shows how community AAL rises with SLR. AAL, calculated using Eqn. 3, is
the area underneath the curves in Fig. 4(a). We can see that losses grow exponentially as
sea level increases, from less than 200 million USD in present-day to over 300 million USD
with 1 m of SLR and over 600 million USD with 1.5 m of SLR. From Fig. 4(a), this increase
in AAL is dominated by the increase in frequent losses below 1 billion USD.

These regional loss metrics can be further disaggregated by the contributing hazard. Fig.
4(a) shows the breakdown of the loss exceedance curves under SLR by contributing hazard.
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Fig. 3 Present-day building-level average annual loss ratio due to natural hazards.

This plot emphasizes the contribution of the earthquake hazard to the most infrequent and
largest losses, and of coastal flooding to the most frequent but smaller losses. The tsunami
hazard, in comparison, is infrequent, but also has smaller losses. This finding is due in part
to the smaller spatial impact and to the assumed linear increase of inundation with SLR.
The hazards’ contributions to AAL are shown in different colors in Fig. 4(b). Tsunami barely
contributes, while SLR shifts the largest contributor from earthquake, which contributes over
99% of the regional AAL at present-day, to coastal flooding, which is projected to overtake
earthquake’s contribution at 1.0 m of SLR.

The increase in losses due to SLR, our SLR risk metric defined in Eqn. 5, is shown on
a building-level in Fig. 5. Fig. 5(a) shows the increase in AALR under 0.25 m of SLR, and
Fig. 5(b) shows the increase in AALR under 0.75 m of SLR. This metric shows the specific
building areas most impacted by sea level rise, with respect to loss ratio. The affected areas
are low-lying, mostly within artificial fill soil, which is susceptible to liquefaction, and near
inland canals and waterways. Thus, these areas should be considered when planning adap-
tation actions for SLR. These large AALR values come from frequent inundation, indicating
that residents likely experience repeated losses over years. These consequence assessments
may eventually break down under such frequent events. Damaging events will increasingly
to occur during the recovery period following a previous event. The current methodology,
which assumes repair costs of buildings in their present state, does not account for impacts
from coincident events, or from flood inundation that becomes increasingly permanent.

The timing of sea level rise, as well as the total amount in the far future, has significant
uncertainties that cannot be meaningfully reduced (Kopp et al., 2019). Sweet et al. (2022)
present five scenarios of San Francisco Bay SLR with a median and 66% confidence interval.
These scenarios filter ensemble projections by target values of sea level rise for the end of the
century. We obtain the 17th, 50th, and 83rd percentile values directly from the interagency
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Fig. 4 Loss metrics for total multi-hazard risk under sea level rise shown as (a) loss exceedance curves and
(b) average annual loss for levels of SLR, colored by the contribution from each independent hazard pathway.

tool (National Aeronautics and Space Administration (NASA), 2024). In this work, we fit
log-normal distributions to the low, intermediate, and high scenarios at each reported time.
The log-normal distributions are used to obtain 90% confidence intervals. The log-normal
distribution is a good fit to the 17th, 50th, and 83rd percentile values reported for San Fran-
cisco, though this may not be generalizable across gauges. Fig. 6(a) shows the probabilistic
ranges of SLR until 2100 with 66% and 90% confidence intervals for low, intermediate, and
high SLR scenarios.
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Fig. 5 Change in average annual loss ratio at a building level with (a) 0.25 m and (b) 0.75 m of sea level
rise. Buildings are shown that have an increase over 0.01.

We run loss analysis to output the AAL for the confidence intervals of each SLR scenario.
Fig 6(b) shows that the projected range spans an order of magnitude by the end of the
century.

The horizontal dashed line in Fig. 6(b) shows the total assessed value of all residential
buildings in Alameda, 6.95 billion USD. In the high SLR scenario, portfolio losses become
a large portion of the portfolio value by the end of the century. Fig. 6(b) emphasizes the
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Fig. 6 (a) Local scenarios of SLR over time for San Francisco Bay, using scenario data from (Sweet et al.,
2022) and (b) average annual loss of the residential building portfolio of Alameda over time for the three
sea level rise scenarios: low, intermediate, and high. Confidence intervals are reported for 66% and 90%
confidence. Note that the y-axis is in log scale.

difference between the present-day or low SLR scenario from the high SLR scenario. In
any case, actions can be taken now to reduce both present-day risk and avoid frequent and
catastrophic losses under SLR by the end of the century.

3.5 Adaptation actions

Three adaptation actions are modeled: managed retreat, raising buildings, and seismic
retrofit. While these adaptation strategies are not reflective of specific plans, draft plans
could be simulated and compared in this way before implementation. Retrofit ordinances
have been implemented in the Bay Area (e.g. City of Alameda, 2024), and FEMA recom-
mends raising houses as a way to reduce flood risk (Federal Emergency Management Agency
(FEMA), 2018). Managed retreat has been considered as well in coastal communities, though
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precise policies are not modeled here. While exact costs will vary based on the exact pol-
icy or program, as well as the specific community, in lieu of a full cost-benefit calculation,
approximately same-cost strategies are modeled for a first-pass comparison. Roughly equiv-
alent adaptation costs are proxied by adjusting the portion of buildings affected by each
adaptation action, based on anticipated costs of actions per building (Hino et al., 2017;
Federal Emergency Management Agency (FEMA), 2018; California Residential Mitigation
Program, 2024). Managed retreat is considered for 2% of the building stock, 6% of buildings
are assumed to be raised, or 40% of the buildings are assumed to receive a seismic retrofit.
These costs are not subtracted from the savings, as they are not precisely known, but the
comparisons are informative given their similar costs. For each of the adaptations, buildings
are chosen based on either their exposure, vulnerability, or risk. Managed retreat is based on
risk, applied to buildings with the highest increase in average annual loss ratios under 0.75 m
sea level rise. Alternate metrics, such as average annual loss ratio under present-day or alter-
nate sea level rise conditions prioritized mostly the same buildings and produced roughly
equivalent savings, so this choice is not expected to be very sensitive. Raising buildings is
based on exposure, prioritizing the buildings with the lowest first floor elevations, consider-
ing the land elevation and first floor height. Finally, seismic retrofit is based on vulnerability,
with the oldest buildings taking priority, as they have the lowest code level and thus highest
seismic vulnerability.

This strategy prioritizes equity, focusing on buildings with the most exposure, vulnera-
bility, or damage ratio rather than the highest dollar loss. Building values across Alameda
are similar, however; so this strategy would have more impact in an area with higher
socioeconomic disparity. Alternate methods could prioritize the dollar loss values, naturally
prioritizing higher value buildings.

Each adaptation action is applied on a building level. Managed retreat is modeled in
two ways: by removing the relevant building stock from the portfolio and by replacing the
building stock value. These represent upper and lower bounds on the efficacy of relocation
policy implementation. Removing the buildings completely captures residents moving to
existing vacant buildings within or outside of the considered area. Replacing the building
stock assumes that new assets of the same value will take on the average risk of the 98%
remaining building stock. The replaced value is modeled by increasing the remaining building
stock value. Likely, managed retreat would result somewhere in between, where some new risk
is taken on at a lower risk than the average (i.e. new construction outside of liquefaction and
flood zones), and some relocation is absorbed into existing buildings. The selected buildings,
shown in Fig. 7(a), are prioritized by the change in average annual loss ratio with 0.75 m
of SLR, ∆AALR0.75m (increase in annual risk), which comes from results of Eqn. 5. This
metric is chosen as it is how we define annualized climate risk, in this case annual sea level
rise risk. Raised houses (Fig. 7(b)) are modeled by increasing the first-floor elevation, which
reduces impact from flooding and tsunami, as the inundation depths must be higher before
they impact the buildings. For comparison, buildings are raised 1 foot (0.30 m) or 3 feet
(0.91 m). While raising houses could have adverse effects on seismic susceptibility if not
carefully designed, this trade-off is not quantified in this analysis due to lack of vulnerability
data. Seismic retrofit (Fig. 7(c)) of the oldest buildings raises the code level from pre-code
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to modern-day high seismic code, reducing damage given the same level of ground shaking.
The reduction in shaking losses is applied to the total losses from shaking and liquefaction.
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Fig. 7 Building locations affected by each adaptation action: (a) managed retreat, defined as the 2% of
buildings with the largest increase in AALR with 0.75m of SLR, (b) buildings to raise, defined as 6% of the
building stock with the lowest elevation at the first floor, and (c) seismic retrofit, defined as the oldest 40%
of buildings.

The adaptation action’s efficacy is measured by the reduction in AAL between baseline
and adaptation cases. Through this metric, the benefit of each adaptation action can be
compared over multiple levels of SLR, considering all three hazards of interest.

Fig. 8 shows the savings from the adaptation actions for different return period losses. In
the present day, shown in Fig. 8(a), retrofit and retreat are relatively close in their reduction
of AAL, while raising houses has a lower reduction, as present-day coastal flooding risk is
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low. However, under 0.75 m SLR, shown in Fig. 8(b), the savings in AAL from seismic retrofit
remains at the same level, while the impact of others increases. Replacing the retreated
buildings reduces the efficacy of retreat, and the range between the two bounds increases
with SLR. Under 0.75 m of SLR, raising houses surpasses retreat in its efficacy to reduce
AAL. It should be noted that raising houses would be ineffective for frequent flooding such as
daily high-tide or permanent inundation, as further issues would arise such as road closures,
but these impacts are not quantified in this analysis.

However, AAL can emphasize the contributions of frequent events over those of rare
events. Adaptations that minimize rare but extreme consequences may also be of interest
to a community. To that end, Fig. 8 shows the decrease in loss at various return periods,
calculated using Eqn. 9. The return period is 1/λ, and we show ∆c(λ) for multiple return
periods. Return periods are shown up to a maximum of 800 years, as earthquake events
exhibit enough stochasticity that there is not a purely increasing risk with sea level rise at
longer return periods. The stochasticity in the baseline event case can be seen in Fig. 5(a).
Both Fig. 8(a) and (b) show a similar trend, which is representative of all amounts of SLR.
At short return periods, managed retreat and raising buildings produce large reductions,
which is why they are influential in the AAL. However, at long return periods, retrofitting
has the largest effect, reducing losses from rare but highly destructive earthquakes. Retreated
buildings that reduce the building stock also lower long return period losses, though this
benefit is lost almost entirely if the buildings are replaced and assume the average remaining
risk. To retain savings, managed retreat programs would need to ensure that new risk is not
taken on in the liquefaction and flood zones. Naturally, new construction would have lower
risk than older building stock to ground shaking.
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Fig. 8 Reduction in losses for AAL and at different return periods for each adaptation action, from a
baseline of no adaptation action. Results are shown for (a) present-day and (b) 0.75 m of SLR. Note that
the y-axis is in log-scale.
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4 Conclusions

This article presents a methodology to quantify climate change risk at a community scale.
The proposed methodology is a risk-based framework, defining climate change risk as the
increase in community multi-hazard risk. The methodology combines probabilistic hazard
and risk assessment of multiple independent hazard pathways under present-day and future
climate conditions. This framework can be applied to different assets, hazards and measures
of climate change impact. This methodology can also compare benefits between adaptation
actions to inform communities of trade-offs between hazard frequency, climate impacts, and
individual hazard losses. This work fills the existing gaps of asset-level multi-hazard analysis
under climate change, with the ability to inform community decision-making on adaptation
actions.

The proposed methodology is demonstrated on a case study of residential buildings in
Alameda, California, under sea level rise (SLR). Alameda is subjected to three independent
hazard pathways: earthquake (including ground shaking and liquefaction ground failure),
coastal flooding, and tsunami. We find that earthquake hazard dominates the AAL at
present-day, but under SLR, the highest contribution changes to coastal flooding. Utilizing
SLR scenarios, we demonstrate the wide uncertainty in future natural hazard risk. Finally, a
comparison of adaptation actions shows that at present, managed retreat and seismic retrofit
may have the highest benefit, but raising buildings would reduce more risk under larger
SLR amounts. In addition, seismic retrofit of the oldest buildings is the best adaptation for
rare high-impact events. Therefore, it is important to look at both rare and frequent events
to understand and manage community risk. The range of potential savings with managed
retreat is wide, depending on how a program would be implemented.

Communities facing increasing risk from natural hazards and climate change must make
decisions in a multi-hazard, future climate context, considering the benefits of adaptations
and the uncertainty of future conditions. Frequent events will dominate risk in some loca-
tions; the proposed approach can facilitate the comparison of diverse adaptation actions such
as hardening existing assets or retreating for both frequent and rare events. The presented
method can be applied to consider different communities, assets, hazards, and climate condi-
tions. To best allocate limited resources, benefits of adaptation actions for different hazards
are compared side-by-side in their reduction of present-day and future risk.

Supplementary information. Supplementary information is provided in PDF format.
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