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This paper investigates various approaches to propagate the effect of epistemic6

uncertainty in seismic hazard and ground motion selection to seismic performance7

metrics. Specifically, three approaches with different levels of rigour are presented for8

establishing the conditional distribution of intensity measures considered for ground9

motion selection, selecting ground motion ensembles, and performing nonlinear10

response history analyses to probabilistically characterise seismic response. The11

mean and distribution of the seismic demand hazard is used as the principal means12

to compare the various results. An example application illustrates that, for seismic13

demand levels significantly below the collapse limit, epistemic uncertainty in seismic14

response resulting from ground motion selection can generally be considered as15

small relative to the uncertainty in the seismic hazard itself. In contrast, uncertainty16

resulting from ground motion selection appreciably increases the uncertainty in the17

seismic demand hazard for near-collapse demand levels.18

INTRODUCTION19

Uncertainty in the seismic performance of engineered systems is conventionally addressed by20

separating uncertainty rooted from a lack of knowledge, known as ‘epistemic uncertainty’, from21

that due to apparent variability in the natural processes according to the considered mathematical22

model, known as ‘apparent aleatory variability’ (Marzocchi and Jordan, 2014). Epistemic23

uncertainty in the modelled characteristics of causative rupture scenarios, resulting ground24

motions, and the seismic response of the engineered system of interest are important steps25

in addressing uncertainty in seismic performance. Time-domain response history analyses26

(RHAs) are usually conducted to estimate the distribution of engineering demand parameters27
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characterising the seismic demand of the system. Conducting RHAs requires an appropriate28

representation of the seismic hazard at the site, which can be achieved by selecting ground29

motion time series recorded during past earthquakes and/or from an ensemble of simulated30

ground motions. While various methods have been proposed to select ground motions for31

seismic response analysis (e.g., McGuire, 1995; Shome et al., 1998; Bommer and Acevedo,32

2004; Kottke and Rathje, 2008; Baker, 2011; Jayaram et al., 2011; Wang, 2011; Bradley, 2012b)33

and address epistemic uncertainty in seismic hazard (e.g., Kulkarni et al., 1984; Abrahamson34

and Bommer, 2005; McGuire et al., 2005; Bommer et al., 2005; Musson, 2005; Cotton et al.,35

2006; Bommer and Scherbaum, 2008; Bradley, 2009; Bommer et al., 2010; Atkinson et al.,36

2014; Douglas et al., 2014), the only past study concerned with the explicit consideration of37

seismic hazard epistemic uncertainty in the selection of ground motions is by Lin et al. (2013),38

which focused on epistemic uncertainty in empirical ground motion models (GMMs) and the39

subsequent computation of conditional pseudo spectral acceleration as the target for the ground40

motion selection process.41

In the present study, we extend beyond Lin et al. (2013) to propagate epistemic uncertainty42

in both earthquake rupture forecast (ERF) and GMM aspects of probabilistic seismic hazard43

analysis (PSHA) to the conditional distribution of multiple intensity measures, IIIMMM, utilised44

in ground motion selection. Different ground motion ensembles are then selected based on45

the epistemic uncertainty in IIIMMM to represent the seismic hazard epistemic uncertainty. Three46

different approaches are presented to propagate epistemic uncertainty in seismic hazard analysis47

and consequent ground motion selection to seismic performance measures, specifically the mean48

and distribution of the seismic demand hazard.49

In the next sections, the main components of the seismic performance assessment procedure,50

and three approaches to propagate epistemic uncertainty are presented, as well as an example51

application to illustrate the pertinent implications.52

SEISMIC PERFORMANCE ASSESSMENT PROCEDURE53

The PEER framework formula considers four calculation stages to assess the seismic perfor-54

mance of engineered systems, including seismic hazard, response, damage, and loss assessment55

(Deierlein et al., 2003). Epistemic uncertainty in the performance of a system can originate56

from the modelling assumptions utilised at each one of these four stages. This study focuses57

on the consideration of, and methods to propagate, epistemic uncertainties from seismic hazard58
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analysis and ground motion selection results to demand-based seismic performance measures by59

calculating the seismic demand hazard of the system (i.e., probability of exceeding a seismic60

demand metric). That is, we exclude discussion of epistemic uncertainty in damage and loss61

assessment calculations, for which the reader is referred elsewhere (Taghavi and Miranda, 2003;62

Aslani and Miranda, 2005; Bradley, 2010a).63

Computation of demand-based seismic performance measures, such as the seismic demand64

hazard, entails four key steps as explained in the following subsections. In this section we65

suppress the notational conditioning on the adopted GMM and ERF (i.e., sources of seismic66

hazard epistemic uncertainties) which are presented in the following section explicitly based on67

three alternative approaches for epistemic uncertainty propagation.68

STEP 1: SEISMIC HAZARD ANALYSIS69

PSHA quantifies the annual exceedance frequencya) of a ground motion IM considering the70

characteristics of all causative rupture scenarios in the vicinity of the site based on an ERF as71

presented in Equation 1:72

lIM (im) =
Nrup

Â
n=1

PIM|Rup(IM > im|rupn) lRup(rupn) (1)

where PIM|Rup(IM > im|rupn) is the probability of IM > im given a scenario rupture (rupn), and73

lRup(rupn) is the annual frequency of rupn. As presented in Equation 1, the PSHA formulation74

takes into account apparent aleatory variability in the occurrence of rupture scenarios and the75

corresponding ground motions. Although not explicitly denoted here, the hazard curve defined76

via Equation 1 is conditioned on the adopted GMM and ERF, which will be later generalised for77

the case of multiple models representing epistemic uncertainty.78

STEP 2: GROUND MOTION SELECTION79

Selecting ground motion ensembles consistent with seismic hazard analysis provides the connec-80

tion between seismic hazard and seismic response analyses. The severity of a ground motion81

is, in general, a function of amplitude, frequency content, duration, and cumulative effects.82

Therefore, it is pertinent to consider multiple ground motion IMs in order to take into account83

the salient characteristics of ground motion to accurately obtain the seismic demand distribution84

for the system of interest (Kramer, 1996; Bommer et al., 2004; Hancock and Bommer, 2005;85

a)Note that the seismic hazard can be defined based on the probability of exceedance (Field et al., 2003), which
enables the time-dependent seismic hazard analysis utilised for the example application in this paper.
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Villaverde, 2007; Bradley, 2010b; Tarbali and Bradley, 2015b; Chandramohan et al., 2016).86

Since the seismic hazard is the aggregation of the threat from all seismic sources, it is also87

necessary to consider all causal ruptures when calculating the conditional distribution of IMs.88

Among several proposed methods for ground motion selection (e.g., McGuire, 1995; Shome et al.,89

1998; Bommer and Acevedo, 2004; Kottke and Rathje, 2008; Baker, 2011; Jayaram et al., 2011;90

Wang, 2011; Bradley, 2012b), the generalised conditional intensity measure (GCIM) approach91

(Bradley, 2010b, 2012b), as the extension of the conditional mean spectrum (CMS) (Baker and92

Cornell, 2006; Baker, 2011), provides the required framework to address the abovementioned93

points. Implementing the GCIM methodology requires deaggregating the seismic hazard curve94

and calculating the conditional distribution of IMs considered in the ground motion selection95

process (as elaborated on subsequently).96

Deaggregating the seismic hazard curve97

Establishing the conditional distribution of various IMs requires deaggregating the seismic98

hazard curve to obtain the contribution of causative ruptures at a given IM level, referred to as99

the ‘conditioning IM’ (and denoted as IMj). The contribution of a given rupture (rupn) to the100

occurrence of an IM value (denoted as IMj = im j) is known as the ‘occurrence’ deaggregation101

contribution (as opposed to the exceedance deaggregation representing the contribution of102

scenarios to IMj > im j), and is calculated using Equation 2 (McGuire, 1995; Bazzurro and103

Cornell, 1999; Fox et al., 2015)b):104

PRup|IMj

�
rupn

��IMj = im j
�
⇡ [PRup|IMj

⇣
rupn

���IMj > im j

⌘
lIM

�
IMj > im j

�
�

PRup|IMj

�
rupn

��IMj > im j +d im j
�

lIM

⇣
IMj > im j +d im j

⌘
]/

[lIM
�
IMj > im j

�
�lIM

�
IMj > im j +d im j

�
]

(2)

where lIM

⇣
IMj > im j

⌘
and lIM

⇣
IMj > im j +d im j

⌘
are the annual exceedance frequencies105

corresponding to im j and im j +d im j values obtained from the seismic hazard curve, respectively;106

and PRup|IMj

⇣
rupn

���IMj > im j

⌘
is the contribution of rupn to the exceedance of IMj at im j level,107

calculated using Equation 3:108

PRup|IMj

⇣
rupn

���IMj > im j

⌘
=

PIMj|Rup(IMj > im j|rupn) lRup (rupn)

lIM
�
IMj > im j

� (3)

where PIMj|Rup(IMj > im j|rupn) is the exceedance probability for im j value given rupn obtained109

from the implemented GMM, lRup (rupn) is the annual frequency of rupn from the ERF, and110

b)Note that Equation 2 becomes exact in the limit as d im ! 0.
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lIM
�
IMj > im j

�
is the annual exceedance frequency of im j from the seismic hazard curve.111

Conditional distribution of IMs considered in ground motion selection112

The target for ground motion selection in the GCIM methodology is the conditional multivariate113

distribution of the considered vector of IMs, IIIMMM = {IM1, IM2, . . . , IMi, . . .}, which accounts for114

various aspects of ground motion severity. The marginal conditional distribution of a single IMi115

in the IIIMMM vector is obtained based on Equation 4 (Bradley, 2010b), considering the contribution116

of all causal ruptures to the seismic hazard at the conditioning IM level (IMj = im j):117

fIMi|IMj

�
imi

��im j
�
=

Nrup

Â
n=1

fIMi|Rup,IM j
(imi|rupn, im j) PRup|IMj(rupn|IMj = im j) (4)

where fIMi|Rup,IM j
(imi|rupn, im j) is the marginal distribution of IMi from a single scenario118

rupture, rupn, conditioned on the IMj level considered for deaggregating the seismic hazard119

curve; PRup|IMj(rupn|IMj = im j) is the contribution of rupn to the occurrence of IMj = im j120

obtained from Equation 2; and Nrup is the number of ruptures considered in the vicinity of the121

site. The obtained marginal IMi distributions are used to generate realisations of the multivariate122

IIIMMM distribution considering the correlation between the considered IMs (see Bradley (2012b)123

for further details), which are then used to assess the appropriateness of the candidate ground124

motions (as elaborated on in the next subsection).125

Selecting ground motions126

In order to select an ensemble of Ngm ground motions, a database of prospective (recorded and/or127

simulated) ground motions is searched to find ground motions that fit the generated realisations128

of the IIIMMM distribution (Jayaram et al., 2011; Bradley, 2012b; Wang, 2011; Baker and Lee, 2017).129

A so-called weight vector, wi, is used to prescribe the relative importance of the considered IMi130

and calculate the misfit of each prospective ground motion with respect to the target distribution131

(Bradley, 2012b; Tarbali and Bradley, 2015b). Bounds on causal parameters (e.g., magnitude,132

source-to-site distance, site condition) of prospective ground motions can also be considered133

prior to conducting IM-based ground motion selection (see Tarbali and Bradley (2016) and134

references therein).135

STEP 3: SEISMIC RESPONSE ANALYSIS136

Ground motion ensembles selected at different IMj levels can be utilised to conduct RHAs of137

the system to calculate the distributions of engineering demand parameters (EDPs) pertinent to138
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characterise the behaviour of the system (Jalayer and Cornell, 2009). This requires separating139

the results of ground motions causing collapse in the response history analysis from those140

resulting in non-collapse responses (Shome and Cornell, 1999). A collapse fragility function,141

characterising the probability of collapse for a given IMj value, PC|IMj

�
im j

�
, is established based142

on the proportion of ground motions resulting in collapse within the ensemble of selected records.143

Baker (2015) presents a maximum likelihood approach that can be used to fit a collapse fragility144

function to the collapse responses. Finally, when RHAs are performed for a discrete set of145

IMj levels for which ground motions have been selected, interpolation is needed to develop the146

EDP-IM relationship. Here, linear relationships are used for ln(EDP) and sln(EDP) with ln(IMj)147

to establish non-collapse response distributions (Bradley, 2013c).148

The exceedance probability for the EDP of interest conditioned on an IMj value is then149

obtained from Equation 5 (Shome and Cornell, 1999):150

GEDP|IMj

�
ed p|im j

�
= GEDP|IMj,NC

�
ed p|im j

�⇣
1�PC|IMj

�
im j

�⌘
+PC|IMj

�
im j

�
(5)

where GEDP|IMj,NC
�
ed p|im j

�
is the probability of EDP > ed p given IMj = im j calculated from151

the non-collapse (NC) responses; and PC|IMj

�
im j

�
is the probability of collapse given IMj = im j152

(based on the established collapse fragility function).153

STEP 4: SEISMIC DEMAND HAZARD154

The seismic demand hazard is calculated from (Shome and Cornell, 1999; Krawinkler and155

Miranda, 2004):156

lEDP (ed p) =
Z •

0
GEDP|IMj

�
ed p

��im j
�
�����
dlIMj

�
im j

�

dIMj

�����dIMj (6)

where dlIM
�
im j

�
/dIMj is the derivative of the considered seismic hazard curve with respect157

to IMj; and GEDP|IMj

�
ed p

��im j
�

is the seismic response exceedance probability obtained from158

Equation 5.159

Note that the distribution of EDPs of interest conditioned on a single IMj value are conven-160

tionally utilised in seismic design guidelines (e.g., NZS1170.5, 2004; ASCE/SEI7-10, 2010) to161

characterise the seismic performance. However, this approach neglects the fact that: (i) a certain162

EDP level can be exceeded at different IMj levels; and (ii) the EDP distribution is a function of163

the considered IMj (i.e., hazard) level (Bradley, 2013a). The use of the seismic demand hazard164

overcomes these shortcomings by taking into account the likelihood of different IMj levels and165
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the distribution of EDPs (conditioned on a given IMj level), providing a more robust approach to166

assess the demand-based seismic performance of the system (Bradley, 2012c, 2013a).167

PROPAGATION OF EPISTEMIC UNCERTAINTY168

Epistemic uncertainty in the PSHA results is conventionally addressed by considering alternative169

GMMs and ERFs using the logic tree methodc) (Kulkarni et al., 1984; Reiter, 1991; Bommer170

et al., 2005), which results in alternative plausible seismic hazard curves for the site of interest.171

The effect of seismic hazard epistemic uncertainty can be reflected in seismic demand measures172

by considering the full distribution of seismic hazard, or a single representative such as the mean173

or certain percentiles of the alternative hazard curves (Abrahamson and Bommer, 2005; McGuire174

et al., 2005; Musson, 2005). Table 1 compares the three approaches presented in the next section175

for propagation of seismic hazard and ground motion selection epistemic uncertainties based on176

the four-step demand-based seismic performance assessment procedure outlined in the previous177

section. As presented in Table 1, the specifics of the ground motion selection and response178

analysis steps, which constitute the computationally demanding steps of the process, depend179

on how the seismic hazard epistemic uncertainty is addressed (i.e., via the full distribution of180

seismic hazard or simply the mean hazard). Note that Approach 2 and 3 aim to approximate the181

distribution and the mean demand measures from Approach 1 (i.e., the exact approach). The182

main components of these approaches are presented in the following sections. As elaborated183

upon in the discussion section, since attention in this paper is focused on epistemic uncertainties184

in ground motion selection, then epistemic uncertainty in the seismic response of the considered185

engineered system is omitted, however it should be considered in practical applications.186

APPROACH ONE: EXACT APPROACH187

In the exact approach, each seismic hazard curve from the logic tree branches is treated separately188

as one possible answer to ‘what is the true seismic hazard at the site?’. Therefore, the selected189

ground motion ensembles, corresponding RHAs, EDP distributions, and demand hazard curve190

are obtained specifically for each alternative seismic hazard curve. This process results in Nmodels191

demand hazard curves, where Nmodels is the number of models considered to represent epistemic192

uncertainties in the seismic hazard.193

Establishing the target distribution of IMs specific to the kth logic tree branch of the seismic194

c)The discussions to follow are equally applicable if Monte Carlo simulation is used to sample seismic hazard
epistemic uncertainties.
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Table 1. Comparison of three approaches to propagate the effect of epistemic uncertainties in seismic
hazard analysis and ground motion selection to demand-based seismic performance measures

Step Approach 1: Exact
Approach 2:Approximate

full distribution
Approach 3: Approximate

mean

1. Seismic hazard
analysis

Complete seismic hazard distribution (all logic tree branches) Mean hazard

2. Ground motion
selection

A different GM set for

every logic tree branch
One GM set corresponding to the mean hazard

3. Seismic response
analysis

Different seismic response

analyses for each GM set
One set of seismic response analyses corresponding to the one GM set

4. Seismic demand
hazard

Exact distribution

of the seismic demand hazard

Approximate distribution of

the seismic demand hazard

Approximate mean

seismic demand hazard

hazard curve requires deaggregating them at the considered conditioning IM levels. In order to195

have a consistent basis to establish the conditional distribution of IMs and EDP-IM relationships196

representing the alternative hazard curves, and compare them with those representing the mean197

hazard (utilised in the two approximate approaches elaborated upon subsequently), all the seismic198

hazard curves are deaggregated at the same conditioning IM levels. Although not strictly neces-199

sary, these IM levels may correspond to certain exceedance probabilities of the mean hazard (see200

Figure 1 for schematic illustration). Equations 2 and 3 are utilised for deaggregating the hazard201

curves for each logic tree branch resulting in the contribution of causative rupture scenario to the202

occurrence of IMj = im j conditioned on the kth model characteristics, i.e., Pk
Rup|IMj

�
rupn

��im j
�
.203

The marginal conditional distribution of IMi pertaining to the kth model ( f k
IMi|IMj

�
imi

��im j
�
)204

is calculated based on Equation 4. Ground motion ensembles are then selected to represent205

the kth seismic hazard curve. By conducting RHAs of the system subjected to the selected206

ground motions, the EDP-IM relationship specific to the kth model is obtained using Equation207

5. The obtained relationship is conditioned on the selected ground motion ensembles, which208

are themselves conditioned on the choice of GMM and ERF for the kth model. The seismic209

demand hazard specific to the kth model (i.e., l k
EDP (ed p)) is then calculated using Equation210

6. It is emphasised that this ‘exact’ approach requires the selection of Nmodels different ground211

motion ensembles as well as performing RHAs for each and every one of these ensembles, and212

is therefore very computationally demanding (often prohibitively so).213

The distribution of the resulting seismic demand hazard at a given EDP level, in the form of214
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Figure 1. Schematic illustration of deaggregating the seismic hazard curve branches to establish the
conditional IM distributions for ground motion selection.

cumulative probability function, is obtained using Equation 7:215

FlEDP [l|ed p] =
Nmodels

Â
k=1

I(l k
EDP(ed p)� l) Wk (7)

where I(l k
EDP(ed p) � l) is the indicator function taking the value of one for the kth hazard216

curve resulting in a demand hazard exceedance frequency larger than or equal to l and zero217

otherwise; and Wk is the epistemic uncertainty weight of the kth model, normalised such that218

ÂNmodels
k=1 Wk = 1. Assuming that the considered models represent a robust set of applicable219

models to characterise the seismic hazard at the site, the resulting demand hazard from this exact220

approach can be assumed to represent the centre, body, and range in epistemic uncertainty of the221

seismic performance of the system due to seismic hazard and ground motion selection epistemic222

uncertainties.223

APPROACH TWO: APPROXIMATE FULL DISTRIBUTION224

Considering the significant computational burden of selecting multiple ground motion ensembles225

and performing RHAs of the system for every branch of the seismic hazard logic tree in the exact226

approach, a simplification can be applied by considering only a single EDP-IM relationship. This227

single EDP-IM relationship is derived based on the response of the system when subjected to228

ground motions representative of the mean seismic hazard. This single EDP-IM relationship can229
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then be integrated with the alternative branches of the seismic hazard, resulting in the Nmodels230

demand hazard curves which tend to approximate the demand hazard distributions from the exact231

approach. The assumption of this approach is that the uncertainty in the EDP-IM relationship, as232

a result of uncertainty in the selected ground motion ensembles, is small relative to the uncertainty233

in the seismic hazard itself. As elaborated upon via example in Section 4.2, ground motion234

ensembles selected to represent the mean hazard may also be appropriate to represent the target235

IM distributions of logic tree branches. Hence, they can be utilised as a surrogate for branch-236

specific ground motion ensembles to obtain an approximation for the EDP-IM relationship. Note237

that Lin et al. (2013) also recommend selecting ground motion ensembles representing a single238

target (i.e., mean hazard or variants of it); however, its integration with the mean or branches of239

the hazard curve logic tree was not directly discussed.240

This approximate approach requires calculating the mean seismic hazard, lIM
�
im j

�
, which241

is given by:242

lIMj

�
im j

�
=

Nmodels

Â
k=1

l k
IMj

�
im j

�
Wk (8)

where l k
IMj

�
im j

�
is the seismic hazard curve pertaining to the kth logic tree branch with the243

corresponding weight of Wk. Note that the calculation of the mean hazard is for a specific244

IMj = im j value, i.e., it is a mean annual exceedance frequency, and the notion of a mean IM245

value for a given exceedance frequency does not have a methodological meaning (Bommer and246

Scherbaum, 2008).247

Deaggregating the mean hazard248

In order to establish the conditional distribution of IMs (considered for ground motion selection),249

the mean hazard curve is deaggregated with respect the contributing alternative models. The250

contribution of the kth model to the mean hazard at a given IM level, Pk
model

⇣
im j|lIMj

�
im j

�⌘
, is251

calculated using Equation 9:252

Pk
model

⇣
im j|lIMj

�
im j

�⌘
=

l k
IMj

�
im j

�
Wk

lIMj

�
im j

� (9)

The model weight in Equation 9, Wk, can be considered as the prior probability in the253

Bayesian statistics context, with Pk
model

⇣
im j|lIMj

�
im j

�⌘
as the posterior probability obtained254

based on the likelihood function of l k
IMj

�
im j

�
/lIMj

�
im j

�
. The IM distributions representing255

the mean hazard can be calculated based on this posterior probability (as elaborated upon in256

Equation 12).257
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The contribution of causative rupture scenarios at the conditioning IM level, IMj = im j, to258

the mean hazard, PRup|IMj(rupn|IMj = im j), is then calculated based on Equation 10:259

PRup|IMj(rupn|IMj = im j) =
Nmodels

Â
k=1

Pk
Rup|IMj

⇣
rupn

���IMj = im j

⌘
Pk

model

⇣
im j|lIMj

�
im j

�⌘
(10)

where Pk
Rup|IMj

⇣
rupn

���IMj = im j

⌘
is the contribution of a given scenario rupture (rupn) to the260

kth hazard curve obtained based on Equations 2 and 3.261

Conditional distribution of IMs in the approximate approach262

Following Equation 4, the conditional distribution of IMs in the approximate approach is263

calculated using Equation 11:264

fIMi|IMj

�
imi

��im j
�
=

Nrup

Â
n=1

fIMi|Rup,IM j
(imi|rupn, im j)PRup|IMj(rupn|IMj = im j) (11)

where fIMi|Rup,IM j
(imi|rupn, im j) is the marginal distribution of IMi from a single scenario265

rupture conditioned on the IMj level, and PRup|IMj is obtained from Equation 10.266

Alternatively to Equation 11, in the case where conditional distribution of IMs are already cal-267

culated for each alternative model (as, for example, in the OpenSHA software (Field et al., 2003)),268

these distributions can simply be combined using Equation 12 to obtain the IM distribution269

representing the mean hazard:270

fIMi|IMj

�
imi

��im j
�
=

Nmodels

Â
n=1

f k
IMi|IMj

�
imi

��im j
�
Pk

model

⇣
im j|lIMj

�
im j

�⌘
(12)

where f k
IMi|IMj

�
imi

��im j
�

is the conditional distribution of IMi pertaining to the kth model obtained271

based on Equation 4. Equation 11 or 12 therefore enables the calculation of conditional IMi272

distributions which provide the target for selecting ground motion ensembles representing the273

mean hazard curve (refer to Section 2.2.3 for further details on the ground motion selection274

process).275

Seismic demand hazard276

By conducting RHAs of the system subjected to the selected ground motion ensembles represent-277

ing the mean hazard, the EDP-IM relationship specific to the mean hazard curve, GEDP|IMj

�
ed p

��im j
�
,278

is obtained based on Equation 5. The uncertainty in the seismic hazard can then be propagated279

by integrating each logic tree seismic hazard branch with the mean hazard-based EDP-IM280
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relationship using Equation 13:281

gl k
EDP (ed p) =

Z •

0
GEDP|IMj

�
ed p

��im j
�
�����
dl k

IMj

�
im j

�

dIMj

�����dIMj (13)

where ⇠ is used to denote the approximation of l k
EDP(ed p) via the use of GEDP|IMj in place of282

Gk
EDP|IMj

in the exact approach.283

The distribution of demand hazards at a given EDP level from the approximate method can284

be calculated in the same manner as the exact approach using Equation 8.285

APPROACH THREE: APPROXIMATE MEAN286

The most simplified approach to calculate the demand-based seismic performance measure287

when addressing epistemic uncertainties in the seismic hazard and ground motion selection is288

to integrate the EDP-IM relationship corresponding to the mean seismic hazard (as developed289

in the previous subsection) with the mean seismic hazard curve (i.e., Equation 8), as shown in290

Equation 14:291

lEDP (ed p) =
Z •

0
GEDP|IMj

�
ed p

��im j
�
�����
dlIMj

�
im j

�

dIMj

�����dIMj (14)

This approach, denoted as the ‘approximate mean approach’, results in a single demand292

hazard curve that aims to approximate the mean value of the demand hazard curves obtained293

from the exact approach. It deviates from the second approach in that individual branches of the294

seismic hazard are not considered.295

EXAMPLE APPLICATION296

The San Francisco Bay Area is chosen to conduct PSHA and demonstrate the presented method-297

ologies to propagate the effect of epistemic uncertainties, because it is a well-studied region in298

terms of uncertainties associated with the ERF component of PSHA, including: time-dependent299

nature of characteristic ruptures, magnitude-frequency distributions, magnitude-area relation-300

ships, seismogenic thickness, seismic and aseismic slip rates, distributed seismicity, fault seg-301

mentation, among others (WGCEP02, 2003). PSHA was conducted using the open-source302

seismic hazard analysis software OpenSHA (Field et al., 2003). Epistemic uncertainty in the303

ERF was considered using 100 logic tree branches of WGCEP02 (and thus each and every ERF304

branch has a weight of 1/100). Note that since WGCEP02 ERF is a time-dependent model, the305

results presented for the example application are based on exceedance probability rather than306
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exceedance frequencyd).307

Four empirical ground motion models for pseudo spectral acceleration (SA) developed as part308

of the next generation attenuation (NGA) project were considered in the PSHA and calculating309

conditional IM distributions, namely, Boore and Atkinson (2008); Chiou and Youngs (2008);310

Campbell and Bozorgnia (2008) and Abrahamson and Silva (2008) (referred to as BA08, CY08,311

CB08, and AS08, respectively). Each model is given an equal weight of 1/4 hence, in total, there312

exist 400 logic tree branches considering the ERF and GMM model combinations. The selected313

GMMs provide sufficiently appropriate tools to demonstrate the purpose of this paper.314

PSHA RESULTS315

The effect of epistemic uncertainties in the considered GMM and ERF branches are first illustrated316

through the obtained hazard curve and the deaggregation results. Figure 2a presents the hazard317

curves from 400 logic tree branches corresponding to SA at T =3 s vibration period, SA(3.0),318

obtained for a site with a Vs30 of 400 m/s located in San Francisco (Lat 37.7833�, Long -319

122.4167�). Considering the time-dependent ERF of WGCEP02, PSHAs were conducted for320

a 30-year time period starting from 2002. Note that all the ERF branches and the considered321

GMMs have equal weights (of 1/400). Figure 2a shows a large range of variation in the seismic322

hazard due to epistemic uncertainties in the ERF (shown in grey) and GMM (shown in four323

colors). Figure 2b presents the contribution of the considered four GMMs to the mean hazard324

(i.e., GMM deaggregation) calculated using Equation 9. Figure 2b shows large differences in the325

contribution of the considered GMMs to the mean hazard from the prior equal weight of 0.25 as326

the IM level increases (Lin et al., 2013).327

The IM levels corresponding to 50%, 10%, 8%, 6%, 4%, 2%, 1%, 0.5%, 0.25%, 0.1%,328

0.05%, 0.02% exceedance probabilities of the mean hazard curve are chosen as the conditioning329

IMs to deaggregate hazard curves (see Figure 1). As an illustration of variation in deaggregation330

results, Figure 3 presents the occurrence deaggregation contribution of the causative rupture331

scenarios to the conditioning IM level corresponding to 1% exceedance probability of the mean332

hazard (shown in the form of cumulative distribution). As shown, there is a large variation in the333

deaggregation contribution from alternative ERF and GMM branches with the median magnitude334

and source-to-site distance having ranges of [7.2-8.1] and [10-20 km], respectively (note that335

d)Due to the incompactness of the probability-based PSHA formulation (Field et al., 2003), the three method-
ologies presented for epistemic uncertainty prorogation are based on exceedance frequency. If the utilized ERF is
time-independent, P = 1� e(�l .Tf orecast ) can be used to convert between probability- and frequency-based results.
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Figure 2. (a) Branch and the mean SA(3.0 s) hazard curves for a site with Vs30=400 m/s in San
Francisco; (b) contribution of the considered GMMs to the mean hazard.

the considered site is dominated by near-source scenarios, hence a small range of variation for336

source-to-site distances). The variation in the deaggregation contribution of the causative rupture337

scenarios will propagate to the conditional distribution of IMs considered for ground motion338

selection and the resulting ground motion ensembles selected (as illustrated in the next section).339

CONDITIONAL IM DISTRIBUTIONS AND SELECTED GROUND MOTION ENSEMBLES340

The following IMs were considered in the ground motion selection process: SA ordinates for341

18 vibration periods (T =0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0,342

4.0, 5.0, 7.5, and 10.0 s); cumulative absolute velocity (CAV); and 5-75% and 5-95% Significant343

Durations (Ds575 and Ds595, respectively). These IMs represent various aspects of ground motions344

including amplitude, frequency content, duration, and cumulative effects, and their selection is345

based on other research on suitable IMs for ground motion selection (Bradley, 2012b; Tarbali346

and Bradley, 2015b; Chandramohan et al., 2016). The marginal distributions of SA ordinates347

were obtained using the corresponding GMMs utilised for the PSHA (i.e., BA08, CY08, CB08,348

AS08). The Campbell and Bozorgnia (2010) and Kempton and Stewart (2006) GMMs were used349

for CAV and Significant Duration IMs, respectively. Correlations between the considered IMs350

were obtained based on existing empirical models (Baker and Jayaram, 2008; Bradley, 2011,351

2012a). For the reasons elaborated upon subsequently in Section 5.3, epistemic uncertainties in352

choosing the IM correlation models and GMMs to obtain the conditional distribution of CAV,353

Ds575, and Ds595 were not considered in this study. An ensemble of 20 ground motions was354
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Figure 3. Cumulative contribution of causative ruptures to the IM level with 1% exceedance
probability: (a) rupture magnitude; (b) source-to-site distance.

selected separately at each conditioning IM level using the GCIM methodology. A weight vector355

with 70% of the total weight distributed equally over the SA ordinates and 30% (equally) over356

CAV, Ds575, and Ds595 was utilised in the ground motion selection process, which provides357

an appropriate weight distribution for general ground motion selection cases (Bradley, 2012b;358

Tarbali and Bradley, 2015b, 2016, 2015a). A subset of NGA-West2 empirical ground motion359

database (Ancheta et al., 2013) constrained by the causal parameter bounds recommended by360

Tarbali and Bradley (2016) were utilised to provide the available set of prospective records for361

ground motion selection.362

Figure 4a presents the 16th, 50th, and 84th percentiles of the conditional SA distributions363

representing the SA(3.0 s) hazard at the conditioning IM level corresponding to 1% exceedance364

probability of the mean hazard curve. The conditional IM distributions representing the Ds575365

and CAV, and the target distributions representing the mean hazard are also presented in Figures366

4c and 4e, respectively. The empirical IMi distributions of the selected ground motion ensembles367

based on the IM distributions are shown in Figures 4b, d, and f. In these figures, the statistical368

rejections bounds based on the Kolmogorov-Smirnov (KS) test (Ang and Tang, 1975) are369

presented. As shown in Figures 4a, c, and e, there is a large variation in the target IM distributions370

due to the significant epistemic uncertainty in the PSHA results (shown in Figures 2 and 3),371

which are duly reflected in the properties of the selected ground motions.The selected ground372

motion ensembles might not in some cases properly represent the target hazard (e.g., biased373

representation shown in Figure 4e for some of the CAV distributions as the empirical IM374
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distributions lay outside the KS test bounds). This is due to the paucity of appropriate ground375

motions in the empirical database to collectively represent all the considered IMs in the selection376

process.377

As shown in Figures 4b, d, and f, although there is a large variation, the selected ground378

motion ensemble corresponding to the mean hazard appears to be an appropriate ensemble to379

represent the target IM distributions of logic tree branches (i.e., the corresponding empirical380

distribution lies within the KS test bounds of the target IM distributions for logic tree branches).381

Hence, in order to approximate the demand hazard distribution, the EDP-IM relationship obtained382

based on the ground motion ensembles representing the mean seismic hazard can be integrated383

with the seismic hazard curves from the logic tree branches (i.e., the essence of the approximate384

full distribution approach presented previously).385

RESPONSE HISTORY ANALYSIS386

An inelastic single-degree-of-freedom (SDOF) system with strength and stiffness degradation387

(Ibarra et al., 2005; Lignos and Krawinkler, 2012), and a fundamental vibration period of388

Tn=3 s was subjected to the selected ground motion ensembles previously discussed. The389

maximum displacement of the system was chosen as the EDP of interest and the collapse limit is390

defined based on a nominal displacement to height ratio, specifically, 0.05, corresponding to a391

displacement ductility of 3.0. As noted previously, a linear relationship between ln(EDP) and392

ln(IM) is used to interpolate between the considered conditional IM values for the non-collapse393

responses (Bradley, 2013c). The maximum likelihood approach of Baker (2015) is used to394

establish the collapse fragility curve.395

PROPAGATION OF EPISTEMIC UNCERTAINTY IN SEISMIC PERFORMANCE ASSESS-396

MENT397

Figure 5a presents the EDP-IM relationship of the SDOF system for the non-collapse responses398

from ground motion ensembles that are specifically selected to represent every branch of the399

seismic hazard curves (i.e., the exact approach). The mean of the results from the exact approach400

and the results from the approximates approaches (for which the demand distribution is obtained401

based on the ground motions selected to represent the mean hazard—see Table 1), are also402

presented. A large variation in the EDP-IM relationship is evident especially at ground motion403

levels for which the response of the system is beyond the elastic response (approximately404

16



(a) (b)

(c) (d)

(e) (f)

Figure 4. Conditional IM and selected ground motion distributions corresponding to the IM level with
1% exceedance probability: (a)-(b) SA ordinates; (c)-(d) Ds575; (e)-(f) CAV. The back and red lines

present the target and selected ground motion distributions representing the mean seismic hazard. The
coloured lines and the grey bands illustrate selected ground motion ensembles representing each and

every seismic hazard branch and their corresponding KS test bounds.

17



(a) (b)

Figure 5. (a) EDP-IM relationship of the non-collapse responses; and (b) collapse fragility curves, for
the Tn=3.0s SDOF system considered. The black lines illustrate the EDP and collapse probability under
the mean hazard. The red lines present the mean and percentiles from the exact approach. The coloured
lines illustrated the DEP and collapse probability of the system under each and every seismic hazard
branch.

SA(3.0)>0.3 g). Note that the results from the approximate mean approach (shown in black),405

is close to the logarithmic mean from the exact approach (shown in solid red). Figure 5a also406

illustrates that while the 50th percentile of the non-collapse responses has an increasing trend,407

there might be large variations in the distribution of non-collapse responses indicated by the408

non-increasing trend in the 16th and 84th percentiles, due to the change in the proportion of409

ground motions causing collapse in the system for various IM levels.410

Figure 5b presents the collapse fragility curves obtained based on the exact approach (i.e.,411

the branch-specific ground motion ensembles), separately indicated based on the GMM from412

the corresponding logic tree branch and their mean value, along with the results from the413

approximate mean approach. As shown, there is a large variation in the collapse probability414

for the complete IM (i.e., SA(3.0 s)) range. The reason for larger approximate mean collapse415

probabilities from Approach 3 (for PC|IM > 0.25) in comparison to the exact mean probabilities416

is the larger proportion of collapse responses (as shown in Figure 5a with a smaller median for417

non-collapse responses in comparison to the exact approach).418

Figure 6 presents the obtained demand hazard curves from the exact (i.e., Approach 1),419

approximate distribution (i.e., Approach 2), and approximate mean (i.e., Approach 3) methods,420

and their corresponding 1th, 16th, 50th, 84th, and 99th percentiles. As shown in Figure 6a,421

the exact mean demand hazard curve (from Approach 1) is appropriately estimated by the422
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Figure 6. (a) Demand hazard curves from the three presented methodologies; (b) percentiles of the de-
mand hazard distributions from the exact (i.e., Approach 1) and approximate distribution (i.e., Approach
2) methods.

approximate mean (Approach 3). Note that the mean of the results from Approach 2 (i.e., the423

demand distribution representing the mean hazard integrated with every branch of the seismic424

hazard curves) is the same as that from Approach 3 (i.e., the demand distribution representing425

the mean hazard integrated with the mean hazard). As shown in Figure 6b, while the differences426

between the exact and approximate distribution results are more pronounced for near-collapse427

EDP levels, the approximate method can appropriately estimate the demand hazard percentiles428

of the exact method in the whole range of EDP considered.429

The presented results indicate that in cases where the objective is to obtain the mean demand430

hazard, it may be sufficient to integrate the mean seismic hazard with the demand distribution431

representing the mean hazard (i.e., the approximate mean — Approach 3). Also, if the aim is to432

only have an approximation for the demand hazard distribution of the system, the approximate433

distribution (i.e., Approach 2) might provide appropriate results. However, accurate assessment434

of epistemic uncertainties from seismic hazard and ground motion selection for demand levels435

near collapse likely requires the exact computation (i.e., Approach 1).436

DISCUSSION437

COMPARISON OF DEMAND HAZARD VARIABILITY438

Given the presented results, it is insightful to examine the relative contribution of: (i) seismic439

hazard, and (ii) ground motion selection uncertainties on the uncertainty in the seismic demand440
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Figure 7. Dispersion of the exceedance probabilities for: (a) seismic hazard; and (b) demand hazard for
the example case considered.

hazard and their dependence on the propagation approach. Figure 7a presents the lognormal stan-441

dard deviation (i.e., dispersion) of the seismic hazard exceedance probability, sln(PIM(im))
e). The442

results are shown for the seismic hazard curves from individual GMMs and all the seismic hazard443

curves combined. The dispersion of the demand hazard exceedance probability, sln(PEDP(ed p))
f),444

is also presented in Figure 7b. As shown, the dispersions both tend to increase with increasing445

IM and EDP levels, respectively. Firstly, it can be seen in Figure 7b that the dispersion in the446

seismic demand hazard for small EDP levels is equal to the dispersion of the seismic hazard at447

small IM levels. This is the result of the fact that the demand hazard for small EDPs is governed448

by small IMs, and that the EDP-IM relationship has small uncertainty at these IM levels (shown449

in Figure 5a). As the EDP level increases, the uncertainty in the EDP-IM relationship increases450

(due to the variability in the selected ground motion properties and increasing nonlinear response451

(see Figure 5a), which consequently increases the dispersion in the demand hazard. Secondly,452

while the demand hazard dispersion from the exact and approximate approaches is somewhat453

similar at small EDP levels, it is significantly different at larger (near-collapse) EDP levels.454

Note that the difference between the exact and approximate approaches for estimating455

the dispersion in Figure 7b is simply the result of the difference in the properties of ground456

motions selected to represent individual logic tree branches compared to those selected to457

represent only the mean hazard. Because only a single ground motion ensemble is used in458

the approximate approaches (i.e., a single EDP-IM relationship and collapse fragility curve459

e)sln(lIM(im)) for frequency-based calculations
f)sln(lEDP(ed p)) for frequency-based calculations
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representing the response of the system under the mean hazard), uncertainty in the collapse460

probability distribution and EDP is not considered in the approximate approaches. In aggregate,461

as indicated in Figure 7b, it can be seen that ground motion selection uncertainty, leading to462

the EDP-IM and collapse fragility uncertainty, is significant at highly-nonlinear near-collapse463

seismic response levels (noting that, for example, large demand hazard dispersions of 0.56 and464

0.43 in Figure 7b represent a variance ratio of 1.7 — i.e., 70% increase).465

COMPARISON OF THE COMPUTATIONAL BURDEN466

The exact and approximate approaches for estimating the demand hazard can be compared in467

terms of the computational cost of propagating seismic hazard and ground motion selection468

epistemic uncertainties. For (i) Nmodels seismic hazard logic tree branches, (ii) deaggregated at469

Niml IM levels, and (iii) Ngm ground motion selected for each ensemble; Nmodels ⇥Niml ground470

motion selection tasks and Nmodels ⇥Niml⇥Ngm RHAs of the system need to be performed for471

the exact method. In contrast, for the approximate distribution and mean approaches these472

numbers are reduced to Niml and Niml⇥Ngm, respectively (i.e., a ratio of Nmodels fewer). As a473

typical example, considering Nmodels=100, Niml=12, and Ngm=20, the exact approach requires474

1200 ground motion selections and 24000 RHAs, whereas these numbers reduce to 12 and475

240, respectively, for the two approximate approaches. Thus, given the significantly lower476

computational cost of the approximate approaches, it is expected that their accuracy in estimating477

the demand hazard will likely be deemed sufficient in many cases.478

ADDITIONAL SOURCES OF EPISTEMIC UNCERTAINTY NOT CONSIDERED IN THIS STUDY479

Given a GMM model utilised in seismic hazard analysis for the conditioning IM, the GMM480

implemented to obtain the conditional distribution of IMi (considered in ground motion selection)481

can also be chosen from a set of existing models, which results in an additional level of epistemic482

uncertainty to consider. Note that while there is a relatively large number of GMMs to obtain SA483

ordinates (Douglas, 2017; Stewart et al., 2015), there is a limited number of GMMs available for484

other IMs, which may prevent the analyst from an appropriate representation of this additional485

epistemic uncertainty (Cotton et al., 2006; Bommer et al., 2010; Atkinson et al., 2014).486

In addition to the epistemic uncertainty in the adopted GMMs for the considered IMs, various487

correlation models can be utilised in calculating the multivariate distribution of IMs considered488

in the ground motion selection process. In contrast to the significant differences in the IM mean489
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and standard deviation from different GMMs (e.g., Abrahamson et al., 2008; Douglas, 2017;490

Gregor et al., 2014; Stewart et al., 2015), different correlation models yield, in general, similar491

results (Baker and Bradley, 2017). Also, as illustrated by Baker and Bradley (2017), epistemic492

uncertainty due to the choice of GMMs to calculate the conditional distribution of IM (which493

will be utilised in the ground motion selection process) is significantly larger than the effect of494

variations in the correlation coefficients. While being another source of epistemic uncertainty in495

the process of seismic performance assessment, it is expected that a single correlation model will496

be sufficient for practical cases.497

Although not considered in this paper, uncertainties in the modelling assumptions and the498

input parameters to create the numerical model of the system, in contrast to the two abovemen-499

tioned uncertainties, is significantly important in addressing epistemic uncertainty in seismic500

performance assessment (Liel et al., 2009; Bradley, 2013b; Terzic et al., 2015; Gokkaya et al.,501

2016). These uncertainties can be addressed by considering them in the logic tree approach502

alongside the uncertainties from seismic hazard analysis and ground motion selection.503

THE EFFECT OF MODEL SELECTION504

Selecting appropriate GMMs that can represent the center, body, and range of ground motions505

from causative rupture scenarios for a specific region requires a rigorous approach (Cotton506

et al., 2006; Bommer et al., 2010; Atkinson et al., 2014). Given the fact that the NGA models507

utilised for the example application in this paper were developed based on similar ground motion508

databases and interactions between the developers, epistemic uncertainties obtained from a suite509

of GMMs with independent development processes can be higher for the site considered in510

this study (Atik and Youngs, 2014). It is important to note that alternative ERFs and GMMs511

implemented in any PSHA calculation represent the range of available models rather than the512

range of ‘true’ epistemic uncertainty for the site of interest (Abrahamson, 2006). As a result, a513

region that is not well-studied might falsely have a smaller epistemic uncertainty due to the lack514

of appropriate models. Since the example region chosen in this study is a well-studied region, it515

is expected that the effect of epistemic uncertainty on properties of the selected ground motions516

and seismic performance measures will be more severe for regions with greater uncertainties.517
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CONCLUSION518

In this paper, three approaches are presented to propagate the effect of ground motion selection519

epistemic uncertainties to seismic performance metrics. These approaches differ in the level520

of rigor considered to propagate epistemic uncertainty to the conditional distribution of IMs521

utilised in ground motion selection, selected ground motion ensembles, and the number of522

response history analyses (RHAs) performed to obtain the distribution of engineering demand523

parameters (EDPs). In the exact approach, the EDP-IM relationship and demand hazard is524

calculated specifically for each seismic hazard curve from the logic tree. Assuming that the525

considered models represent a robust set of applicable models to characterise the seismic hazard526

at the site, the resulting demand hazards from the exact approach can be assumed to represent527

the centre, body, and range in epistemic uncertainty of seismic performance of the system. In528

contrast, an approximate distribution approach utilises the EDP-IM relationship and collapse529

fragility curve obtained based on ground motion ensembles representing only the mean seismic530

hazard curve, which is then integrated with hazard curves from the logic tree branches to obtain531

an approximation to the demand hazard obtained from the exact approach. This approach has532

a significantly lower computational cost compared to the exact approach due to the smaller533

number of RHAs and ground motion selection tasks performed. The third (i.e., approximate534

mean) approach integrates the EDP-IM relationship and collapse fragility curve representing the535

mean hazard with the mean seismic hazard curve, resulting in a demand hazard which aims to536

approximate the mean from the exact approach.537

The three presented approaches were compared for an example in the San Francisco Bay538

Area considering epistemic uncertainties in the earthquake rupture forecast and ground motion539

models. The presented results indicate that considering the significantly lower computational cost540

of utilising the approximate distribution approach, this approach can appropriately approximate541

the distribution of the demand hazards from the exact approach. In addition, if the aim is to542

obtain the mean demand hazard, it is sufficient to integrate the mean seismic hazard with the543

EDP-IM relationship and collapse fragility curve representing the mean seismic hazard. Also,544

it was observed that, for seismic demand levels below the collapse limit, epistemic uncertainty545

in ground motion selection is a smaller uncertainty contributor relative to the uncertainty in the546

seismic hazard itself. In contrast, uncertainty in ground motion selection process increases the547

uncertainty in the seismic demand hazard for near-collapse demand levels.548
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